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SUMMARY

The Transmission Control Protocol (TCP) has been mainly designed assuming a relatively reliable
wireline network. It is known to perform poorly in the presence of wireless links because of its basic
assumption that any loss of a data segment is due to congestion and consequently it invokes congestion
control measures. However, on wireless access links, a large number of segment losses will occur more
often because of wireless link errors or host mobility. For this reason, many proposals have recently
appeared to improve TCP performance in such environment. They usually rely on the wireless access
points (base stations) to locally retransmit the data in order to hide wireless losses from TCP. In this
paper, we present WTCP (Wireless-TCP), a new mechanism for improving wireless access to TCP
services. We use extensive simulations to evaluate TCP performance in the presence of congestion
and wireless losses when the base station employs WTCP, and the well-known Snoop proposal [3].
Our results show that WTCP significantly improves the throughput of TCP connections due to its
unique feature of hiding the time spent by the base station to locally recover from wireless link errors
so that TCP’s round trip time estimation at the source is not affected. This proved to be critical
since otherwise the ability of the source to effectively detect congestion in the fixed wireline network
is hindered.
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1. Introduction

Technology advances in communication, hardware and software, and the ever increasing need
for un-tethered access to the Internet and intranets have created new opportunities for wireless
data communication. However, the transmission quality of wireless channels is characterized by
bursty errors with high bit error rate (BER) as opposed to randomly occurring errors with low

Contract/grant sponsor: This work was supported in part by NSF grants CAREER ANI-0096045, ANI-0095988,
and EIA-0202067.
∗Correspondence to: Ibrahim Matta, Computer Science Department, Boston University, 111 Cummington
Street, Boston, MA 02215. Tel: (617) 358-1062, fax: (617) 353-6457, e-mail: matta@cs.bu.edu.

Received March 31, 2002
Copyright c© 2002 John Wiley & Sons, Ltd.

Accepted July 30, 2002



2

BER in wired links. The transmission quality of wireless networks is further degraded by the
hand-off related intermittent delay or loss of the connection. Hence, the design of a transmission
protocol for a network with wireless links must take into account these additional losses on
wireless links. The design of such transmission protocol must account for the fact that wireless
hosts commonly communicate with hosts in the fixed part of the network, and the transmission
procedures used over the wireless link must be compatible with their peer procedures employed
in the fixed network. When used in a wireless environment, the Transmission Control Protocol
(TCP) [4], developed for fixed networks with relatively reliable links, wrongly assumes segment
loss in the wireless portion of the network to be a sign of network congestion and invokes
congestion control mechanisms that curb the flow of segments on that connection. However,
for better throughput, a wireless loss must be detected and retransmitted as quickly as possible.
We are proposing a new scheme, we call WTCP (Wireless-TCP), to enhance the performance

of the transport protocol in networks with wireless links. In our scheme the base station,
through which the mobile user is connected to the rest of the network, plays a pivotal role
by buffering the TCP segments and locally retransmitting them based on timeouts as well
as duplicate acknowledgments.† WTCP uses efficient flow control for the wireless link, and
maintains end-to-end TCP semantics‡. Furthermore, WTCP uniquely hides the time spent by
the base station for local recovery so that TCP’s round trip time estimation at the source
is not affected. This is critical since otherwise the ability of the source to effectively detect
congestion (i.e. losses due to buffer overflow) in the wireline network can be impaired.§

The paper is organized as follows. Section 2 discusses related work. In Section 3, we present
the proposed WTCP architecture. Section 4 describes the details of the simulations we have
performed. In Section 5, we present the results of the simulation and compare the simulated
protocols. Results on handoff and fairness are presented in Sections 6 and 7, respectively.
Section 8 concludes the paper.

