
On the Performance and Robustness of Managing
Reliable Transport Connections

GONCA GURSUN IBRAHIM MATTA KARIM MATTAR

Computer Science Department
Boston University, Boston, MA 02215

{goncag, matta, kmattar}@cs.bu.edu

Abstract—We revisit the problem of connection management
for reliable transport. At one extreme, a pure soft-state (SS)
approach (as in Delta-t [11]) safely removes the state of a
connection at the sender and receiver once the state timers
expire without the need for explicit removal messages. And
new connections are established without an explicit handshaking
phase. On the other hand, a hybrid hard-state/soft-state (HS+SS)
approach (as in TCP) uses both explicit handshaking as well as
more limited timer-based management of the connection’s state.
In this paper, we consider the worst-case scenario of reliable
single-message communication. Using a common analytical model
that can be instantiated to capture either the SS approach
or the HS+SS approach, we argue that although HS+SS may
seem more attractive due to its lower memory requirement for
keeping connection states, memory is not a concern in today’s
computers. Using a more detailed simulation model, we evaluate
various approaches in terms of correctness (with respect to data
loss and duplication) and robustness to bad network conditions
(high message loss rate and variable channel delays). Our results
show that the SS approach is more robust, and has lower
message overhead and higher goodput. Thus, SS presents the
best choice for reliable applications, especially those operating
over bandwidth-constrained, error-prone networks.

I. INTRODUCTION

Reliable end-to-end transport communication has been
studied since the 70’s and various mechanisms have made their
way into TCP [8], the reliable transport protocol widely used
on the Internet today. Many of these mechanisms provided
incremental patches to solve the fundamental problems of
data loss and duplication. Richard Watson in the 80’s [11]
provided a fundamental theory of reliable transport, whereby
connection management requires only timers bounded by a
small factor of the Maximum Packet Lifetime (MPL). Based
on this theory, Watson et al. developed the Delta-t protocol
[3], which we classify as a pure soft-state (SS) protocol –
i.e., the state of a connection at the sender and receiver can be
safely removed once the connection-state timers expire without
the need for explicit removal messages. And new connections
are established without an explicit handshaking phase. On
the other hand, TCP uses both explicit handshaking as well
as more limited timer-based management of the connection’s
state. Thus, TCP’s approach can be viewed as a hybrid hard-
state/soft-state (HS+SS) protocol.

Given the recent interest in clean-slate network architec-
tures, it is imcumbent on us to question the design of every
aspect of the current Internet architecture. In this paper, we
question a specific design aspect of TCP, that of connection
management: Despite Watson’s theory, why does a popular
transport protocol, like TCP, manage its connections using
both a state timer at the sender as well as explicit connection-
management messages for opening and closing connections?

Note that connection management is concerned with

maintaining consistent view of connection-states at the sender
and receiver to distinguish new from old connections. Though
connection management may leverage data and acknowl-
edgements to piggyback signaling information, and so data
may be falsely acknowledged (data loss) or duplicated, it
is a separate function from data-transfer functions such as
congestion control, error control, flow control, etc. In this
paper, we focus only on connection management, assuming
single-message communication.

Though over a decade ago, we have seen many pioneering
work in the area of reliable transport—see [10], [2], [3],
[11], [9] for examples—this body of work has focused on the
correctness aspects of reliable delivery but not performance.
From the correctness point of view, Watson’s theory states
that one can achieve reliability using an SS approach, as long
as one can bound exactly three timers for: (1) the maximum
time that a sender expends retransmitting a data packet (G),
(2) the maximum time that an acknowledgment is delayed
by the receiver (UAT), and (3) the maximum time that a
packet is allowed to live inside the network (MPL). Watson
argues that all these times are naturally bounded in actual
implementations. And since G and UAT are typically much
smaller than MPL, connection-state timers (at both sender
and receiver) can be bounded by a small factor of MPL.
Note that TCP itself, despite its use of explicit connection-
management messages, uses a connection-state timer (at the
sender). And TCP has to use such a state timer in order to
operate correctly1 . Thus, from a correctness point of view,
there is no way around the need for state timers, only that
TCP relies on less of them.

Our Contribution:

From a performance point of view, to the best of our
knowledge, there is no work that compares the hybrid HS+SS
approach of TCP against the arguably simpler SS approach
of Delta-t. In this paper, we provide a first performance
comparison study. We consider the worst-case scenario of re-
liable single-message communication, and develop a common
analytical model that can be instantiated to capture either the
SS approach or the HS+SS (five-packet exchange) approach.
This analytical model specializes the general model of Ji
et al. [5] for signaling protocols to connection management
for reliable transport, and so in this paper, we are concerned
with unique issues related to data loss / abort / duplication
due to inconsistent connection-states at the sender and receiver
or failure to establish a connection. The model considers a

1 Obviously, this full-proof correctness assumes that the MPL guarantee
from the underlying network is not violated. Otherwise, one can only show
correctness with high probability.

2

simplified setting of a single active connection at any given
time between the sender and receiver, i.e., a new connection is
blocked until the connection-state (memory) associated with
the previous connection is released. Under this simplified
setting, SS is found to have lower message overhead compared
to HS+SS, at the expense of reduced goodput due to its longer
holding time of the connection-state at the receiver. Thus,
HS+SS may seem more attractive in terms of goodput and
memory requirement. However, in today’s computers, memory
is not a concern. We then consider a more detailed simulation
model where more than one connection can be active between
a sender and receiver. We evaluate various approaches in terms
of correctness (with respect to data loss and duplication) and
robustness to bad network conditions (high message loss rate
and variable channel delays). Our results show that the SS
approach is more robust, and has lower message overhead and
higher goodput. Thus, SS presents the best choice for reli-
able applications, especially those operating over bandwidth-
constrained, error-prone networks.

