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Abstract—Controlling the mobility of mobile nodes (e.g.,
robots) to monitor a given field is a well-studied problem in
sensor networks. In this setup, absolute control over the nodes’
mobility is assumed. In this paper, we address a more general
setting in which mobility of each node is externally constrained
by a schedule consisting of a list of locations that the node must
visit at particular times. Typically, such schedules exhibit some
level of slack, which could be leveraged to achieve a specific
coverage distribution of a field. Such a distribution defines
the relative importance of different field locations. We define
the Constrained Mobility Coordination problem for Preferential
Coverage (CMC-PC) as follows: given a field with a desired
monitoring distribution, and a number of nodes n, each with
its own schedule, we need to coordinate the mobility of the
nodes in order to achieve the following two goals: 1) satisfy the
schedules of all nodes, and 2) attain the required coverage of the
given field. We show that the CMC-PC problem is NP-complete
(by reduction from the Hamiltonian Cycle problem). Then we
propose TFM, a distributed heuristic to achieve field coverage
that is as close as possible to the required coverage distribution.
We verify the premise of TFM using extensive simulations, as well
as taxi logs from a major metropolitan area. We compare TFM to
the random mobility strategy —the latter provides a lower bound
on performance. Our results show that TFM is very successful
in matching the required field coverage distribution, and that it
provides, at least, two-fold query success ratio for queries that
follow the target coverage distribution of the field.

I. I NTRODUCTION

Controlling mobility of a number of objects (e.g., robots)
in order to cover a given field is a well-studied problem in
the literature. In this model, node mobility could be used to
(i) circumvent low density of nodes, (ii) navigate to hard-
to-reach areas (due to natural barriers) in order to achieve
uniform coverage of the field, and/or (iii) react to some change
in the environment (e.g., forest fire), or address preferential
coverage based on changing demands. In such a model, it is
usually assumed that the mobile nodes are under the control
of a single authority that decides the mobility pattern of each
mobile node.

In this paper, we consider a model ofautonomousmobile
users (nodes / sensors). These autonomous mobile users are
interested in monitoring a given field according to some target
distribution — the distribution defines the percentage of time
different field locations should be covered by, at least, one
node (sensor). The field monitoring distribution stems from
the inherent interest of users to query the state of different
field locations. We also assume that mobility of each user is
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coarsely directed by anexternalschedule. A node’s schedule
defines a list of locations and a corresponding list of times
(waypoints), such that, for a node to satisfy its schedule, it
has to be present at the specified locations at the indicated
times. An important attribute of such a schedule is how
tight/relax are the consecutive journeys between waypoints.
That is, if a schedule allows much more time, than the needed
minimum, for a node to reach each waypoint, then it would
be a relaxed schedule with plenty ofslack, otherwise, it would
be a tight schedule. The problem is then,how to coordinate
the mobility of nodes and manage their slacks so as to achieve
the requested monitoring distribution.

To see why this is the case, consider a situation where
a user moving between two points A and B may have
multiple choices of paths of almost equal expected quality
(e.g., in terms of traveled distance or time). Taking any of the
alternative paths leads to monitoring different field locations.
Such a scenario is particularly true for paths between locations
in a dense urban setting. As an illustration, consider Figure
5, which shows paths followed by cabs on the streets of the
San Francisco Bay area. The grid structure of the paths taken
(underscoring the underlying city blocks in SF) demonstrates
the existence of multiple routesof indistinguishable lengths, to
travel between arbitrary points A and B on the grid. In such a
case, it is perceivable that one might think that all nodes would
satisfy their own schedules in one of the following manners:
(1) Nodes would prefer paths leading to the monitoring of
high-demand spots in the field, or (2) nodes would take
random routes in each journey between each two consecutive
waypoints in the schedule.

In the first scenario, if all users end up monitoring the
same (highest-demand) field locations, the rest of the field
would be left unmonitored, resulting in missing many of the
users queries. On the other hand, if nodes take random paths,
as we will show in the evaluation section (Section V), this will
lead to poor coverage of the field, since the “importance” of
each field location (indicated by the desired/target monitoring
distribution) will be ignored when making random mobility
decisions. This accentuates the importance ofcoordinating
mobility of users, while ensuring that all schedules are sat-
isfied.