2. Related Work

Many approaches have been proposed to improve TCP performance over networks with wireless
links. These approaches can be divided into two major categories, ones that work at the
transport level, and others that work at the link level.
Transport level proposals include Indirect-TCP (I-TCP) [1], Freeze-TCP [8], Explicit Bad

State Notification (EBSN) [2], and fast-retransmission [6].
I-TCP splits the transport link at the wireline–wireless border. The base station maintains

two TCP connections, one over the fixed network, and another over the wireless link. This
way, the poor quality of the wireless link is hidden from the fixed network. By splitting the
transport link, I-TCP does not maintain end-to-end TCP semantics, i.e. I-TCP relies on the
application layer to ensure reliability.

†We point out that congestion due to contention on the wireless link is resolved by a lower layer (MAC) protocol
and losses detected at the higher/transport layer of the base station are assumed to be due to wireless errors.
‡By end-to-end semantics we mean that an acknowledgment to a data segment comes only from the destination
host when data is successfully delivered, and not from any other intermediate system.
§This paper expands our work in [12, 13]. A full version can be found at
http://www.cs.bu.edu/fac/matta/Papers/full-IJCS.ps
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Upon detecting a poor signal strength, Freeze-TCP [8] at the mobile host throttles the sender
by advertising a receive window size of zero. This causes the sender to enter persist mode and
freeze all the timers and window sizes. This way, the mobile host can prevent the sender from
taking any congestion control measures. Freeze-TCP requires TCP code modification at the
mobile host.
Like other approaches, EBSN uses local retransmission from the base station to shield

wireless link errors and improve throughput. However, if the wireless link is in error state for
an extended duration, the source may timeout causing unnecessary source retransmission. The
EBSN approach avoids source timeout by using an explicit feedback mechanism. The EBSN
message causes the source to reinitialize the timer. The main disadvantage of this approach is
that it requires TCP code modification at the source.
The fast-retransmission approach does not address the issue of wireless link reliability, but

reduces the effect of mobile host hand-off. Immediately after completing the hand-off, the IP
in the mobile host triggers TCP to generate a certain number of duplicate acknowledgments.
This causes the source to retransmit the lost segment without waiting for the timeout period
to expire. This requires modification to the TCP code at the mobile host.
Snoop [3] is a well-known link level proposal. In this scheme, the base station sniffs the link

interface for any TCP segments destined for the mobile host, and buffers them if buffer space is
available. Segments are forwarded to the mobile host only if the base station deems it necessary.
Source retransmitted segments that have already been acknowledged by the mobile host are
not forwarded by the base station. The base station also sniffs into the acknowledgments from
the mobile host. If the base station sees a duplicate acknowledgment, it detects a segment loss
and locally retransmits the lost segment if it is buffered and starts a timer. If the retransmitted
segment is not acknowledged within twice the round trip time of the wireless link, the segment
is again retransmitted. Unlike I-TCP, Snoop does not completely shield the wireless link losses
from the fixed network, and source timeout is still possible. In particular, if acknowledgments
are lost on the wireless link, a base station retransmission cannot occur as there are no duplicate
acknowledgments, and the source can timeout and source retransmission takes place. The
transmission over the wireless link resumes only after the arrival of the source retransmitted
segment. Hence, in the presence of burst losses the throughput will be poor compared to I-TCP.

3. WTCP Architecture

We propose a new scheme, we call WTCP, where the base station is involved in the TCP
connection. The conceptual view of the transport link is shown in Figure 1. WTCP requires
no modification to the TCP code that runs in the mobile host or the fixed host. This is an
important advantage at both ends. In the fixed network, one cannot expect the millions of
fixed hosts to install a modified TCP implementation to improve throughput for connections
involving wireless links. On the mobile host side, by letting the mobile host choose any available
TCP implementation, the market share for service providers is increased.

WTCP receives data segment from source

The network layer protocol (viz. M-IP [9]) running in the base station detects any TCP segment
that arrives for a mobile host and sends it to the WTCP input buffer. If the segment is the next
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Figure 1. Conceptual view of the transport connection

segment expected from the fixed host, it is stored in the WTCP buffer. The sequence number
for the next segment expected from the fixed host is increased by the number of bytes just
received. If the newly arriving segment has a larger sequence number than what is expected,
the segment is buffered, but the sequence number of the next packet expected is not changed. If
the sequence number of the segment is smaller than what is expected, the segment is ignored.