Organization of the Paper:

Section II reviews four approaches to reliable transport,
including SS (ala Delta-t) and HS+SS (ala TCP). Section III
presents a Markov model that captures the behavior of either
SS or HS+SS for reliable connection management. We use this
analytical model to compare SS and HS+SS. We use a more
detailed simulation model in Section IV, to obtain simulation
results comparing all four reliable transport approaches under
varying packet loss probability, and varying channel delays
that may cause premature retransmissions. Section V reviews
related work. Section VI concludes the paper.

II. RELIABLE TRANSPORT APPROACHES

We describe the basic operation of different reliable
transport approaches for the worst-case scenario of reliably
sending a single message per conversation between a single
sender and a single receiver, over a channel that may lose or re-
order messages.2 We say “worst case” since information from
successive packets in a stream can only help connection man-
agement, e.g., to keep the connection state alive (refreshed).

In what follows, we review four approaches to reliable
transport [2] that we evaluate in this paper. They represent a
spectrum of solutions where the amount of explicit connection-
management messages and the use of connection-state timers
vary: (1) the two-packet protocol has no connection-state
timers nor explicit connection-management messages, (2) the
three-packet protocol augments the two-packet protocol with
an explicit connection-management CLOSE message, (3) the
five-packet protocol augments the three-packet protocol with
explicit connection-management (SYN and SYN+ACK) mes-
sages and a connection-state timer at the sender, and (4) the
Delta-t protocol augments two-packet using only connection-
state timers at both the sender and receiver. Delta-t and its
predecessor (two-packet) represent soft-state protocols, three-
packet represents a hard-state protocol, whereas five-packet
represents a hybrid hard-/soft-state protocol.

2 Throughout the paper, we use the terms “message” and “packet” inter-
changeably. When we refer to “single-message” or “multi-message” conver-
sation/transfer/communication scenario, then we mean data messages.

Note that although, from a correctness standpoint, we
note below that two-packet and three-packet may result in
duplicate connections being accepted, we include them in our
study to quantify, from a performance standpoint, how much
relative duplication they may cause for the benefit of a simpler
connection management.

Due to lack of space, we refer the reader to [4] for detailed
pseudo-codes (protocol state machines) of all protocols.

A. Two-Packet Protocol

To detect data (packet) loss, this protocol uses positive
acknowledgments. When there is data to send, the sender
opens a connection to the receiver and transmits the data
message. Opening a connection means that control information
is kept about the connection, which we refer to as state infor-
mation. When the receiver receives the data message, it opens
a connection, delivers the data message to the application,
sends an acknowledgment message back to the sender, and
immediately closes the connection. Closing the connection
means removing the state information of the connection. A
normal conversation is illustrated in Figure 1(a).

If the sender does not receive the acknowledgment within
an estimated retransmission timeout (RTO) duration, then it
retransmits the data message. Figure 1(b) illustrates the case
where the retransmission timeout value is underestimated, thus
the sender prematurely retransmits the data message. Since the
receiver closes the connection right after it sends the acknowl-
edgment, it can not distinguish a premature retransmission
(duplicate) from new data (new connection). Thus, the receiver
accepts and delivers a duplicate to the application.

Another scenario that causes data duplication is when
the network (channel) loses the acknowledgment. Figure 1(c)
illustrates this case. If the acknowledgment is lost, the sender
retransmits the data message after RTO.

In [2], the correctness of the two-packet protocol is stud-
ied in detail, including the case of data messages falsely ac-
knowledged (i.e., without being actually delivered) and hence
lost. This latter problem is solved by introducing sequence
numbers [10]. The sender appends to each new data message
a new sequence number that has not been recently used in its
communication with the receiver. A sequence number is not re-
used until all messages with that sequence number (including
duplicates) have left the network. Note that this implicitly
requires knowledge of some Maximum Packet Lifetime (MPL)
guaranteed by the network. Thus, the two-packet protocol
(augmented with sequence numbers) does not lose data but
may accept duplicates.

B. Three-Packet Protocol

To solve the duplication problem due to acknowledgment
loss, this protocol augments the two-packet protocol with an
acknowledgment for the ACK, which can be thought of as
an explicit CLOSE connection-management message sent by
the sender. When there is data to send, the sender opens a
connection to the receiver and transmits the data message.
When the receiver receives the data message, it opens a
connection, delivers the data message to the application, sends
an acknowledgment message back to the sender, and waits
for the CLOSE message from the sender before clearing the
connection-state. When the sender gets the acknowledgment,

3

Host A

DATA x

Host B

ACK x

A�B closed

A→B closed

Host A

DATA x

Host B

ACK x

A�B closed

A→B closed

(a) Normal case

Host A

DATA x

Host B

ACK x

A→B closed

A→B closed

DATA x

Duplicate
accepted

Host A

DATA x

Host B

ACK x

A→B closed

A→B closed

DATA x

Duplicate
accepted

(b) Premature retransmission

Host A

DATA x

Host B

ACK x

DATA x
Duplicate
accepted

A→B closed

Host A

DATA x

Host B

ACK x

DATA x
Duplicate
accepted

A→B closed

(c) Acknowledgment loss

Fig. 1: Two-Packet Protocol

it transmits the CLOSE message to the receiver and closes the
connection. The receiver in turn closes the connection once it
gets the CLOSE message.

Despite the extra CLOSE message, this protocol does not
solve the duplication problem. If a delayed retransmission of
a data message arrives at the receiver right after the receiver
closes the connection, the receiver wrongly opens a new
connection and accepts a duplicate.