Our contributions can be summarized as follows:
• We apply the above mobility model of autonomous nodes

and its features (i.e., slack) to the problem of distributed
field coverage. We coin the problem of Constrained
Mobility Coordination for Preferential field Coverage



(CMC-PC). We show that this problem is NP-complete
(Section II), and argue that none of the existing research
efforts is adequate to solve the problem (Section III).

• We develop TFM, the first mobility coordination strategy
that aims to achieve a given distribution of field coverage
(Section IV). Under TFM, in steady state, nodes are in
a dynamic (i.e., mobile) state. This salient characteristic
of TFM enables it to achieve the required coverage
distribution of a spatio-temporal field with a low-density
network.

• Using extensive simulations, we compare TFM to the
random mobility strategy — the latter provides a lower
bound on performance. Our results indicate the significant
performance gain attained by using TFM over random
mobility (Section V-A). More importantly, TFM is shown
to closely meet the target field coverage distribution.

• Furthermore, we perform a trace-driven evaluation of
TFM and random mobility. We use cab traces from
cabs in the San Francisco area. Results of the trace-
driven evaluation underscore the effectiveness of TFM
in practical settings (Section V-B).

II. PROBLEM DEFINITION

In this section, we define the Constrained Mobility Coordina-
tion problem for Preferential Coverage (CMC-PC), then show
that it is NP-complete.

Definition 1: (Nodes): N autonomously mobile nodes
move in the target field. Mobility of each node is externally
constrained by a schedule (Definition 2). The prime goal of
these nodes is to satisfy their own schedules. While doing so,
they also try to cooperatively cover the target field according
to the required coverage distribution (Definition 4).

Definition 2: (ScheduleL): A schedule of nodeni is a
list L(ni) of tuples of the formuij = (τij , lij), where1 ≤
j ≤ |L(ni)|. To satisfy a schedule entryuij , nodeni has to
be at locationlij at timeτij . For ni to satisfy its schedule, it
has to satisfyuij for all 1 ≤ j ≤ |L(ni)|.

Definition 3: (Field G): The target field is represented as
a graphG = (V,E), such that each vertexv ∈ V represents
a field location, and each edgee ∈ E connects two vertices
representing two field locations that could be directly reached
from each other.

Definition 4: (Coverage Distribution D): Coverage of a
given field is defined by a target coverage distributionD, such
that D(v) is the relative importance of field locationv ∈ V .
The coverage distributionD represents the preferential interest
in covering different locations in the field, and is application-
specific. Practically,D could be interpreted in a number of
ways. For example, we could require that more important
field locations be covered morefrequentlythan less important
ones. Another interpretation, is to require that more important
locations be covered forlonger periodscompared to less
important ones. In this paper, we adopt the latter interpretation.
Specifically, we interpretD(v) as the required percentage of
time, during which, field locationv ∈ V should be covered, by
at least one node. We also note that, at any time, a field location
is either covered or not. Hence, covering a given location with
only one node is exactly equivalent to covering it with more
than one node.

Definition 5: (Communication Range r): Any two
nodes can communicate with each other only if the distance
between them is less than or equal to a (given) fixed commu-
nication ranger.

Definition 6: (Speed of Motionηi): The maximum speed
of motion of a nodeni is ηi. Without loss of generality, we
assume thatηi = ηmax, 1 ≤ i ≤ N .

Definition 7: (The CMC-PC Problem P ): The Con-
strained Mobility Coordination problem for Preferential Cov-
erage CMC-PC is defined by the tupleP (G,D,N,L), such
that G is a given field to cover with a target distributionD
using a set ofN mobile nodes, each with its own schedule
L(ni). In order to solve a given instance of the CMC-PC
problem, we need to coordinate mobility of theN nodes in
order to achieve two goals: 1) satisfy schedulesL of all nodes,
and 2) cover each field location,v ∈ V , the percentage of time
indicated by the target distributionD(v). Clearly, any feasible
solution to the CMC-PC problem must satisfy the maximum
speed requirement,i.e., no node is allowed to move with a
speed higher thanηmax.

Theorem 1 states that CMC-PC is NP-complete by re-
duction from the Hamiltonian Cycle Problem. A Hamiltonian
Cycle is a cycle in an undirected graph which visits each
vertex exactly once and then returns to the starting vertex.
Determining (and finding) whether a Hamiltonian cycle exists
in a given graph is NP-complete, so is our CMC-PC problem.

Theorem 1:The CMC-PC problem is NP-complete.
Due to lack of space, we refer the reader to [14] for the

proof of this theorem.

