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Abstract—Controlling the mobility of mobile nodes (eg., coarsely directed by aexternalschedule. A node’s schedule
robots) to monitor a given field is a well-studied problem in defines a list of locations and a corresponding list of times
sensor networks. In this setup, absolute control over the nod# (waypoints), such that, for a node to satisfy its schedule, i
mobility is assumed. In this paper, we address a more general ' X o . T
setting in which mobility of each node is externally constrained has to be Prese”t at the. specified locations at the Ipdlcated
by a schedule consisting of a list of locations that the node must times. An important attribute of such a schedule is how
visit at particular times. Typically, such schedules exhibit some tight/relax are the consecutive journeys between waypoint
level of slack, which could be leveraged to achieve a specific That is, if a schedule allows much more time, than the needed
coverage distribution of a field. Such a distribution defines minimum. for a node to reach each waypoint, then it would
the relative importance of different field locations. We define ’ . L
the Constrained Mobility Coordination problem for Preferential be a r(_alaxed schedule with plentysi_f:lck otherwise, it WOUId
Coverage (CMC-PC) as follows: given a field with a desired be @ tight schedule. The problem is thémmw to coordinate
monitoring distribution, and a number of nodes n, each with the mobility of nodes and manage their slacks so as to achieve
its own schedule, we need to coordinate the mobility of the the requested monitoring distribution
nodes in order to achieve the following two goals: 1) satisfy the .. . . .
schedules of all nodes, and 2) attain the required coverage of the To see why this is the case, consider a situation where
given field. We show that the CMC-PC problem is NP-complete @ user moving between two points A and B may have
(by reduction from the Hamiltonian Cycle problem). Then we multiple choices of paths of almost equal expected quality
propose TEM, a distributed heuristic to achieve field coverage (e g, in terms of traveled distance or time). Taking any of the

that is as close as possible to the required coverage distribution. : e : - .
We verify the premise of TFM using extensive simulations, as well alternative paths leads to monitoring different field logas.

as taxi logs from a major metropolitan area. We compare TFMto SUch a scenario is particularly true for paths between ionat
the random mobility strategy —the latter provides a lower bound in a dense urban setting. As an illustration, consider Egur
on performance. Our results show that TFM is very successful 5, which shows paths followed by cabs on the streets of the
in m%tchingt tlhe rteqtuire]g lf(ije'd coverage dism?.““?”' and _thattri]t , San Francisco Bay area. The grid structure of the paths taken
rovides, at least, two-1o uery success ratio 1or queries tha : : : H
fpollow the target coverage d?strig/ution of the field. d (under_scorlng the underlylng C'Fy bIO.CkS In SF) demonstrat
the existence of multiple routes indistinguishable lengthso
l. INTRODUCTION travel between arbitrary points A and B on the grid. In such a
case, it is perceivable that one might think that all nodesld/o
Controlling mobility of a number of objectse(g, robots) satisfy their own schedules in one of the following manners:
in order to cover a given field is a well-studied problem ifi1) Nodes would prefer paths leading to the monitoring of
the literature. In this model, node mobility could be used thigh-demand spots in the field, or (2) nodes would take
(i) circumvent low density of nodes, (ii) navigate to hardrandom routes in each journey between each two consecutive
to-reach areas (due to natural barriers) in order to achiew@ypoints in the schedule.
uniform coverage of the field, and/or (iii) react to some aen In the first scenario, if all users end up monitoring the

in the environmente(.g.,for_est fire), or address preferential_same (highest-demand) field locations, the rest of the field
coverage based on changing demands. In such a model, {,51q pe left unmonitored, resulting in missing many of the

usually assumed that the mobile nodes are under the confighs queries. On the other hand, if nodes take random paths,
of a single authority that decides the mobility pattern offea 55 \ye will show in the evaluation section (Section V), thifl wi

mobile node. lead to poor coverage of the field, since the “importance” of
In this paper, we consider a modelafitonomousnobile each field location (indicated by the desired/target momitp

users (nodes / sensors). These autonomous mobile usersdig®@ibution) will be ignored when making random mobility

interested in monitoring a given field according to somedargdecisions. This accentuates the importancecodrdinating

distribution — the distribution defines the percentage ofeti mobility of users, while ensuring that all schedules are sat

different field locations should be covered by, at least, ornfied.