C. Five-Packet Protocol

Host A

SYN x

Host B

SYN y, ACK x

ACK y, DATA x

CLOSE x

data accepted

ACK x

A→B closed

A→B closed

2MPL

Host A

SYN x

Host B

SYN y, ACK x

ACK y, DATA x

CLOSE x

data accepted

ACK x

A→B closed

A→B closed

2MPL

(a) Normal case

Host A

SYN x

Host B

SYN y, ACK x

SYN x

SYN y, ACK x

SYN xRetransmission
limit is reached

SYN x

Host A

SYN x

Host B

SYN y, ACK x

SYN x

SYN y, ACK x

SYN xRetransmission
limit is reached

SYN x

(b) Connection abort

Fig. 2: Five-Packet Protocol

To avoid data duplication, two additional explicit
connection-management messages are introduced to open a
connection. Figure 2(a) illustrates a normal conversation of
the protocol (ala TCP). The sender transmits a synchronization
SYN message to initiate the connection. The receiver responds
to the SYN message with a SYN+ACK message. The sender
then transmits the data message, which also acknowledges the
receiver’s SYN, thus synchronizing the sender and receiver,
ensuring that the initial SYN message is not a duplicate (from
an old connection). Upon receiving the acknowledgment for
its data, the sender transmits an explicit CLOSE message and
closes the connection. Upon receiving the CLOSE message,
the receiver closes its end of the connection.

TCP follows this five-packet protocol. However, in TCP,
after the sender sends the CLOSE message, it does not
immediately close the connection, rather it waits for 2×MPL
to make sure that there is no packet in the network that belongs
to this connection [8].

D. Delta-t Protocol

As noted above, the transport protocol inevitably assumes,
either implicitly or explicitly, that the underlying network
(channel) provides a guarantee on the Maximum Packet Life-
time (MPL). The Delta-t protocol [11] thus exclusively relies

on connection-management (state) timers that are bounded by
MPL. Delta-t is basically a two-packet protocol, augmented
by state timers at both the sender and receiver to solve the
problem of data duplication. Unlike the five-packet protocol,
there is no explicit (separate) messages to open and close the
connection. 3

Host A Host B

MPL

������

ACK x

Stime

Rtime

Host A Host B

MPL

������

ACK x

Stime

Rtime

(a) State Timers

Host A

Last DATA x

Host B

ACK DATA x

Last DATA x+1

MPL

G = n x RTT

MPL

resume G for DATA x+1

G for DATA x expires

DATA x+1 attempts lost

ACK x+1 lost

Worst-case pattern

repeats

First DATA x+1

First DATA x+2

suspend G for DATA x+1
Rtime starts

Rtime ends

Host A

Last DATA x

Host B

ACK DATA x

Last DATA x+1

MPL

G = n x RTT

MPL

resume G for DATA x+1

G for DATA x expires

DATA x+1 attempts lost

ACK x+1 lost

Worst-case pattern

repeats

First DATA x+1

First DATA x+2

suspend G for DATA x+1
Rtime starts

Rtime ends

(b) Reproduced from [3]

Fig. 3: Delta-t Protocol

The sender and the receiver state timers are set to guar-
antee that none of the messages (including duplicates) of the
active connection will arrive to the ends after they close the
connection. Figure 3(a) illustrates the connection state lifetime
at the sender and the receiver. The sender starts its state timer
whenever it sends a data message (new or retransmission).
The connection at the sender should be open long enough—
denoted by Stime—to receive the acknowledgment, which
could be transmitted in the worst-case right before the receiver
state lifetime—denoted by Rtime—expires. Since the lifetime
of a packet is bounded by MPL, we have the following
relationship:

Stime = Rtime + MPL (1)

The receiver starts its connection-state timer whenever it
receives (and accepts) a new data message. The receiver state
timer should be running long enough to receive all possible
retransmissions of the data message in the presence of an
unreliable (lossy) channel. This allows the receiver to catch
(recognize) duplicates of the data message. The connection is
closed at the receiver after the last possible acknowledgment
for the connection is sent. Figure 3(b), reproduced from [3],
illustrates the worst-case multi-message conversation between

3 Although Delta-t requires both the sender and receiver to maintain
connection-state timers, these timers are only loosely coupled—they are
started upon the reception of packets. Thus clock synchronization is not a
problem.

4

the sender and receiver4 . Denote by G, the maximum time a
sender keeps retransmitting a data message before it gives up
and aborts the connection. If n is the maximum number of
retransmissions for each data message, then G = n×RTO ≈
n×RTT , where RTT denotes the round-trip time. According
to the Delta-t protocol [3], each data packet has a timer
initialized to G when it is first transmitted. Whenever a data
packet’s G-timer expires, the G-timers of all other data packets
are frozen hoping to successfully get the acknowledgment,
otherwise the connection is aborted and the application is
informed.