III. RELATED WORK

The problem we study here is mainly related to sensor
deployment and redepolyment, field coverage, and motion
planning.
Field Coverage With Static Nodes:Multiple research efforts
[13], [7], [5], [16] concentrated on calculating the coverage
level attained by astaticnetwork. For example, Dhillonet al.
[5] formulate the coverage problem as an optimization problem
where they attempt to optimize placement of sensors in the
field to maximize attained average coverage of the field.
Field Coverage With Mobile Nodes: Another group of
research efforts concentrate on the effect of mobility on
network coverage [17], [19], [6], [10], [15], [18]. Most efforts
in this group start from a sub-optimal deployment of nodes
in the field (e.g.,random), calculate an “optimal” deployment,
and then move each node to its newly calculated location.
These efforts differ, basically, in the way they calculate the
new locations of sensors. So, the network starts from a static
configuration, then nodes move once to reach another optimal
static configuration.

Another group of research efforts concentrated on the
attained dynamic coverage of a mobile network. For example,
in [11], the authors study the efficacy of a mobile network in
field surveillance. They gauge the ability of the network to
detect a static and a mobile intruder. A common factor in
these efforts is that the steady state of the network is a dynamic
one, unlike previous research efforts. Our work resembles
these efforts in this regard. However, our work addresses the



general problem ofconstrainedmobility coordination of nodes
in order to achieve somegivenmonitoring distribution.
Robotics Motion Planning: Motion planning has been studied
in the robotics field [9], [8]. Coupling robotics and sensor
networks concepts has also been studied [4], [2], [12]. These
efforts study problems of sensors carried by robots, and the
required modifications in robots mobility planning in orderto
support tasks of sensor networks. Our work is also different
from these efforts in that, we assume that sensors are embed-
ded into platforms that areautonomouslymobile by nature,
and whose mobility has a limited degree of freedom (i.e.,
slack) that could be planned to optimize performance of the
embedded sensor network.

IV. PREFERENTIAL FIELD COVERAGE MOBILITY
STRATEGY

In Section II, we showed that CMC-PC is NP-complete. In
this section we propose the Targeted Field Monitoring (TFM)
mobility strategy, a distributed heuristic to solve the problem.
To execute this algorithm, each mobile nodeni needs to know
its own scheduleL(ni), and the target coverage distribution
function D. This algorithm does not assume existence of
a centralized decision-making facility nor knowledge about
schedules of other nodes.

TFM uses another algorithm to assign a utility value to
each field location, based on the coverage distributionD.
Then, at each time unit, TFM plans node mobility by selecting
the field location to be visited at the next time unit such thatit
maximizes the utility of visited field locations, satisfying the
node’s schedule at all times.

Specifically, let us denote the current location of node
ni as vc. Let us also denote the immediately accessible field
locations from the current location,i.e., the set of neighboring
locations, byN(vc). N(vc) is the set of field locationsvf ∈
V such that there exists a direct edge betweenvc and vf .
Formally,

N(vc) = {vf ∈ V |vf 6= vc AND e = (vc, vf ) ∈ E} (1)

Figure 1 (left) shows field locationvc, and its neighboring
locationsN(vc). In order to plan its mobility, nodeni needs
to decide at each time unit, which of the neighboring field
locations,N(vc), it will move to next. To that end,ni executes
the Two-phase Utility Assignment (2UA) algorithm to assign
a utility value to each locationvf ∈ N(vc). Node ni, then,
decides on the next step greedily to maximize the utility of
visited locations. We will now describe the two phases of the
2UA algorithm.
Phase One of the 2UA Algorithm: During this phase,ni

assigns aninitial utility value Ui(v) to each field location
v ∈ V . Utility of each field location is a function of the
popularity of this location (defined byD(v)), the specific node
carrying out the calculationsni, and the time of performing
this calculation.

More specifically,ni keeps a local “view” of the field
representing the last time each field location was last visited
by any of the mobile sensors. Let us denote the local view
of nodeni as Ci, whereCi(v) is the last time field location

v was last visited byany node, according to nodeni (Figure
1 center). Nodeni updates its local view of the field at two
occasions: 1) Whenever it visits a new field location, it updates
the last time this location was visited to the current time, and
2) whenever it encounters another nodenj , the two nodes
exchange their views of the field. The result of this exchange
is that, each node keeps the most recent version of the two
views.