WTCP sends data segments to mobile host

On the wireless link, WTCP tries to send the segments that are stored in its buffer. WTCP
independently performs flow control for the wireless connection. It also maintains state
information for the wireless connection, such as transmission window, sequence number of
last acknowledgment received from the mobile host, and the sequence number of the last
segment that was sent to the mobile host. WTCP transmits from its buffer all the segments
that fall within the wireless link transmission window. When a segment is sent to the mobile
host, the base station schedules a new timeout if there is no other timeout pending.

WTCP receives acknowledgement from mobile host

The base station acknowledges a segment to the fixed host only after the mobile host actually
receives and acknowledges that segment. Hence, TCP end-to-end semantics is maintained
throughout the lifetime of the connection. Also, the round trip time seen by the source is the
actual round trip time taken by a segment to reach and return from the mobile host, i.e. it
does not include residence time at the base station needed for local recovery.
Based on duplicate acknowledgment or timeout, the base station locally retransmits lost

segments. In case of timeout, the transmission window for the wireless connection is reduced
to just one segment assuming a typical burst loss on the wireless link is going to follow.
If only one segment is lost and the following segment(s) pass(es) through, the loss would
likely be indicated by a duplicate acknowledgment (see below). In case of timeout, by quickly
reducing the transmission window, potentially wasteful wireless transmission is avoided and
the interference with other channels is reduced.
The opening of the transmission window in regular TCP is based on whether the connection

is in the slow start or congestion avoidance phase. In the slow start phase, each time an
acknowledgment is received, the congestion window (cwnd) is incremented by one segment size.
In the congestion avoidance phase, each time an acknowledgment is received, the congestion
window is incremented by a factor of 1/cwnd. WTCP however opens the wireless transmission
window completely assuming that an acknowledgement indicates that the wireless link is in
good state. That is, when an acknowledgment is received, the transmission window size is set
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to the window size advertised by the receiver.
TCP-reno assumes a duplicate acknowledgment is caused by a TCP segment being lost due

to congestion and the connection is put in the congestion avoidance phase. In other words,
after a duplicate acknowledgment, the transmission window is halved and then incremented
only by one segment per round trip time. However, for duplicate acknowledgment, WTCP
does not alter the wireless transmission window assuming that the reception of the duplicate
acknowledgement is an indication that the wireless link is in good state, and immediately
retransmits the lost segment. The base station continues to transmit the remaining segments
that are within the wireless transmission window if they have not already been transmitted.
However, until the mobile host receives the lost segment, the reception of each out-of-order
segment will generate a duplicate acknowledgment. The number of these additional duplicate
acknowledgments can be determined by the base station, which ceases to retransmit during
their reception. By avoiding more than one duplicate acknowledgment based retransmission
for a segment, WTCP improves the utilization of the wireless channel.

Clock granularity

In most multi-hop networks, the round trip time is typically in the order of few hundred
milliseconds. Because of this reason, many TCP implementations use a coarse clock granularity.
For example, 4.4BSD-Lite uses a 500ms clock [15]. On the other hand, the base station–mobile
host link is single-hop, and the round trip time is typically in the order of tens of milliseconds.
Hence, in order to accurately estimate round trip time and to trigger timeouts in the millisecond
range, WTCP uses a 10 ms clock granularity.¶

3.1. Effect of Local Retransmission on RTT Estimation

In the older version of TCP specified in RFC 1185 [5], the round trip time (RTT) is computed
once per transmission window, and none when there is a timeout. Since RTT is not frequently
updated, the RTT estimate may not be accurate. Inaccurate RTT estimation can cause
unnecessary retransmissions by triggering timeouts too soon or can degrade the throughput by
triggering timeouts too late. The newer implementation of TCP specified in RFC 1323 [4] uses
the timestamp option in the TCP header to better estimate the round trip time. The sender
writes the current timestamp in the header, and the receiver echoes back this timestamp
without modifying it. Since each acknowledgment contains the timestamp of the segment that
generated it, the round trip time can be computed for every acknowledgment, even in the
presence of timeout in a transmission window. However, when an intermediate host (base
station) buffers the segments and locally tries to retransmit them, the RTT computation can
be affected. For example, if a segment is successfully retransmitted after one or more timeouts
at the base station, the RTT value computed at the source for this segment will overshoot by
the residence time of this segment at the base station buffer. If the burst error duration of
the wireless link is significantly long, the residence time of the segment in the WTCP buffer
may span a few source clock ticks and affect the RTT computation, especially its variance.