Figure 3(b) shows the multi-message scenario when a new
data packet (whose sequence number is x + 1) is received
instantly, so in the worst case, Rtime is started as early
as possible. Due to consecutive losses, the G-timer of the
previous data packet (whose sequence number is x) expires
while waiting for the acknowledgment ACK x for its last
retransmission attempt, which in the worst case, will take MPL
to arrive. At this time instant, Delta-t [3] freezes the G-timers
of all oustanding packets, thus data packet x + 1 has not yet
used up its maximum delivery time G. Now when ACK x
arrives, in the worst case, due to ACK losses, data packet
x + 1 keeps getting retransmitted until all its G is consumed
by the time its last retransmission is sent, which in the worst
case, takes another MPL to arrive at the receiver. This worst-
case pattern repeats with data packet x + 2, which causes
the receiver’s state timer to be re-started (refreshed). Given
this worst-case scenario, a Delta-t receiver sets its Rtime as
follows:

Rtime = 2 × MPL + G (2)

Thus, substituting Rtime in Equation (1), we have:

Stime = 3 × MPL + G (3)

III. ANALYTICAL MODEL

A. Model Description

In this section we develop a Markov chain model, shown
in Figure 4, whose state transition rates can be instantiated
to capture the behavior of either the five-packet protocol
(ala TCP) or the Delta-t protocol. The ability of instanti-
ating both protocols in a common model underscores that
reliable transport approaches represent a spectrum of solutions
that we should study to better understand the fundamental
cost/performance tradeoffs. Our model specializes the general
signaling model of [5] to connection management for reliable
transport, and so in this paper, we are concerned with unique
issues related to data loss / abort / duplication due to incon-
sistent connection-states at the sender and receiver or failure
to establish a connection. The model considers a simplified
setting of a single active connection at any given time between
the sender and receiver, i.e., a new connection is blocked until
the connection-state (memory) associated with the previous
connection is released. Later, in Section IV, we remove this
simplification and allow multiple active connections between
a sender and receiver.

In our model, a state is a two-dimensional tuple repre-
senting whether the connection is established at the sender
and receiver. The symbol “⋆” denotes that state has been

4 For simplicity, we assume that the receiver does not delay sending its
acknowledgment.

initialized at this end, whereas “−” denotes that state has not
yet been installed at this end. Table I lists the parameters of
the protocols and the underlying network channel. All time
variables are assumed to be exponentially distributed. Table II
gives the state transition rates. In our model, we assume a lossy
FIFO network (channel), and that in the five-packet protocol,
data is sent piggybacked on the initial SYN message. Though
we capture the possible loss and retransmission of the initial
message (SYN+DATA in five-packet and DATA in Delta-t), for
simplicity, we assume that remaining control packets, which
are much smaller in size, are not lost. Thus, we do not have
to worry about receiving (and possibly accepting) duplicates
at the receiver—we study this aspect by simulation later in
Section IV.

• Markov state (⋆,−)1 captures the initial stage when
the sender attempts to initialize a connection with the
receiver. The sender transmits either a SYN+DATA mes-
sage (in five-packet) or a DATA message (in Delta-t).

• Markov state (⋆,−)3 captures the case when the sender’s
first attempt to initialize the connection failed. This
happens when the first SYN+DATA (in five-packet) or
DATA (in Delta-t) is lost. In this state, the sender keeps
retransmitting the initial message. Note that this is an
inconsistent state since there is no corresponding con-
nection state yet established at the receiver.
• Markov state = captures the case when the receiver
gets the initial message (SYN+DATA or DATA). This
is a consistent state where both the sender and receiver
have the state information of the connection between
them. Henceforth all control messages exchanged are
transmitted in this state, which lasts until the receiver
closes the connection.
• Markov state (⋆,−)2 captures the case when the
connection is closed at the receiver whereas it is still
open at the sender. In reliable transport protocols, to avoid
inconsistency, the sender should not close the connection
before the receiver does [3]. In our model, we assume
that connection-state timers are set correctly so that the
sender always closes after the receiver does.

TABLE I: Parameter Definitions

Parameter Definition

p Packet loss probability
D Channel delay

RTO Retransmission timeout
MPL Maximum packet lifetime
Rtime Connection-state lifetime at receiver for Delta-t

C Connection-state lifetime at receiver for TCP

At the initial state (⋆,−)1, the initial message arrives
at the receiver with probability (1 − p) or gets lost with
probability p. The first case is modeled by a transition from
state (⋆,−)1 to = with rate λr = (1 − p)/D, where D is
the channel delay. The second case is modeled by a transition
from state (⋆,−)1 to (⋆,−)3 with rate λl = p/D. Note that
both λr and λl are the same for both five-packet and Delta-t
protocols.

In the (⋆,−)3 state, the sender keeps retransmitting the
initial message. A successful retransmission causes a transition
from (⋆,−)3 to = with rate λt. Since the probability of
successful message arrival is (1−p) and the sender retransmits

5

TABLE II: Transition Rates

Transition Rates Definition Five-Packet Protocol Delta-t Protocol

λr Arrival rate of initial message at receiver (1 − p)/D (1 − p)/D
λl Loss rate of initial message p/D p/D
λt Successful retransmission rate of initial message (1 − p)/RTO (1 − p)/RTO
µr Connection-state removal rate at receiver 1/C 1/Rtime
ω Connection-state removal rate at sender 1/MPL 1/MPL

 ,- =

 ,- ,-

 1

3 2

l
λ r

µ

r
λ

ω
t

λ

Fig. 4: Markov Model

the message every RTO, λt = (1 − p)/RTO. Again, λt is
the same for both protocols.

In the = state, the sender and receiver exchange all
control messages (ACK in Delta-t, and SYN+ACK, ACK
and CLOSE in five-packet), completing the delivery of the
data. The receiver then closes the connection and clears the
connection state. We denote by 1/µr the average lifetime
of the connection state at the receiver. For the five-packet
protocol, 1/µr = C, where C is the time between receiving
the SYN+DATA message and the CLOSE message. For Delta-
t, 1/µr = Rtime, where Rtime = 2 × MPL + G [11] (cf.
Section II). Closing the connection at the receiver causes the
transition from state = to (⋆,−)2 with rate µr.5

In state (⋆,−)2, the sender’s connection-state timer ex-
pires with rate ω. For both protocols, 1/ω = MPL so that
the sender does not close the connection before a last message
sent by the receiver can potentially arrive—this takes, in the
worst case, MPL.