node (sensor). The field monitoring distribution stems from & contributions can be summarized as follows:

the inherent interest of users to query the state of differen

field locations. We also assume that mobility of each user is*® We apply the above mobility model of autonomous nodes

and its featuresi.g., slack) to the problem of distributed

t Supported in part by NSF awards #0720604, #0735974, #0804sd field coverage. We coin the problem of Constrained
#0952145. Mobility Coordination for Preferential field Coverage



(CMC-PC). We show that this problem is NP-complete  Definition 5: (Communication Range r): Any two

(Section 1), and argue that none of the existing researdodes can communicate with each other only if the distance

efforts is adequate to solve the problem (Section 1ll). between them is less than or equal to a (given) fixed commu-
« We develop TFM, the first mobility coordination strategynication ranger.

that aimS to aChieVe a giVen distribution Of f|e|d COVerage Definition 6: (Speed of Motionni): The maximum Speed
(Section 1V). Under TFM, in steady state, nodes are igf motion of a noden, is ;. Without loss of generality, we
a dynamic {e., mobile) state. This salient characteristiGgssume thaty; = 7uax, 1 <i < N.

of TFM enables it to achieve the required coverage . .o 7. (The CMC-PC Problem P): The Con-

g::tt\zglrjlzlon of a spatio-temporal field with & IOW'dens'tystrained Mobility Coordination problem for Preferentiabc

« Using extensive simulations, we compare TFM to th rage CMC-PC s defined by the twplg(C;, D, N, L), such

random mobility strategy — the latter provides a lowe at G is a given field to cover with a target distributian

o o ing a set ofN mobile nodes, each with its own schedule
bound on performance. Our results indicate the S|gn|f|ca%§m). In order to solve a given instance of the CMC-PC

performance gain attained by using TFM over rando roblem, we need to coordinate mobility of thé nodes in

mobility (Section V-A). More importantly, TEM s shown order to achieve two goals: 1) satisfy schedulesf all nodes,
to closely meet the target field coverage distribution. d2 h field | . h fti

o Furthermore, we perform a trace-driven evaluation Gthe ) cover each fie ocation,€ V, the percentage of time
TEM and random mobility. We use cab traces fron|1ndlcated by the target distributioP (v). Clearly, any feasible

cabs in the San Francisco area. Results of the tracSOIUtlon to the CMC-PC problem must satisfy the maximum

driven evaluation underscore the effectiveness of TF@%EES rrﬂeq# (larretrngn’(,e., no node is allowed to move with a
in practical settings (Section V-B). P 9 Mmax- .
Theorem 1 states that CMC-PC is NP-complete by re-
1. PROBLEM DEFINITION duction from the Hamiltonian Cycle Problem. A Hamiltonian

. . ) ) - . Cycle is a cycle in an undirected graph which visits each
In this section, we define the Constrained Mobility Cooréingertex exactly once and then returns to the starting vertex.
tion problem for Preferential Coverage (CMC-PC), then shopetermining (and finding) whether a Hamiltonian cycle eist
that it is NP-complete. in a given graph is NP-complete, so is our CMC-PC problem.

Definition 1: (Nodes): N autonomously mobile nodes  Thegrem 1:The CMC-PC problem is NP-complete.
move in the target field. Mobility of each node is externally

constrained by a schedule (Definition 2). The prime goal of
these nodes is to satisfy their own schedules. While doing &
they also try to cooperatively cover the target field acawgdi

to the required coverage distribution (Definition 4).

Definition 2: (Schedule L): A schedule of node; is a The problem we study here is mainly related to sensor
list L(n;) of tuples of the formu;; = (7i;,1;;), where1 < deployment and redepolyment, field coverage, and motion
j < |L(n;)|. To satisfy a schedule entry;;, noden, has to planning.
be at locatiorl;; at time;;. Forn; to satisfy its schedule, it Field Coverage With Static Nodes:Multiple research efforts
has to satisfyu;; for all 1 < j < |L(n;)|. [13], [7], [5], [16] concentrated on calculating the covgea

Definition 3: (Field G): The target field is represented adeVvel attained by ataticnetwork. For example, Dhillort al.

a graphG = (V, E), such that each vertex € V represents [5] formulate the coverage pro_blem as an optimization qubl

a field location, and each edgec E connects two vertices Where they attempt to optimize placement of sensors in the
representing two field locations that could be directly et field to maximize attained average coverage of the field.
from each other. Field Coverage With Mobile Nodes: Another group of