¶The complexity of both Snoop and WTCP are about the same. However, due to the use of more granular
clock at the base station, WTCP may have a higher impact on resource utilization than Snoop. There is clearly
a tradeoff between resource utilization and throughput performance.
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Even after successful transmission resumes on the wireless link and acknowledgments are sent
back to the source, the RTT computation at the source may take a long time to settle down
to the actual value. This problem exists in all the proposals that use local retransmission by
the base station except I-TCP [1]. To hide the wireless link errors from the source, ideally the
residence time of the segment at the WTCP buffer could be added to the timestamp value
in the TCP header before the acknowledgment is forwarded back to the source. This has the
effect of subtracting the residence time at the base station from the RTT value computed
by the source. Let ts be the original timestamp value in the packet header, i.e. the time the
packet was sent by the source. Let td be the residence time (spent at the base station), and tr
be the time the acknowledgment is received by the source. Then by modifying the timestamp
in the header to ts + td, the RTT computed by the source for this packet is tr − (ts + td) =
(tr − ts)− td. Thus the RTT computation excludes td.
This approach requires the base station to know the clock granularity of the source since

the timestamp field in the TCP header contains a clock tick value, not the real-time clock
value. In particular, when a system is booted, the clock tick is set to 0 and is incremented
by one every 500 ms in 4.4BSD-Lite. To get around the problem of not knowing the clock
granularity, an approximation to subtracting the exact residence time at the base station is as
follows: when a segment is sent to the mobile host the base station can replace the timestamp
of that segment with the timestamp of the most recent segment received from the source. A
trivial case is when the WTCP buffer is empty. When a TCP segment arrives, it is obviously
the most recent segment received at the base station. Thus, in this case, the new timestamp
will be the same as the original timestamp in this segment’s header yielding an RTT value
that indeed does not include any residence time.
When the acknowledgment comes back from the mobile host, it is forwarded to the source

without any modification. When there are no source timeouts, the base station receives TCP
segments from the source at least once every RTT interval. Hence the maximum error in the
RTT computation using the most recent timestamp is bounded by one RTT (see Figure 2)
when there are no source timeouts.

drop
drop

drop

drop

e: residence time error

source retransmission

e

back-off time

Source Base Station

e

Figure 2. Error in RTT using the most recent timestamp

The above approach works fine as long as the base station frequently receives TCP segments
from the source. However, if the source timeouts due to a prolong burst error state of the
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wireless link or due to congestion in the wired portion of the network, the inter-arrival time
between source TCP segments at the base station can be large. During this phase, the error in
excluding residence time using the timestamp of the most recent segment received by the base
station can be as large as the source back-off time (see Figure 2). Any acknowledgment sent
to the source using this timestamp will obviously affect the RTT estimate maintained at the
source by a large factor. To avoid this problem, before sending a segment over the wireless link,
the base station can remove its timestamp option field if there has been any retransmission
from the base station after receiving the most recent segment from the source. Timestamps
are again used only after receiving a TCP segment from the source.