In this model, we assume that there is no waiting time
between two consecutive connections. As soon as the sender
closes the connection, it starts a new one which causes the
transition from (⋆,−)2 to (⋆,−)1. This allows us to compute,
for each protocol, the maximum rate of establishing connec-
tions (i.e. goodput, defined in Equation 4), by considering the
message rate at state (⋆,−)1 where new (single data-message)
connections are started.

Table II summarizes the state transition rates for five-
packet and Delta-t.

B. Model Solution and Performance Calculations

Using our Markov model, we can derive the following
performance metrics:

5 The setting of µr and ω is what makes our model specific to connection
management for reliable transport, specializing the general signaling model
of [5].

• Goodput ϑ: rate of successfully establishing connections,
or equivalently, rate of successfully delivering data pack-
ets since we assume one data packet per connection.

• Message rate ϕ: total transmission rate of messages,
including data and control messages. This metric reflects
a protocol’s communication and processing overhead.

• Receiver connection-state lifetime η: fraction of the con-
nection lifetime during which connection-state is main-
tained at the receiver. This metric captures a protocol’s
memory requirement at the receiver.

Let πi denote the steady-state probability of being in state
i. A new connection is established when the system is in
state (⋆,−)1. Therefore, for both protocols, the goodput ϑ,
is computed as the message rate in state (⋆,−)1. Since the
average message rate in this state is λr + λl = 1/D, then:

ϑ = π(⋆,−)1/D (4)

The average message rate for five-packet is obtained by
multiplying the probability of being in each state by the
message rate at that state. In state (⋆,−)1, the message rate is
λr +λl = 1/D. In state (⋆,−)3, the message rate is the rate of
retransmitting the initial message, which is 1

RTO
. In state =,

since we assume that the remaining four (control) messages
of the five-packet exchange are successfully transmitted, this
happens over four channel delays (i.e., C = 4 × D), thus the
message rate in this state is 4

4D
= 1

D
. Finally, in state (⋆,−)2,

no messages are sent since the sender simply waits for MPL
before clearing its connection-state. Thus, the message rate for
five-packet is given by:

ϕfive =
1

D
π(⋆,−)1 +

1

RTO
π(⋆,−)3 +

1

D
π= (5)

Similarly, the message rate for Delta-t is computed as
follows:

ϕdelta =
1

D
π(⋆,−)1 +

1

RTO
π(⋆,−)3 +

1

Rtime
π= (6)

Note that for delta-t, in state =, only the acknowledgment for
the initial DATA message is sent during the connection-state
lifetime at the receiver, thus the message rate is 1/Rtime.

The receiver maintains a connection-state only in the =
state. Given that on average, each connection lasts for 1

ϑ
,

and the fraction of time that the receiver has a state for that
connection is π=, then the connection-state lifetime at the
receiver is given by:

η =
1

ϑ
π= (7)

C. Analytical Model Results

The above analytical model can be solved to obtain results
comparing five-packet and Delta-t. Consider the following

6

mean parameter values: D=250 msec, RTO=1250 msec, and
MPL = α × D where we set α to 480 (yielding a typical
MPL value of 2 minutes).

As expected, for both protocols, we observe that message
rate is directly proportional to packet loss probability, i.e.,
message rate increases as the packet loss probability increases,
because of retransmissions. (Plots are not shown due to lack of
space.) The message overhead is higher under five-packet due
to its extra explicit connection-management messages (five to
eight times that of Delta-t).

Given that the above model assumes that the only message
that can get lost is the initial message of the connection
(SYN+DATA in five-packet and DATA in Delta-t), once the
initial message is successfully received, the connection-state
lifetime at the receiver is not affected by the packet loss
probability.

Comparing the receiver’s connection-state lifetime of both
protocols, the ratio of Delta-t’s to that of five-packet is given
by:

Rtime

C
=

2MPL + G

4D
(8)

Since typically G ≪ MPL, and we take MPL = α×D, we
have:

Rtime

C
≈

2αD

4D
=

α

2
(9)

Thus for α = 480, the connection-state lifetime at the receiver
under Delta-t is 240 times that of five-packet.

Recall that the above analytical model also assumes that a
new connection is blocked until the connection-state (memory)
associated with the previous connection is released, i.e., a
single active connection is allowed at any given time between
a sender and receiver. Because of this, we observe that the five-
packet protocol has higher goodput than (about 1.5 times) that
of Delta-t. The reason is that under five-packet, the average
lifetime of a connection is shorter, because of shorter lifetime
of the connection-state at the receiver (C < Rtime), at the
expense of explicit synchronization (connection-management)
messages. Also, as expected, for both protocols, we observe
that goodput decreases (slightly) as the packet loss probability
increases.

In summary, this simple analysis exposes a fundamental
tradeoff between message overhead and memory requirement.
Delta-t has lower message overhead, but keeps connection-
state longer, which, under this simplified model, reduces
goodput because a new connection gets blocked until memory
for the connection-state of the previous connection is released.
This may make an HS+SS approach (ala TCP) appear at-
tractive. However, in a more realistic setting and given that
memory is not a concern in today’s computers, the conclusion
might be different. So, in the next section, we consider a more
detailed simulation model where: (1) we relax the assumption
that only the initial message is lost and consider a wide range
of channel loss rates and delays, and (2) we allow multiple
connections to be active at a time between a sender and
receiver. The second point is justified in practice because:

• Memory is not a concern in today’s computers. For
example, given reasonable assumptions on the connection
arrival rate λ, say 10 connections per second, MPL of
say, 120 seconds, a typical connection-state size S of
500 bytes, then the average total memory for active

connections required by a Delta-t’s receiver (server) is
λ × S × (2 × MPL) = 10 × 500 × (2 × 120) = 1.2M
bytes. This memory requirement is easily accommodated
given that in a typical server today, the total memory
space allocated for maintaining connection states is ap-
proximately 100M bytes.