Definition 4: (Coverage Distribution D): Coverage of a research efforts concentrate on the effect of mobility on
given field is defined by a target coverage distributidnsuch network coverage [17], [19], [6], [10], [15], [18]. Most efts
that D(v) is the relative importance of field locatiane V. in this group start from a sub-optimal deployment of nodes
The coverage distributiof represents the preferential interestn the field €.g.,random), calculate an “optimal” deployment,
in covering different locations in the field, and is applioat and then move each node to its newly calculated location.
specific. Practically,D could be interpreted in a number ofThese efforts differ, basically, in the way they calculate t
ways. For example, we could require that more importaﬁpw_locatllons of sensors. So, the network starts from acstati
field locations be covered mofeequentlythan less important configuration, then nodes move once to reach another optimal
ones. Another interpretation, is to require that more irtguar - Static configuration.
locations be covered fotonger periodscompared to less Another group of research efforts concentrated on the
important ones. In this paper, we adopt the latter integti@. attained dynamic coverage of a mobile network. For example,
Specifically, we interpreD(v) as the required percentage ofn [11], the authors study the efficacy of a mobile network in
time, during which, field locatiom € V' should be covered, by field surveillance. They gauge the ability of the network to
at least one node. We also note that, at any time, a field otatdetect a static and a mobile intruder. A common factor in
is either covered or not. Hence, covering a given locatiaih withese efforts is that the steady state of the network is ardima
only one node is exactly equivalent to covering it with morene, unlike previous research efforts. Our work resembles
than one node. these efforts in this regard. However, our work addresses th

Due to lack of space, we refer the reader to [14] for the
oof of this theorem.

Ill. RELATED WORK



general problem ofonstrainedmobility coordination of nodes v was last visited byany node, according to node; (Figure
in order to achieve somgiven monitoring distribution. 1 center). Noden; updates its local view of the field at two

Robotics Motion Planning: Motion planning has been studiedoccasions: 1) Whenever it visits a new field location, it updat

in the robotics field [9], [8]. Coupling robotics and sensothe last time thls location was visited to the current timad a
networks concepts has also been studied [4], [2], [12]. #hed) Whenever it encounters another nodg the two nodes
required modifications in robots mobility planning in order 1S that, each node keeps the most recent version of the two
support tasks of sensor networks. Our work is also differeMeWs.

from these efforts in that, we assume that sensors are embed- Using its current view of the field’;, noden; calculates
ded into platforms that arautonomouslymobile by nature, the utility of field locationv as

and whose mobility has a limited degree of freedoie.(

slack) that could be planned to optimize performance of the () — _

embedded sensor network. Uiv) = D(v) x (te = Ci(v)) @

wheret, is the actual time of performing the utility calculation
(i.e., the current time). Notice that Equation 2 is a linear
function of the popularity of the locatior)(v), and the length
In Section Il, we showed that CMC-PC is NP-complete. 1af the interval since location was last visitedt. — C;(v)).
this section we propose the Targeted Field Monitoring (TFMjquation 2 is just an example for utility calculations, whic
mobility strategy, a distributed heuristic to solve thetgeon. could take any different forme(g.,exponential in the location
To execute this algorithm, each mobile nodeneeds to know Popularity). Notice also that this equation is related ta ou
its own schedulel(n;), and the target coverage distributiorinterpretation of D(v) as the required percentage of time
function D. This algorithm does not assume existence @furing which field locatiorv should be covered.
a centralized decision-making facility nor knowledge abowhase Two of the 2UA Algorithm: In this phase, node
schedules of other nodes. n; calculates acoarseutility value, U;(vy), for each of the
TFM uses another algorithm to assign a utility value téirectly neighboring locations;; € N(v.). The coarse utility
each field location, based on the coverage distribution Of vy is calculated as the sum of utilities of field locations
Then, at each time unit, TFM plans node mobility by selectingpmprising the highest-utility path of lengththat starts from
the field location to be visited at the next time unit such thatvy. More specifically, for eaclv; € N(v.), we findall paths
maximizes the utility of visited field locations, satisfginhe of length £ that start fromu;, called Potential Future Paths
node’s schedule at all times. (PFP’s). The utility of each PFP is the sum of initial utéi
Specifically, let us denote the current location of nod alculated in Phase 1 of 2UA) of field locations comprising

n; aswv.. Let us also denote the immediately accessible fielfiS Path. The coarse utility of; is the highest utility of all
locations from the current locationg., the set of neighboring SUCh PFP’s starting at;. Formally,
locations, byN (v.). N(v.) is the set of field locations;
V such that there exists a direct edge betwegrand v;. A
Formally, ! Ui(vs) = U (Phesi(vp, ) = Y