Using its current view of the fieldCi, nodeni calculates
the utility of field locationv as

Ui(v) = D(v) × (tc − Ci(v)) (2)

wheretc is the actual time of performing the utility calculation
(i.e., the current time). Notice that Equation 2 is a linear
function of the popularity of the location,D(v), and the length
of the interval since locationv was last visited(tc − Ci(v)).
Equation 2 is just an example for utility calculations, which
could take any different form (e.g.,exponential in the location
popularity). Notice also that this equation is related to our
interpretation ofD(v) as the required percentage of time
during which field locationv should be covered.
Phase Two of the 2UA Algorithm: In this phase, node
ni calculates acoarseutility value, Ûi(vf ), for each of the
directly neighboring locations,vf ∈ N(vc). The coarse utility
of vf is calculated as the sum of utilities of field locations
comprising the highest-utility path of lengthh that starts from
vf . More specifically, for eachvf ∈ N(vc), we find all paths
of length h that start fromvf , called Potential Future Paths
(PFP’s). The utility of each PFP is the sum of initial utilities
(calculated in Phase 1 of 2UA) of field locations comprising
this path. The coarse utility ofvf is the highest utility of all
such PFP’s starting atvf . Formally,

Ûi(vf ) = Up(Pbest(vf , h)) =
∑

vx∈Pbest(vf ,h)

Ui(vx) (3)

where functionUp(P ) calculates the sum of utilities of loca-
tions in PFPP , andPbest(vf , h) is the PFP with the highest
utility and is defined as,

Pbest(vf , h) ={P ′(vf , h) : P ′(vf , h) ∈ P(vf , h) AND

(Up(P ′(vf , h)) ≥ Up(P (vf , h)),

∀P (vf , h) ∈ P(vf , h))}

(4)

whereP(vf , h) is the set of all PFP’s of lengthh that start
from locationvf , andP (vf , h) ∈ P(vf , h) is defined as a se-
ries ofh connected field locations, the first of which isvf . Fig-
ure 1 (right) shows the current locationvc = (3,3), its directly
neighboring locationsN(vc) = {(2, 3), (4, 3), (3, 2), (3, 4)},
and the range of PFP’s from the neighboring locations of
length h = 1. For example, forvf = (2, 3), P (vf , 1) =
{((2, 3), (1, 3)), ((2, 3), (2, 2)), ((2, 3), (2, 4))}.

Scope of PFP’s:In the model we described, PFP’s constitute
some form of lookahead in order to optimize performance,
and h is a tunable parameter that defines the exact amount
of lookahead to perform. Hence, we need to answer the
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Fig. 1. Locationvc, and its neighboring locations (left),Ci: local field view of nodeni (center), and range of PFPP (vf , h), whereh = 1.

TABLE I
SCHEDULE OFn1 .

Time Location
1 (2,4)
5 (4,2)

question: “What is the optimum range of PFP’s to consider?
Consequently, what is the best value forh?”. It is natural to
think that the higher the value ofh, the longer the range of
considered PFP’s, the longer it takes to plan mobility, and the
more optimal the mobility decisions are. There is, however,
a dynamic restriction on the value ofh to be used at any
neighboring locationvf . Theorem 2 states this restriction, then
we give an example to illustrate it.

Theorem 2:In a field coverage system with a single node,
while determining the PFP’sP (vf , h) of a locationvf , only
field locations that could be actually reached by the node (due
to scheduling constraints) should be included in PFP’s. Hence,
the optimum value of the locale radiush is the amount of slack
k available to the node at the current time. Using any other
values ofh could lead to sub-optimal decisions.

Due to lack of space, we refer the reader to [14] for the
proof of this theorem, where we show that sub-optimal deci-
sions result from: 1) not including all reachable field locations,
and 2) including field locations that are not reachable.

The following example illustrates the idea of Theorem
2. It illustrates the case that not including all reachable field
locations in deciding the PFP’s of eachvf results in sub-
optimal coverage of the field.

Table I gives the schedule of noden1, while Figure 2
(left) showsvc the current location of noden1, along with field
locations directly accessible fromvc, N(vc) = {(2, 3), (3, 4)}.
It also shows the initialutility of visiting each location, the
result of phase one of the 2UA algorithm. Notice that locations
(1, 4) and (2, 5) are not members of the setN(vc), because
the schedule ofn1 does not allow enough slack to visit any of
these locations. Figure 2 (left) also highlights the set of field
locations that could be reached given the schedule ofn1.