• In practice, many concurrent conversations can be estab-
lished between a sender and receiver given a large enough
space of connection identifiers to assign them.

IV. SIMULATION

A. Simulation Model

We use event-based simulations to compare four
protocols—two-packet, three-packet, five-packet and Delta-t—
in terms of correctness, robustness and performance.

In our simulation model, all types of messages may get
lost with probability p, or delayed in the underlying channel.
We use a two-state Markovian channel-delay model with a
short-delay state and a long-delay state. The mean of short
and long channel delays are 250 and 1000 milliseconds,
respectively.6 If the channel is in the short (long) channel-
delay state for a message, then with probability 0.8 it will
stay in the same state for the subsequent message, or with
probability 0.2 it will transit to the long (short) channel-delay
state. For any message, the delay is upper bounded by the
Maximum Packet Lifetime, MPL, which is set to 2 minutes.

New connections arrive according to a Poisson process
at the rate of 10 connections/second. For all protocols, the
sequence number for each connection is randomly chosen,
uniformly from the range [0, 10000], and we set the maximum
number of retransmission attempts for any message to five.

In the following subsections we present and discuss our
simulation results. Each plot is obtained by averaging ten
independent runs, and each run attempts to establish 1000
connections. All results are shown with 95% confidence
intervals—in some plots, the intervals are too small to be
visible.

B. Summary of Observations

Before presenting our simulation results in detail, we
summarize our main observations:

• Delta-t is more robust than five-packet (ala TCP) under
high packet loss probability and low retransmission time-
out values (or highly variable channel delays). By robust-
ness, we mean that performance does not precipitously
degrade under worse loss/delay conditions [6]. The extra
explicit connection-management messages of five-packet
make it vulnerable to connection aborts, resulting in
increased percentage of aborted connections (and hence,
data).

• Robustness of Delta-t comes at the price of keeping the
connection-state at the sender and receiver for longer
time compared to five-packet. This is to guarantee no
duplicates are accepted. Since memory requirement is
not a concern in today’s computers, longer duration of
connection-states is not an issue. And Delta-t yields

6 This yields a range of RTT that is consistent with Internet measure-
ments [1].

7

higher goodput (rate of successfully established connec-
tions) than five-packet (ala TCP) under high/variable
packet loss/delay conditions. Thus, Delta-t can provide
better support for applications that are delay-sensitive as
well.
On the other hand, five-packet relies on explicit
connection-management (handshaking) messages to ver-
ify that a received SYN message is not a duplicate (from
an old connection). This makes five-packet (ala TCP)
quite vulnerable under bad network conditions.

• Delta-t has less implementation complexity—it has less
number of protocol states7 , and no separate connection-
management messages.

• From a correctness standpoint, both Delta-t and five-
packet (ala TCP) guarantee correct no-loss/no-duplication
behavior. On the other hand, two-packet and three-
packet can accept duplicate connections. But, from a
performance standpoint, three-packet cuts the amount of
duplication to about half that of two-packet at the ex-
pense of doubling message overhead. They both provide
higher goodput than Delta-t and TCP, and lower message
overhead compared to TCP. Thus, if the application
can handle duplicates itself, depending on the level of
duplication that can be tolerated, three-packet may be
more attractive than two-packet.

C. Performance Metrics

We consider the following metrics for evaluating the
performance of the different connection management schemes.
As noted in Section I, connection management is separate from
data-transfer functions such as error / congestion / flow control.
However, given that connection management may piggyback
signaling information over data / acknowledgements, inconsis-
tent connection-states may result in data loss or duplication. In
our scenario of single-message connections, all these metrics
are to be considered connection-management specific, i.e.,
duplicate connections delivering duplicate data, or aborted
connections causing application data not to be delivered may
happen due to inconsistent connection-states at the sender and
receiver, or failure to open a connection.

• Percentage of Correctly Received Data: Receiving a
data message correctly means that the data message is
accepted exactly once by the receiver. In other words,
the data message was neither lost nor duplicated.

• Percentage of Duplicate Data: Duplicating a data mes-
sage means that the receiver mistakenly accepted the data
message more than once.

• Percentage of Lost Data: A data message is lost if it is lost
in the network (channel) and an acknowledgment from a
previous connection (with the same sequence number) is
mistakenly associated with it.

• Percentage of Aborted Data: A data message is aborted
(i.e., not delivered to the receiving application) if it
exceeds its retransmission limit, or its associated connec-
tion is aborted because the retransmission limit of any
connection-management message is exceeded.

• Message Rate: We define it as the total number of
messages sent—data, connection-management messages,
acknowledgments and retransmissions—per time unit.

7 Not to be confused with the states of our common analytical model, where
we abstract many protocol states.

• Message Overhead: We define it as the average number
of connection-management messages, acknowledgments
and retransmissions sent during a connection.

• Goodput: We define it as the rate of new (unique)
successfully established connections from the sender to
receiver.

In the following plots, we do not show the percentage of
lost data, since there was no data loss for all protocols. This is
because for each connection, we use a new sequence number
that is randomly chosen from a large range. That makes
it unlikely that an (old) acknowledgment from a previous
connection carries the same sequence number as a new data
message that gets lost in the channel, such that it is wrongly
assumed to have been successfully delivered.