Vg € Poest (vy,h)

IV. PREFERENTIALFIELD COVERAGE MOBILITY
STRATEGY

N(v.) = {vs € V]oy # v AND e = (ve,v7) € E} (1) where functionU?(P) calculates the sum of utilities of loca-
tions in PFPP, and Py.s:(vy, h) is the PFP with the highest
Figure 1 (left) shows field location., and its neighboring utility and is defined as,

locations N (v.). In order to plan its mobility, node, needs
to decide at each time unit, which of the neighboring field i o
locations,N (v..), it will move to next. To that endy; executes Phest(vs, h) ={P (Uf,’ h) : P'(vg, h) € P(vg, h) AND
the Two-phase Utility Assignment (2UA) algorithm to assign (UP(P'(vg, b)) = UP(P(vg, h)), 4)
a utility value to each locatiom; € N(v.). Noden;, then, VP(vy,h) € P(vg,h))}
decides on the next step greedily to maximize the utility of
visited locations. We will now describe the two phases of thehere P(vy, h) is the set of all PFP’s of length that start
2UA algorithm. from locationvy, and P(vy, h) € P(vy, h) is defined as a se-

Phase One of the 2UA Algorithm: During this phasep; ries of h connected field locations, the first of whichus. Fig-
assigns arinitial utility value U;(v) to each field location Ure 1 (right) shows the current location = (3,3), its directly
v € V. Utility of each field location is a function of the N€ighboring locationsV(v.) = {(2,3),(4,3), (3,2), (3, 4)},
popularity of this location (defined bi(v)), the specific node and the range of PFP’s from the neighboring locations of

carrying out the calculations;, and the time of performing |€ngth A = 1. For example, forv; = (2,3), P(uvys,1) =
this calculation. {((2a 3)7 (1? 3))7 ((25 3)7 (27 2))7 ((27 3)a (27 4))}

More specifically,n; keeps a local “view” of the field Scope of PFP’s:In the model we described, PFP’s constitute
representing the last time each field location was lastedsitsome form of lookahead in order to optimize performance,
by any of the mobile sensors. Let us denote the local vieand & is a tunable parameter that defines the exact amount
of noden; as C;, whereC;(v) is the last time field location of lookahead to perform. Hence, we need to answer the
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. Current location v, . Current location v, Vr € N(Vc)
O Neighboring locations N(V,) O Range of PFP F'(v; 1)

Fig. 1. Locationv., and its neighboring locations (leftfy;: local field view of noden; (center), and range of PFP(vy, h), whereh = 1.

SCH.IQEfEOIFm, Node n; needs to assign a coarse utility valGg(vy)
Time T Tocation to each of the neighboring locations. Figure 2 (center)
1 () shows the PFP with the highest utility for eaely such
S (4.2) that h = 3, which matches the time needed to get to

the destinationPoes((3,4),3) = ((3,4), (4,4), (4, 3), (4,2)),

while Pes((2,3),3) = ((2,3),(3,3),(4,3),(4,2)). In this

case, both PFP’s visit the high-utility locatiori4, 3).
guestion: “What is the optimum range of PFP’s to considef?’( Ppes((3,4),3)) = 4.3, while UP(Pes((2,3),3)) = 4.1.
Consequently, what is the best value f6?”. It is natural to Based on these calculations; moves to(3,4) as its next
think that the higher the value df, the longer the range of step.