4. Simulation Model and Performance Measures

In our evaluations, we used the network simulator ns v.1.2a3 [11]. We extended ns to
incorporate wireless link characteristics and to simulate WTCP, I-TCP, and Snoop. For all
three protocols, the clock resolution of the base station is changed to 10 ms, and the resolution
of the fixed host is maintained at 100 ms. No changes are made to the fixed network hosts or
the mobile hosts. However, the base station node is modified to receive, buffer and transmit
packets to the mobile host.
In the case of I-TCP, the incoming segment from the fixed host is accepted and buffered,

and an acknowledgment is immediately sent back to the source. A separate TCP connection
is created for the mobile host, and all segments in the base station buffer are transmitted over
this wireless connection.
In order to avoid buffer overflow at the base station, the maximum window size of the TCP

connection on both sides of the base station is chosen to be smaller than its maximum buffer
size. However, in the case of I-TCP, buffer overflow can easily happen due to the split nature
of the connection. TCP handles the receiver buffer overflow situation by using receiver window
size advertisements. Thus for the I-TCP simulation, we modified the ns code at the base station
to advertise available buffer size to the source as the window size in every acknowledgement.
When there is no buffer space available, the base station advertises a window size of zero, and
the source refrains from transmitting any more data until the window size is increased. The base
station will increase the window size only if it can accept at least one full TCP segment [14].
For WTCP and Snoop, the base station buffer cannot become full as the transport connection
is end-to-end. For an end-to-end connection, the number of unacknowledged segments sent
out by the source is bounded by the transmission window. Since the maximum window size is
chosen to be smaller than the buffer size at the base station, the base station buffer can never
overflow.
In WTCP, when the base station receives a segment from the fixed host, the segment is

saved in the buffer. Whenever the base station is ready to transmit that segment, a new
header is created, and every header field from the buffered segment is copied to the new
header except the timestamp value and the checksum. As discussed earlier in Section 3.1, we
modify the timestamp in two different ways to hide the effect of wireless link errors on the
RTT estimation at the source. The first method assumes an ideal scenario where the clock
granularity of the source is known to the base station, and the base station increments the
timestamp by the actual (exact) residence time of the segment at the base station. The second
method makes no assumption about the source clock granularity, and uses the timestamp of
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the most recent segment received from the source as an approximation to excluding residence
time at the base station from the RTT estimate. These two methods are simulated separately
and the results are compared in Section 5.

WTCP also measures the base station–mobile host RTT. If there is no RTT estimate
pending, WTCP marks the next segment sent to the mobile host for RTT estimate and stores
the sending time of that segment. When the first acknowledgement that covers the sequence
number of this marked segment arrives at the base station, the base station computes the
RTT by subtracting its sending time from its arrival time. Since only one hop is involved in
the base station–mobile host link, the round trip time variation is small. Hence, the smooth
round trip time estimation used in regular TCP is not employed in WTCP. When there is no
base station timeout, the timeout value is set to 1.5 times the wireless link RTT. WTCP uses
a linear back-off policy, that is, the timeout value is always 1.5 × RTT. The value of 1.5 is
chosen so that any minor variation in the RTT does not trigger unnecessary timeouts.

The round trip delay in the wireless portion of the network is usually small (except in the
case of satellite links). Hence, for better utilization of the wireless link, the window size of
WTCP for the wireless portion of the connection should be neither very large nor very small.
The optimal window size is given by the delay-bandwidth product of the wireless link. Hence
we chose a WTCP window size of 3 in the simulation. Note here that, the maximum window
size of the end-to-end TCP connection is not changed (it is given in Table I).

We also simulated the Snoop protocol based on [3] for comparison purposes. Snoop uses
negative acknowledgment at the mobile host to improve performance. We did not implement
negative acknowledgments because our intention is not to modify TCP at the mobile host.

Wireless channel error model

Unlike the wired link, wireless links are characterized by high bit error rates. The errors are
generally bursty in nature with varying burst duration. We model the wireless link using a two-
state Markov channel. where the channel is in either good state or bad state. In the good state
the bit error rate (BER) of the channel is low, and in the bad state BER is high. We simulated
the wireless link with bit error rates of 10−6 and 10−2 in good and bad states, respectively.
The time spent in each state is modeled by an exponential distribution with mean good state
duration fixed at 1 second. The mean bad state duration is varied from 10 ms to 100 ms.

4.1. Performance Measures

Our intention is to improve the throughput performance of a transport connection. The
throughput is measured as the average number of bits successfully transmitted to the mobile
host in a second.