D. Set 1: Effects of Packet Loss Probability

For this first set of results, to model the variability in
channel delay and its impact on the estimation of round-trip
time (RTT), which in turn affects the per-packet Retransmis-
sion Timeout (RTO), we assume that RTO is exponentially
distributed with mean 1250 milliseconds. (This value is twice
the average RTT over the simulated two-state delay channel.)
We plot our performance metrics for varying packet loss
probability.

Figure 5(a) shows that as the packet loss probability
increases, the percentage of correctly received data generally
decreases (three-packet is the exception as we explain later).
This is because the percentage of aborted messages increases
due to the per-message limit on number of retransmissions.
Delta-t’s performance remains almost unaffected, showing
very high resiliency to packet loss. On the other hand, the
performance of five-packet precipitously degrades once the
packet loss probability exceeds 0.25. This is because of five-
packet’s use of explicit connection-management messages,
SYN and SYN+ACK, which when continually lost and their
retransmission limit exceeded, the connection establishment
fails and so data delivery is aborted. Figure 2(b) illustrates
this scenario.

Consistent with the correctness of Delta-t and five-packet,
Figure 5(b) shows that both do not accept duplicates. For the
three-packet protocol, data duplication decreases as the packet
loss probability increases, since premature retransmissions that
cause duplicates are lost in the channel. This behavior of
three-packet results in increasing the percentage of correctly
received data. On the other hand, under two-packet, the per-
centage of duplicate data increases as packet loss probability
increases due to the loss of acknowledgments, which triggers
more retransmissions and hence duplicates.

Figure 5(c) shows the probability of aborting data in-
creases as the packet loss probability increases. This is because
the sender gives up delivering a message if it continues to be
lost and its retransmission limit is reached. Five-packet (ala
TCP) is the least robust among all protocols.

Figure 5(d) shows that the message rate increases in all
protocols as the packet loss probability increases. Five-packet
protocol has the highest message rate due to explicit control
messages whereas Delta-t has the lowest message rate among
all protocols.

The number of messages exchanged during the lifetime
of a connection is shown to increase in Figure 5(e), for all

8

0 0.1 0.2 0.3 0.4 0.5
30

40

50

60

70

80

90

100

%
 C

o
rr

e
c
tl
y
 R

e
c
e

iv
e

d
 D

a
ta

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(a)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

%
 D

u
p

lic
a

te
 D

a
ta

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(b)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

%
 A

b
o

rt
e

d
 D

a
ta

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(c)

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

M
e
s
s
a
g
e
 R

a
te

 (
m

e
s
s
a
g
e
s
 /
 t
im

e
)

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(d)

0 0.1 0.2 0.3 0.4 0.5
200

400

600

800

1000

1200

1400

1600

M
e
s
s
a
g
e
 O

H
 (

m
e
s
s
a
g
e
s
 /
 c

o
n
n
e
c
ti
o
n
)

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(e)

0 0.1 0.2 0.3 0.4 0.5

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

G
o
o
d
p
u
t
(c

o
n
n
e
c
ti
o
n
s
 /
 t
im

e
)

Packet Loss Probability

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(f)

Fig. 5: Effects of Varying Packet Loss Probability.

protocols, as the packet loss probability increases, because
of increased retransmissions. Delta-t and two-packet have the
lowest message overhead.

The goodput is shown in Figure 5(f). For all protocols,
except for five-packet, the goodput does not change much
as the packet loss probability increases—although time to
successfully complete a connection increases, the number of
concurrent active connections also increases, yielding similar
goodput. On the other hand, five-packet (ala TCP) suffers from
increased percentage of aborted connections (data), noticeably
beyond a packet loss probability of 0.25, which results in
less data being delivered to the receiving application, yielding
lower goodput.

E. Set 2: Effects of Retransmission Timeout

In this second set of results, we fix the packet loss
probability p to 0.1, and we plot our performance metrics for
varying RTO.

Figure 6(a) shows that, except for Delta-t, the percentage
of correctly received data decreases for lower RTO (i.e., when
RTO is underestimated). This is because when RTO is low,
there are more premature retransmissions. This increases the
percentage of duplicates under two-packet and three-packet, as
seen in Figure 6(b). Under five-packet, low RTO increases the
percentage of aborted connections, and consequently data, as
seen in Figure 6(c). This is because SYN or SYN+ACK mes-
sages get prematurely retransmitted and their retransmission
limit exceeded.

Delta-t is the most resilient to underestimated RTO with
respect to all performance metrics. Delta-t is least affected
since a connection is opened instantly at the sender once
the sender sends a new data message. And the receiver
instantly opens its side of the connection once it receives

the data message. From then on, the sender and receiver stay
synchronized, until the connection-state timers expire. Five-
packet is only resilient to duplication (Figure 6(b)), which
is expected given its provably correct no-loss/no-duplication
behavior. Two-packet and three-packet, like Delta-t, do not
suffer from aborted connections (Figure 6(c)) since they do
not rely on explicit connection-opening messages.

Under all protocols, lower RTO causes premature retrans-
missions, which increase both the total number of messages
sent (message rate in Figure 6(d)) and the message overhead
(Figure 6(e)).

Figure 6(f) shows that the goodput of two-packet and
three-packet does not change much for varying RTO. The
goodput of five-packet and Delta-t is lower than that of
other protocols—the price of providing correct no-loss/no-
duplication behavior. Five-packet uses explicit connection-
management (handshaking) messages, whereas Delta-t for-
goes explicit handshaking by maintaining connection-states
for longer periods of time. Under lower RTO, the goodput
of Delta-t is higher than that of five-packet. This is because
five-packet aborts more connections (and hence data messages)
when the retransmission limit of connection-opening messages
(SYN and SYN+ACK) is exceeded due to increased number
of premature retransmissions.