considered PFP’s, the longer it takes to plan mobility, dred t Figure 2 (right) shows the same paths wites 1. Notice
more optimal the mobility decisions are. There is, howevegat in this case, not all reachable field locations are et
a dynamic restriction on the value @f to be used at any jj the range of PFP'SPhes((3,4), 1) = ((3,4), (4,4)), while
neighboring locatiow ;. Theorem 2 states this restriction, therpbesl(@’?,)’l) = ((2,3),(2,2)), and UP(Ppes((3,4),1)) =
we give an example to illustrate it. 0.9, while UP(Ppes((2,3),1)) = 1.0. Based on these calcu-
Theorem 2:1n a field coverage system with a single noddations,n; moves to(2, 3) as its next step, which is clearly a
while determining the PFP'® (v, h) of a locationvy, only sub-optimal decision.
field locations that could be actually reached by the node (du  Thegrem 2 addresses the case of a field coverage system
to scheduling constraints) should be included in PFP's.cden comprised of a single node. In the case of multiple nodes,
the optimum value of the locale raditids the amount of slack yopjlity planning decisions made by one node in the past,
k available to the node at the current time. Using any othgpyid be “invalidated” in the future due to mobility of other
values off could lead to sub-optimal decisions. nodes in the system. For example, a field locatigrof high
Due to lack of space, we refer the reader to [14] for thimitial utility according to noder; in the past, could be visited
proof of this theorem, where we show that sub-optimal deddy another node:; causing its current utility to drop when
sions result from: 1) not including all reachable field lagas, actually visited byn;. We argue, however, that Theorem 2 still
and 2) including field locations that are not reachable. holds in systems of sparse deployment, and we give evidence

The fo”owing examp|e i”ustrates the idea Of Theorerﬁp this InSIght in our trace-driven evaluation in SectiorBV-
2. It illustrates the case that not including all reachabdddfi
locations in deciding the PFP’s of eaehy results in sub-

optimal coverage of the field. In order to evaluate the efficacy of TFM in achieving a
Table | gives the schedule of nodg, while Figure 2 specific coverage distribution of a given field, we developed
(left) showsw, the current location of node,, along with field a mobility simulator. Our simulator models the mobility of
locations directly accessible from, N(v.) = {(2,3),(3,4)}. nodes by keeping track of the location of each node at each
It also shows the initialtility of visiting each location, the time unit. It also models the exchange of local views between
result of phase one of the 2UA algorithm. Notice that loaadio nodes upon an encounter. Since our goal is to evaluate the
(1,4) and (2,5) are not members of the séf(v.), because synthesized mobility of our detour-based techniques, wkema
the schedule of;; does not allow enough slack to visit any osimplifying assumptions about the communication model as
these locations. Figure 2 (left) also highlights the set eldfi we assume that nodes within a certain communication range
locations that could be reached given the schedule;of could successfully exchange data. We assume that the size of

V. PERFORMANCEEVALUATION
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Fig. 2. Locationv,, its neighboring locationsV(v.), the destination waypoint, and the utility of each locatteft), Pbes(vf,3) (center) andeeS(va)
(right).

exchanged messages is small with respect to the bandwildtbation v, such that the distance betweenand v, is less

in a single contact between two nodes. We also, willinglyhan e (i.e., v — v,| < e). We can think of a query as a
overlook storage limitations. We do this motivated by cotre circle whose center is the query targgt and whose radius is
advances in storage technology that make memory deviceghw imprecisiore. In this case, the query answer is a sample
tens of gigabytes available off-the-shelf. collected from within this circle.

Performance Metrics: The performance metrics we use are In order to answer any query, a queried node searches
the Kullback-Leibler (KL) distance, and the query succests local storage to find a sample that could be used as an
ratio (QSR). The KL distance is a measure of distan@nswer to the query. If found, then the query is counted as
between distributions [3]. Having a true distributidh, and a success. Otherwise, the queried node forwards the query
an approximated oné), the KL-distance betwee® and (), to its direct neighbors only. If one of these neighbors has
KL(P||Q), is calculated as: an answer to the query, this neighbor sends the answer back
to the queried node, and the query is counted as a success.
P(i) 5 If neither the queried node nor any of its neighbors has an
Q(7) ®) answer to the query, it is counted as a missed query. In order
to assess the efficacy of each mobility model in achieving the
Mobility of nodes over the field induces a distributigh required probability distribution, we matched the distibn
of the length of periods during which each location is cowf query targets to that of the required coverage distréouti
ered. We measure the distance between the required coverfgé-€., field locations that are required to be monitored for
distribution, D, and the induced distributio), K'L(D| Q). longer periods of time have higher probability of being quer
Lower values of the KL distance indicate that the inducei@rgets). We define the query success ratio (QSR) as the ratio
distribution is close to the required distributidn, which is between the number of successfully answered queries to the
the prime requirement in field coverage. total number of queries.