Improving throughput may result in poor utilization of the wireless channel. For example,
if the wireless channel is in bad state, aggressive retransmission by the base station will
likely result in loss of segments. Though aggressive retransmission improves throughput, it
also increases the interference with other wireless links. To capture this tradeoff, we measure
goodput [2] defined as the ratio of the number of new (header + data) bytes transmitted over
the wireless link and the total number of bytes transmitted (new and retransmissions).
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5. Results and Discussion

We have simulated the network shown in Figure 3 with error free wired link and erroneous
wireless link. The wired link bandwidth is 10 Mbps with 100 ms latency. The wireless side has
an 800 Kbps link with 10 ms latency. Table I shows the parameters used in the simulation.
The simulation is run for 200 seconds and 95% confidence intervals were computed for the
performance measures.

10 Mbps

Fixed Host
(Source)

Base Mobile
Station Host

10 ms

800 Kbps

100 ms

Figure 3. Simulated network

Parameter Value
Maximum window size 10 KB
Buffer size at base station 20 KB
Segment size (including header) 1 KB
BER in good state 10−6

BER in bad state 10−2

Mean good period 1 sec

Table I. Simulation parameters

The throughput results of I-TCP, Snoop, WTCP and TCP-tahoe‖ are shown in Figure 4(a).
For a good quality wireless link, the throughput of I-TCP is better than other protocols.
However, when the wireless link quality degrades WTCP yields better throughput mainly
because of its aggressive retransmission policy over the wireless link. WTCP achieves
throughput values 4-8 times higher than TCP-tahoe.
Though Snoop achieves throughput values comparable to I-TCP and WTCP at low loss

situations, the throughput of Snoop is poor when the wireless link is very bursty (in bad error
state) for long durations. The reason is that Snoop triggers retransmission only after the base
station receives a duplicate acknowledgment. However, when the wireless link is in bad error
state, it is likely that acknowledgments be lost. In this situation, the base station fails to trigger
duplicate acknowledgment based retransmission, and the throughput degrades.
WTCP’s aggressive retransmission policy slightly reduces the goodput of the wireless link

as shown in Figure 4(b). However, the throughput gain (4-8 times higher than TCP-tahoe)
outweighs the small loss in goodput (around 2%). There is a clear tradeoff between throughput
and goodput. One can improve goodput by using a less aggressive retransmission policy over
the wireless link at the expense of decreased throughput. However, the gain in goodput will

‖We do not show results for TCP-reno as it was found to be less robust than TCP-tahoe in wireless applications
[10].
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Figure 4. Throughput and Goodput of different protocols

be minimal compared to the loss in throughput.

WTCP: On hiding the effect of local retransmission on RTT estimation of TCP

By storing TCP segments at the base station and locally retransmitting them, WTCP and
other proposals shield most of the wireless link errors from the source and improve throughput
for reliable bulk data transfer. But, the amount of time a segment spends in the base station
buffer is an indication of the wireless link state, and should be hidden from the source as much
as possible. Otherwise, the ability of the source to effectively detect congestion in the fixed
wireline network will be affected. Depending on the nature of the wireless link, the amount of
time a segment spends in the base station buffer (residence time) can span a few source clock
ticks and offset the RTT estimate maintained at the source by a large value.
In Figure 5(a) we plot the source timeout values, sampled every second, as a function of

time, when WTCP is employed at the base station. The plotted timeout value is the initial
timeout computed by the TCP source, which is close to the smooth (average) RTT between
the fixed host and mobile host when the variance is small. The granularity of the source clock
is 100 ms, the mean bad period of the wireless link is 100 ms, and there are no congestion
losses in the wired network. Figure 5(a) shows the effect of (i) not hiding the residence time;
(ii) excluding actual residence time assuming the granularity of the source clock is known to
the base station; and (iii) using the timestamp of the most recent segment received from the
source with timestamp removal option (discussed earlier in Section 3.1). When the residence
time is not excluded, the timeout value reaches as high as 2.4 seconds, a five fold jump from
the timeout value when the residence time is excluded.
In the latter case, the timeout value varies between 500–700 ms. However, when the exact