Node n1 needs to assign a coarse utility valuêUi(vf )
to each of the neighboring locations. Figure 2 (center)
shows the PFP with the highest utility for eachvf such
that h = 3, which matches the time needed to get to
the destination.Pbest((3, 4), 3) = ((3, 4), (4, 4), (4, 3), (4, 2)),
while Pbest((2, 3), 3) = ((2, 3), (3, 3), (4, 3), (4, 2)). In this
case, both PFP’s visit the high-utility location(4, 3).
Up(Pbest((3, 4), 3)) = 4.3, while Up(Pbest((2, 3), 3)) = 4.1.
Based on these calculations,ni moves to(3, 4) as its next
step.

Figure 2 (right) shows the same paths whenh = 1. Notice
that in this case, not all reachable field locations are included
in the range of PFP’s.Pbest((3, 4), 1) = ((3, 4), (4, 4)), while
Pbest((2, 3), 1) = ((2, 3), (2, 2)), and Up(Pbest((3, 4), 1)) =
0.9, while Up(Pbest((2, 3), 1)) = 1.0. Based on these calcu-
lations,ni moves to(2, 3) as its next step, which is clearly a
sub-optimal decision.

Theorem 2 addresses the case of a field coverage system
comprised of a single node. In the case of multiple nodes,
mobility planning decisions made by one node in the past,
could be “invalidated” in the future due to mobility of other
nodes in the system. For example, a field locationvx of high
initial utility according to nodeni in the past, could be visited
by another nodenj causing its current utility to drop when
actually visited byni. We argue, however, that Theorem 2 still
holds in systems of sparse deployment, and we give evidence
to this insight in our trace-driven evaluation in Section V-B.

V. PERFORMANCEEVALUATION

In order to evaluate the efficacy of TFM in achieving a
specific coverage distribution of a given field, we developed
a mobility simulator. Our simulator models the mobility of
nodes by keeping track of the location of each node at each
time unit. It also models the exchange of local views between
nodes upon an encounter. Since our goal is to evaluate the
synthesized mobility of our detour-based techniques, we make
simplifying assumptions about the communication model as
we assume that nodes within a certain communication range
could successfully exchange data. We assume that the size of
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Fig. 2. Locationvc, its neighboring locationsN(vc), the destination waypoint, and the utility of each location(left), Pbest(vf ,3) (center) andPbest(vf ,1)

(right).

exchanged messages is small with respect to the bandwidth
in a single contact between two nodes. We also, willingly,
overlook storage limitations. We do this motivated by current
advances in storage technology that make memory devices of
tens of gigabytes available off-the-shelf.
Performance Metrics: The performance metrics we use are
the Kullback-Leibler (KL) distance, and the query success
ratio (QSR). The KL distance is a measure of distance
between distributions [3]. Having a true distributionP , and
an approximated oneQ, the KL-distance betweenP and Q,
KL(P‖Q), is calculated as:

KL(P‖Q) =
∑

i

P (i)log
P (i)

Q(i)
(5)

Mobility of nodes over the field induces a distributionQ
of the length of periods during which each location is cov-
ered. We measure the distance between the required coverage
distribution, D, and the induced distributionQ, KL(D‖Q).
Lower values of the KL distance indicate that the induced
distribution is close to the required distributionD, which is
the prime requirement in field coverage.

Then, we assume that nodes have unlimited storage in
which they keep collected samples from the field. A node
keeps a sample from each field location it visits. A sample is
assumed to have a time-to-live (TTL), during which this sam-
ple is considered to be fresh,i.e., an accurate representation
of the target phenomenon at the field location where it was
collected. Only fresh samples are kept in the local storage,
while expired ones are evicted. Nodes are independently
queried about the state of the field1 . A query is defined
by a tupleq = (vq, e). vq is the query target, the location
in which the inquirer is interested, whilee is a measure of
tolerable imprecision in the answer. The specific locationsof
query targets follow some spatial distribution over the field.
The answer to a queryq = (vq, e) is a sample collected at

1 We can think of this as if the user/owner hosting the mobile node is
interested in the state of some location in the field, so she uses the local
device, to which the sensor is attached, to submit queries andreceive answers
back from the distributed system.

location v, such that the distance betweenv and vq is less
than e (i.e., |v − vq| ≤ e). We can think of a query as a
circle whose center is the query targetvq, and whose radius is
the imprecisione. In this case, the query answer is a sample
collected from within this circle.