Then, we assume that nodes have unlimited storage in The point of the two performance metrics is to gauge the
which they keep collected samples from the field. A nodéegree to which each mobility strategy can match the reduire
keeps a sample from each field location it visits. A sample @overage distributionD. If a mobility strategy could closely
assumed to have a time-to-live (TTL), during which this sanatch this distribution, this should be manifested in aghig
ple is considered to be freshe., an accurate representatiord small KL distance, and high query success ratio.
of the target phenomenon at the field location where it w&ompeting Strategies:We compare TFM to the random mo-
collected. Only fresh samples are kept in the local storagsility strategy (RND), in which nodes move randomly between
while expired ones are evicted. Nodes are independengyery two consecutive waypoints provided that the scheidule
queried about the state of the field A query is defined satisfied. In the trace-driven evaluation, we compare TFM to
by a tupleq = (vq,e). v, is the query target, the locationWwait-at-Destination (WAD), a variation of RND. Under WAD,
in which the inquirer is interested, while is a measure of nodes move to the destination waypoint using the shortest
tolerable imprecision in the answer. The specific locatiohs path, where they wait spending all the available slack, if
query targets follow some spatial distribution over thediel any. Clearly, both RND and WAD represent lower bounds on
The answer to a query = (vg,¢) is a sample collected at performance, since they do not actively attempt to cootdina

nodes’ mobility to improve coverage of the field.
1We can think of this as if the user/owner hosting the mobileenixl

interested in the state of some location in the field, so shs tise local In the synthetic evaluations, we evaluated the performance

device, to which the sensor is attached, to submit querieseedve answers of TFM and RND with respect to query handling in two differ-
back from the distributed system.

KL(P|Q) = > P(i)log
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as “DST” in the following graphs. In the centralized setup

(denoted as “CTR” in the following graphs), query handling '

is done in a centralized facility. In this case, we simuldte t "7~ . . = ’

case where all collected samples are forwarded to a centr. 6 2 & @ @ 1w o % @G s o
processing facility, and all queries are directed to thislity.
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A. Evaluation Using Synthetic Workloads for different number of nodes.

Schedule Generation:Every node starts at time #.,,rent

(initially, Zcurrent = 1) at @ random location in the fieldbc;.  Effect of Partially Following Detours: The goal of this
The entry current; loc1) is added to the schedule. Then Weyperiment is to measure the effectiveness of TFM when only
randomly select another locatidac; in the field such that the 5 given percentage of the nodes follow detour hints provided
minimum time to move fromloc, to loc, is t. For location by TFM. This scenario is motivated by the observation that
loca, we assign timé some nodes may not be willing to participate in the field

ty = teurrent + 1 + (K X p) (6) coverage application, and opt to spend their slack in argiffe

way. For lack of space we only summarize these results [14].

where x is the maximum slackve allow in any journey, and Obviously, as the percentage of nodes following TFM hints
p is a uniform random variable such that [0, 1]. The entry increases the resulting KL distance decreases. When 60%
(ts,locy) is appended to the schedule. We repeat this procesisthe nodes follow TFM hints, the resulting KL distance
until the end of the simulation time is reached. decreases by up to 67% & 100).

Baseline Parameters:We simulated a field of 10x10 where In [14] we also show that, similar to the KL distance,
nodes can communicate only when they are at the sainereasing the percentage of nodes that follow TFM hints
field location. Each simulation runs for 100 seconds. In thgauses a linear increase in the QSR of the system. IntegBstin
following graphs, each point is the average of 20 simulatiahe slope of the linear increase is a function of the slack,
runs, with the 95% confidence intervals shown as well. Thend the “height” iie., success level) is a function of the TTL
required field coverage distribution is assumed to be a syf samples. With enough schedule slack, a density of TFM-
metric bivariate normal distribution centered in the cerd® compliant nodes as low as 0.3 could achieve QSR approaching
the field, with variance = x I, where[ is the identity matrix 100%.

of size 2x 2. In the following experiments, unless otherwise

stated, the default value of the maximum PFR;s.., = 1, B. Trace-Driven Evaluation

number of nodesV = 30, and query precisiola = 1. = . I L
) ollowing our motivating application, and to present even
For lack of space, we show representative results and Wgyre realistic evaluation of the protocol we propose, weduse
refer the reader to [14] for more details. taxi traces [1] for cabs in the San Francisco area as input to
Effect of Number of Nodes: Figure 3 shows the effect of our models. The goal is to show that, with little coordinatio
increasing the number of nodes on the performance of thetween cabs, they could function as an effective diseithut
system in handling queries. TFM achieves between 2-folild coverage system.