V. RELATED WORK

Approaches to connection management for reliable trans-
port have been studied since the 70s from a correctness
point of view. Belsnes [2] studied the correctness of different
end-to-end protocols, such as two-packet, three-packet, four-
packet and five-packet (without the sender’s connection-state
timer). Watson [11] built on the two-packet protocol and
designed Delta-t, a pure timer-based protocol for reliable

9

400 600 800 1000 1200 1400 1600 1800 2000 2200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 C

o
rr

e
c
tl
y
 R

e
c
e
iv

e
d
 D

a
ta

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(a)

400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

u
p
lic

a
te

 D
a
ta

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(b)

400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

%
 A

b
o

rt
e

d
 D

a
ta

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(c)

400 600 800 1000 1200 1400 1600 1800 2000 2200
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
e

s
s
a

g
e

 R
a

te
 (

m
e

s
s
a

g
e

s
 /

 t
im

e
)

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(d)

400 600 800 1000 1200 1400 1600 1800 2000 2200
2

4

6

8

10

12

14

16

18

M
e

s
s
a

g
e

 O
H

 (
m

e
s
s
a

g
e

s
 /

 c
o

n
n

e
c
ti
o

n
)

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(e)

400 600 800 1000 1200 1400 1600 1800 2000 2200
2

2.5

3

3.5
x 10

−3

G
o
o
d
p
u
t
(c

o
n
n
e
c
ti
o
n
s
 /
 t
im

e
)

Retransmission Timeout

Two Packet

Three Packet

TCP (Five Packet)

Delta−t

(f)

Fig. 6: Effects of Varying Retransmission Timeout.

connection management. TCP [8] is fundamentally a five-
packet exchange protocol, with an added connection-state
timer at the sender to ensure that the sender does not close the
connection before the receiver does and all packets (including
duplicates) have died out. Other work (e.g., [9], [7]) studied
variants of timer-based and explicit connection-management
(handshake-based) protocols, and combinations thereof, again
from a correctness point of view.

None of these prior studies investigated reliable con-
nection management from a performance point of view. To
the best of our knowledge, this paper presents a first per-
formance comparison across a spectrum of reliable transport
solutions. We evaluated various approaches in terms of
many metrics, stressing them to assess their robustness to
extreme network conditions. Recently, there has been great
interest in understanding similar protocol design tradeoffs in a
quantitative manner. Ji et al. [5] and Lui et al. [6] studied such
tradeoffs for general reservation/signaling protocols. Our work
specializes the general signaling model of [5] to connection
management for reliable transport, and so in this paper, we
are concerned with unique issues related to data loss / abort /
duplication due to inconsistent connection-states at the sender
and receiver or failure to establish a connection.

VI. CONCLUSION

This paper presents the first performance and robustness
comparison of a spectum of reliable transport approaches,
from pure soft-state (ala Delta-t), to pure hard-state (three-
packet), and hybrid hard-/soft-state (ala TCP). Our results
show that a soft-state (SS) approach is more robust to high
packet losses and channel delay variations as it does not rely
on explicit handshaking messages for opening and closing
connections. An SS approach can more easily establish its

connections and deliver its data reliably. Though SS may
have not looked attractive in the past due to its additional
memory requirement for keeping connection-states, memory
is no longer a concern. Thus, an SS approach represents the
best choice for reliable applications, especially those operating
over bandwidth-constrained, error-prone networks.

Future work includes developing a new transport archi-
tecture based on an SS approach, that exposes a simpler
common interface than what we have today (UDP datagrams
vs. TCP connections), to both reliable and unreliable, bulk and
transactional applications.

REFERENCES

[1] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in TCP Round-
Trip Times. In Proceedings of the 3rd ACM SIGCOMM Conference on
Internet Measurement (IMC’03), pages 279–284, New York, NY, USA,
2003. ACM.

[2] D. Belsnes. Single-Message Communication. IEEE Transactions On
Communications, Vol. COM-24, 1976.

[3] J. G. Fletcher and R. W. Watson. Mechanisms for a Reliable Timer-
Based Protocol. Computer Networks, 2:271–290, 1978.

[4] G. Gursun, I. Matta, and K. Mattar. On the Performance and Robustness
of Managing Reliable Transport Connections. Technical Report BUCS-
TR-2009-014, CS Department, Boston University, April 17 2009.

[5] P. Ji, Z. Ge, J. Kurose, and D. Towsley. A Comparison of Hard-State
and Soft-State Signaling Protocols. SIGCOMM ’03, 2003.

[6] J. C. S. Lui, V. Misra, and D. Rubenstein. On the Robustness of Soft
State Protocols. ICNP ’04: Proceedings of the 12th IEEE International
Conference on Network Protocols, pages 50–60, 2004.

[7] U. Maheshwari. HULA: An Efficient Protocol for Reliable Delivery of
Messages. Technical report, Cambridge, MA, USA, 1997.

[8] RFC793. Transmission Control Protocol, September 1981.
[9] A. Shankar and D. Lee. Minimum-latency Transport Protocols with

Modulo-N Incarnation Numbers. IEEE/ACM Transactions on Network-
ing, 3:255–268, 1995.

[10] R. Tomlinson. Selecting Sequence Numbers. ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, 9(3), 1975.

[11] R. Watson. Timer-Based Mechanisms in Reliable Transport Protocol
Connection Management. Computer Networks, 5:47–56, 1981.