In order to answer any query, a queried node searches
its local storage to find a sample that could be used as an
answer to the query. If found, then the query is counted as
a success. Otherwise, the queried node forwards the query
to its direct neighbors only. If one of these neighbors has
an answer to the query, this neighbor sends the answer back
to the queried node, and the query is counted as a success.
If neither the queried node nor any of its neighbors has an
answer to the query, it is counted as a missed query. In order
to assess the efficacy of each mobility model in achieving the
required probability distribution, we matched the distribution
of query targets to that of the required coverage distribution
D (i.e., field locations that are required to be monitored for
longer periods of time have higher probability of being query
targets). We define the query success ratio (QSR) as the ratio
between the number of successfully answered queries to the
total number of queries.

The point of the two performance metrics is to gauge the
degree to which each mobility strategy can match the required
coverage distributionD. If a mobility strategy could closely
match this distribution, this should be manifested in achieving
a small KL distance, and high query success ratio.
Competing Strategies:We compare TFM to the random mo-
bility strategy (RND), in which nodes move randomly between
every two consecutive waypoints provided that the scheduleis
satisfied. In the trace-driven evaluation, we compare TFM to
Wait-at-Destination (WAD), a variation of RND. Under WAD,
nodes move to the destination waypoint using the shortest
path, where they wait spending all the available slack, if
any. Clearly, both RND and WAD represent lower bounds on
performance, since they do not actively attempt to coordinate
nodes’ mobility to improve coverage of the field.

In the synthetic evaluations, we evaluated the performance
of TFM and RND with respect to query handling in two differ-



ent setups, distributed and centralized. In the distributed setup,
only nodes within communication ranger could communicate
so as to cooperate in query handling. This version is denoted
as “DST” in the following graphs. In the centralized setup
(denoted as “CTR” in the following graphs), query handling
is done in a centralized facility. In this case, we simulate the
case where all collected samples are forwarded to a central
processing facility, and all queries are directed to this facility.

A. Evaluation Using Synthetic Workloads

Schedule Generation:Every node starts at time =tcurrent

(initially, tcurrent = 1) at a random location in the fieldloc1.
The entry (tcurrent, loc1) is added to the schedule. Then we
randomly select another locationloc2 in the field such that the
minimum time to move fromloc1 to loc2 is t. For location
loc2, we assign timets

ts = tcurrent + t + (κ × ρ) (6)

whereκ is the maximum slackwe allow in any journey, and
ρ is a uniform random variable such thatρ ∈ [0, 1]. The entry
(ts, loc2) is appended to the schedule. We repeat this process
until the end of the simulation time is reached.
Baseline Parameters:We simulated a field of 10x10 where
nodes can communicate only when they are at the same
field location. Each simulation runs for 100 seconds. In the
following graphs, each point is the average of 20 simulation
runs, with the 95% confidence intervals shown as well. The
required field coverage distribution is assumed to be a sym-
metric bivariate normal distribution centered in the center of
the field, with variance =4× I, whereI is the identity matrix
of size 2× 2. In the following experiments, unless otherwise
stated, the default value of the maximum PFP’shmax = 1,
number of nodesN = 30, and query precisione = 1.

For lack of space, we show representative results and we
refer the reader to [14] for more details.
Effect of Number of Nodes: Figure 3 shows the effect of
increasing the number of nodes on the performance of the
system in handling queries. TFM achieves between 2-fold
to 3-fold improvement in QSR over RND. Increasing the
TTL of collected samples or the maximum slackκ improves
performance of both protocols, however, TFM is always su-
perior to RND because nodes under RND do not coordinate
usage of their slack to optimize coverage of the field. It is
also interesting to notice that the distributed version of TFM
achieves close performance to that of the centralized one.
Increasing either TTL or maximum slackκ diminishes the gap
between the two versions. This confirms the premise of TFM
in a distributed practical setup. While, there is a noticeable
gap between QSR of the distributed and centralized versions
of RND, as expected of a naı̈ve approach.
Effect of Maximum Slack κ: Figure 4 shows the KL distance
of RND and TFM as a function of the maximum slackκ
of the schedule, in a system of 5 nodes (Figure 4 left),
and 15 nodes (Figure 4 right). Increasingκ allows TFM to
match the required distribution resulting in a smaller value
of the KL distance. This is true for systems of both high
and low densities. Increasing the number of nodes has a
more pronounced positive effect on the KL distance of RND
compared to TFM.
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Fig. 4. KL distance of TFM and RND as a function of the maximum slack
for different number of nodes.