to 3-fold improvement in QSR over RND. Increasing th@ethodology: For each cab, the traces show location updates
TTL of collected samples or the maximum slackmproves  of the cab. Each update is composed of latitude and longitude
performance of both protocols, however, TFM is always Sif the cab location, the time of the location update, along
perior to RND because nodes under RND do not coordinafth the cab status: metered (hailed) or not (not hailed). We
achieves close performance to that of the centralized oRg 400 location updates, while others have as few as 5 updates
Increasing either TTL or maximum slaekdiminishes the gap \we used all location updates for all cabs to construct a “map”
between the two versions. This confirms the premise of TFM the San Francisco area. We represented the map as an
in a distributed practical setup. While, there is a noticeab,ndirected graptG = (V, E). V is the set of all legitimate

of RND, as expected of a e approach. is defined by its latitude and longitude coordinates. In the
Effect of Maximum Slack «: Figure 4 shows the KL distancedata we collected, the total number of locations is 40399,
of RND and TFM as a function of the maximum slagk and the number of unique locationd;| = 39, 103 locations.

of the schedule, in a system of 5 nodes (Figure 4 leffjp determine the relation between different locatioins. (the

and 15 nodes (Figure 4 right). Increasirgallows TFM to edges,F), we used a threshold-based neighborhood algorithm
match the required distribution resulting in a smaller ealuwith a threshold valuery,. This means that, for any two

of the KL distance. This is true for systems of both highocationsa and b, such that the distance between them is
and low densities. Increasing the number of nodes hasDast(a,b), if Dist(a,b) < rp, then we add an edge between
more pronounced positive effect on the KL distance of RN and b whose cost =Dist(a,b). We usedry, = 200 meters
compared to TFM. (=~ 0.12 miles = 656 feet). This value of;,, partitioned the
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Fig. 3. Query success ratio of TFM and RND as a function of thealer of nodes in the system for different slack values.

customer, as early as possible, and spends its slack time the
waiting for the customer. Throughout the trace evaluatioa,
assumed that cabs do not exceed speed of 30 mph, which is
quite conservative.

Target Distribution D: We assume that the goal of these
cabs is to cover the city to track a specific phenomenon that
breaks out at random locations. For example, an Amber alert
is issued specifying the break out location (the center of th
phenomenon) which is given the highest level of attention.
Attention awarded to neighboring locations is a function of
their distance from the center of the phenomenon. To model
this application, we define target coverage distributionas
follows: We start with a maximum utility valu&/ and a utility

Fig. 5. Paths followed by cabs in the SF Bay area, from tracesito decrement value per hap Then we randomly select a field
evaluate mobility coordination approaches. location, vy, to be the center of the distribution. We assign
virtual utilities u,, as follows:

unique field locations into different partitions, with therdest (Vi) = M — 8§ X |v1 — vy @)
partition consisting of 36,368 unique locations. We usead th
partition as a representative of the map. A depiction of thisherew, (v;) is the virtual utility assigned to field location,
map is given in Figure 5. and |v; — v;| is the number of hops between (the center
Finally, out of the 450 cabs, we selected the 50 cal§$ the distribution) andv;. This function assigns te, the
with the highest number of location updates. We mapped tmaximum value_ of UtllltyM The Utlllty value of field location
location updates of the cabs to the map we generated, aacirops as a linear function of the number of hops between
used the map to “fill” in the gaps due to missing locationi and the center of the distribution;. To get the required
updates, for the first 150 minutes. This is done by mappiﬁt”bu'ﬂon D, which specifies the percentage of timkuv;)
each two consecutive updates to the map, and f|nd|ng tfleld |0cat|0n’l)i should be Covered, we use the f0||0W|ng
shortest route between them. Next, we interpolate a numigguation:
of locations along this route that is equal to the number of
minutgs between the location updates. T_his process al[ows D(v;) = uy(v;)/ Z Uy (V2) 8)
us to infer the locations of cabs at one-minute granularitie
The cab status for those interpolated locations is set tdsbe i

reported status in the last location update. Figure 6 illustrates an example distribution over a compact
Based on each cab’s mobility profile (obtained as deersion of the map.
scribed above), we defined the schedule of the cab as follow&suits: In our comments on Theorem 2, we argued that