value of the residence time is excluded, the timeout value varies more slowly compared to
when most recent timestamp is used. When the exact value of residence time is used, the small
variations in the timeout value are due to minimal queuing delays. In particular, if there is a
retransmission at the base station, WTCP closes the wireless transmission window to just one
segment. However, when an acknowledgment is received, the transmission window is opened
fully, and the packets are queued on the wireless link for transmission. For an 800 Kbps link,
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the maximum queuing delay is 90 ms if ten 1 Kbyte packets are queued.
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Figure 5. Sample timeout values for different clock granularities

If, as in most TCP implementations, a coarser clock granularity is used at the source, the
queuing effect is indiscernible. In Figure 5(b) we show the plot of timeout values when the
source clock granularity is 300 ms. When the timestamp of the most recent segment is used
or the exact residence time is excluded, the timeout value is always 900 ms (i.e. 3 clock ticks).
However, if the timestamp is not modified (i.e. residence time is not excluded) the timeout
value reaches as high as 2.4 seconds.
In summary, if the timestamp is not modified to exclude the residence time in the base

station buffer, the timeout value maintained at the source will be high. As pointed out earlier,
this affects the TCP source’s ability to effectively detect any congestion losses in the wired
network portion of the connection. To see this effect we modeled a lossy wired link which
randomly looses data packets with probability P. Figure 6 shows the throughput for WTCP
without modifying the timestamp and with modifying the timestamp to exclude the residence
time (using the timestamp of the most recent segment), as well as the throughput for Snoop
and TCP-tahoe. The effect of residence time on the TCP source’s ability to detect congestion
losses in the wired link can be clearly seen in Figure 6(a) where the wired loss probability
is 0.01. The advantage of hiding the residence time at the base station becomes even more
pronounced for higher wired (congestion) loss probabilities. However, when there are only few
wired link losses (Figure 6(b)), as expected, the number of data segments lost is low, and hence
number of retransmissions is low and excluding the residence time does not provide significant
improvement in throughput.

Effect of background load

We have looked at the performance of several wireless TCP approaches by artificially
introducing congestion losses in the wireline network. Here we add background traffic to the
wireline network to cause congestion losses. We add 20 TCP-tahoe connections from the fixed
host to the base station.
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Figure 6. WTCP throughput with wired (congestion) link loss probability (a) P = 0.01; (b) P = 0.001
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Figure 7. Throughput performance with background traffic

Figure 7 shows the throughput performance in the presence of background traffic. The
average packet dropping rate over the wired link is observed to be 1%, similar to Figure 6(a)
of no background traffic but artificial (wired) drops. I-TCP yields better throughput in the
presence of background traffic than in the absence of it. The reason being, the I-TCP traffic
itself now experiences a loss rate smaller than 1%. The throughput of Snoop and WTCP suffers
when background traffic is added. Both of these are end-to-end transport connections unlike I-
TCP which splits the connection at the base station. TCP is known to be unfair to connections
with large delay-bandwidth product [10]. Thus the throughput of WTCP and Snoop suffers
due to the longer paths and additional delays introduced by the background load. This is also
why the difference in WTCP throughput between including and excluding residence time is
more pronounced in the presence of background load than in the absence of it.
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6. Handoff

In this section, we compare the transport layer protocol performance in the presence of both
handoff as well as fading related errors.
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Figure 8. Handoff simulation setup

We simulated a transport connection using different protocols on the network shown in
Figure 8. The amount of time the mobile host spends in a base station cell is assumed to
be exponentially distributed with mean 10 seconds. The background traffic in the network is
modeled by 20 TCP-tahoe connections from the source node to the gateway node. The wireline
network uses drop-tail links with buffer sizes as shown in the figure. We observed that, this
network setup causes an average packet drop rate of about 1% on the source to gateway link.
We simulated a WTCP, I-TCP, Snoop, and TCP-tahoe connection from the fixed host to

the mobile host. The local retransmission algorithms are run on the gateway node for WTCP,
I-TCP, and Snoop. The handoff delay (i.e. time between breaking connection with the old
base station and making connection to the new base station) is 50 msec. When the mobile
host moves from the old base station and registers with a new base station, the latter sends
a routing update message to the gateway. Until the new location is updated in the gateway
node’s routing table, it sends data packets destined to the mobile to the old base station, where
the packets will be discarded.
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Figure 9. Throughput performance with mobility and background traffic