every time the cab is mgtered, its Iocatllon is adde.d to _thW case of systems with single nodes, the longer the PFP’s
schedule of the cab. This means that, if the cab is hailgded to estimate the coarse utility of directly neighboring
(according to location updates), then it has to be in thgcations, the better the performance, provided we limit ou
indicated location at the indicated time. In other words, Wggnsideration to field locations that are reachable under th
can not change the trajectory of a hailed cab. This leave® rogcheduling constraints of the node. In this experiment we ai
for offering mobility hints (detours) to the cab only when ik evaluate this Theorem in systems with multiple nodes, but
is not hailed. low node density. Towards this end, we calculated the KL
We compared TFM and Wait At Destination (WAD), adistance of TFM using different values of the maximum length
variant of the RND protocol. Under WAD, when not hailedpf PFP’sh,,,,... For each value, we run 20 simulations using
a cab moves to the next location where it picks up its nettie inferred schedule and the generated map. Each simulatio
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TABLE Il
KL DISTANCE RESULTING FROM APPLYINGTFM ON CAB TRACES WITH
DIFFERENT VALUES OF MAXIMUM LENGTH OFPFP'S Ay qz .

KL distance | 1.0986 .8975 [ 0.7441] 0.6528

has a different distribution center;. Table Il shows the

average KL distance for different values fof

It is clear that the performance improves by increasing
h, provided that we only consider reachable field locationsg]
confirming our expectations. Sinde = 3 yields the lowest
value of KL distance, we use this value in the query-based
performance evaluation. The KL value of WAD = 2.1, three[7]

times that of TFM withh = 3.

Figure 7 shows the query performance of the two mobility
models. TFM achieves from 30% to 120% improvement i
QSR over WAD. Increasing the communication range imjgj
proves the performance of both protocols. However, we found
out in another experiment in which we measured performaniéél
as a function of the communication range (results not shown

here) that this improvement reaches a plateau very fast.

V1. CONCLUSION

[
We considered a new mobility model whereby each node
is coarsely constrained by an external schedule. These node

measured in minutes). The graph show results when using twevalf the
communication range: 600 and 1200 meters.
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mobility between nodes so as to satisfy a field monitoring
objective. We coin the problem of Constrained Mobility Goorjy4
dination for Preferential field Coverage (CMC-PC). We show
that this problem is NP-complete and propose a distribut
heuristic (TFM) that provides nodes with mobility hints {de
tours) so as to achieve field monitoring that is as close as

possible to the required monitoring distribution. We vetifie

premise of our mobility planning technique using extensive
simulations, as well as taxi logs from the San Francisco.area
Our results underscore the evident performance improvem

attained by TFM.

REFERENCES

[1] Cabspotting.htt p: / / wwv. cabspot ti ng. or g/ api .
[2] S. Bergbreiter and K. Pister. Cotsbots: an off-the-Glpthtform for

distributed roboticsintelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference2at632—-1637

vol.2, Oct. 2003.

Coverage problems in wireless ad-hoc sensor networkéiNROCOM,
pages 1380-1387, 2001.

] H. Morcos, A. Bestavros, and |. Matta. Preferential dieloverage

through detour-based mobility coordination. TechnicalorgpBoston
University, March 2009. http://www.cs.bu.edu/researeiports.shtml.

P.D. 0., S. H. E., H. Chad, and S. A. C. Robotic deploymérsemsor
networks using potential fields. IHEEEE International Conference on
Robotics and Automatiorpril 2004.

S. Shakkottai, R. Srikant, and N. Shroff. Unreliablenser grids:
coverage, connectivity and diametdNFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Commuinitsit
Societies. IEEE2:1073-1083 vol.2, March-3 April 2003.

1 W. G. C. G. L. P. T.F. Movement-assisted sensor deploynmiBansac-

tions on Mobile Computings(6):640-652, June 2006.

Y. Yang and M. Cardei. Movement-assisted sensor regepat scheme
for network lifetime increase. IMSWiM '07: Proceedings of the 10th
ACM Symposium on Modeling, analysis, and simulation oflesseeand
mobile systemsages 13—-20, New York, NY, USA, 2007. ACM.

Y. Zou and K. Chakrabarty. Sensor deployment and tamedlization
based on virtual forcedNFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Sesi¢EEE
2:1293-1303 vol.2, March-3 April 2003.