Figure 9 shows the corresponding results for different wireless TCP schemes. As expected,
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I-TCP detects and mitigates wireless losses more efficiently than other schemes. But, among
those protocols that do not violate end-to-end TCP semantics, WTCP is more throughput
efficient. Excluding the local recovery time almost doubles WTCP throughput. The reason
is, since the WTCP algorithm is run on the gateway node, excluding the local recovery time
excludes the handoff delay as well.

7. Fairness of WTCP and other TCP Cross Traffic

In this section we investigate the effect of including/excluding the local recovery time (LRT) in
WTCP on other TCP cross traffic in the network. Figure 10 shows the network configuration
used in the analysis. We refer to TCP connections from the fixed host to the gateway as
“tcp” connections, and we refer to the WTCP-supported connection from the fixed host to
the mobile host as “wtcp” connection.

tcp sources

wtcp sink

tcp sinks

wtcp source

mean bad time = 100msbuffer size = variable
Fixed host
(Source)

Mobile Host

Gateway

100 Kbps 30 ms
1Mbps 100 ms

Figure 10. Network topology used in analyzing fairness

There is no buffer overflow at the base station. The (end-to-end) window sizes of connections
are fixed at 10 packets. The wired link bandwidth is set to 1 Mbps, and we vary its buffer size
to vary the congestion loss rate. In Table II, we compare the results of wtcp throughput and
the average throughput of 20 tcp connections which are all from the fixed host to the gateway.
The results show that, by excluding LRT, wtcp achieves throughput gain of up to 265%, with
insignificant loss of tcp throughput. This confirms the effectiveness of WTCP in hiding wireless
losses without unfairly grabing bandwidth from other regular TCP connections.

Experiment Connection Throughput (Kbps)
excluding LRT including LRT

1 tcp 48.68 49.36
buffer = 50 pkts wtcp 16.44 6.12

2 tcp 48.48 49.20
buffer = 100 pkts wtcp 21.20 9.28

3 tcp 47.96 47.92
buffer = 800 pkts wtcp 36.96 37.36

Table II. Throughput comparison in congested network (20 tcp connections)

8. Conclusion

We presented a new reliable transport layer mechanism, called WTCP, for a network with
wireless links. While maintaining end-to-end TCP semantics and requiring no modification
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to TCP running on the fixed or mobile host, WTCP runs on the base station (or some
intermediate gateway) and achieves very high throughput compared to TCP-tahoe. We have
simulated other schemes (I-TCP and Snoop) for comparison purposes. WTCP performs better
or as well as other schemes in terms of throughput with only a slight loss in goodput. WTCP
effectively hides the time spent by the base station to locally recover so as not to hinder the
source’s ability to effectively detect congestion in the fixed wireline network.
The effectiveness and superiority of WTCP is confirmed in the presence of background load

and mobility related handoff of the mobile host. We also show that the technique of hiding
the local recovery time significantly improves the performance of WTCP-enabled connections
without exceeding their fair share of the bottleneck bandwidth.
The goal of WTCP is to hide wireless losses from TCP sources. However, some wireless

networks employ radio link protocols (RLP) and forward error correction to improve the
reliability of the wireless links. However, many wireless networks that carry multi-media
traffic do not employ an RLP, or if they use it, limit the number of retransmissions to reduce
latency. In those networks, WTCP can be used to significantly improve the performance of
TCP connections.
We are currently developing an analytical framework for evaluating proxy-based services,

such as WTCP and Snoop, and for comparing them against end-to-end schemes such as TCP-
Westwood [7].
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