Effect of Partially Following Detours: The goal of this
experiment is to measure the effectiveness of TFM when only
a given percentage of the nodes follow detour hints provided
by TFM. This scenario is motivated by the observation that
some nodes may not be willing to participate in the field
coverage application, and opt to spend their slack in a different
way. For lack of space we only summarize these results [14].
Obviously, as the percentage of nodes following TFM hints
increases the resulting KL distance decreases. When 60%
of the nodes follow TFM hints, the resulting KL distance
decreases by up to 67% (κ = 100).

In [14] we also show that, similar to the KL distance,
increasing the percentage of nodes that follow TFM hints
causes a linear increase in the QSR of the system. Interestingly,
the slope of the linear increase is a function of the slack,
and the “height” (i.e., success level) is a function of the TTL
of samples. With enough schedule slack, a density of TFM-
compliant nodes as low as 0.3 could achieve QSR approaching
100%.

B. Trace-Driven Evaluation

Following our motivating application, and to present even
more realistic evaluation of the protocol we propose, we used
taxi traces [1] for cabs in the San Francisco area as input to
our models. The goal is to show that, with little coordination
between cabs, they could function as an effective distributed
field coverage system.
Methodology: For each cab, the traces show location updates
of the cab. Each update is composed of latitude and longitude
of the cab location, the time of the location update, along
with the cab status: metered (hailed) or not (not hailed). We
gathered more than a full day’s worth of data for more than
450 cabs. In the traces we collected, some cabs have as many
as 400 location updates, while others have as few as 5 updates.
We used all location updates for all cabs to construct a “map”
of the San Francisco area. We represented the map as an
undirected graphG = (V,E). V is the set of all legitimate
locations any cab can be in at any time, where a location
is defined by its latitude and longitude coordinates. In the
data we collected, the total number of locations is 40399,
and the number of unique locations,|V | = 39, 103 locations.
To determine the relation between different locations (i.e., the
edges,E), we used a threshold-based neighborhood algorithm
with a threshold valuerth. This means that, for any two
locations a and b, such that the distance between them is
Dist(a, b), if Dist(a, b) ≤ rth, then we add an edge between
a and b whose cost =Dist(a, b). We usedrth = 200 meters
(≈ 0.12 miles = 656 feet). This value ofrth partitioned the
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Fig. 3. Query success ratio of TFM and RND as a function of the number of nodes in the system for different slack values.

Fig. 5. Paths followed by cabs in the SF Bay area, from traces used to
evaluate mobility coordination approaches.

unique field locations into different partitions, with the largest
partition consisting of 36,368 unique locations. We used this
partition as a representative of the map. A depiction of this
map is given in Figure 5.

Finally, out of the 450 cabs, we selected the 50 cabs
with the highest number of location updates. We mapped the
location updates of the cabs to the map we generated, and
used the map to “fill” in the gaps due to missing location
updates, for the first 150 minutes. This is done by mapping
each two consecutive updates to the map, and finding the
shortest route between them. Next, we interpolate a number
of locations along this route that is equal to the number of
minutes between the location updates. This process allows
us to infer the locations of cabs at one-minute granularities.
The cab status for those interpolated locations is set to be its
reported status in the last location update.

Based on each cab’s mobility profile (obtained as de-
scribed above), we defined the schedule of the cab as follows:
every time the cab is metered, its location is added to the
schedule of the cab. This means that, if the cab is hailed
(according to location updates), then it has to be in the
indicated location at the indicated time. In other words, we
can not change the trajectory of a hailed cab. This leaves room
for offering mobility hints (detours) to the cab only when it
is not hailed.

We compared TFM and Wait At Destination (WAD), a
variant of the RND protocol. Under WAD, when not hailed,
a cab moves to the next location where it picks up its next

customer, as early as possible, and spends its slack time there
waiting for the customer. Throughout the trace evaluation,we
assumed that cabs do not exceed speed of 30 mph, which is
quite conservative.
Target Distribution D: We assume that the goal of these
cabs is to cover the city to track a specific phenomenon that
breaks out at random locations. For example, an Amber alert
is issued specifying the break out location (the center of the
phenomenon) which is given the highest level of attention.
Attention awarded to neighboring locations is a function of
their distance from the center of the phenomenon. To model
this application, we define target coverage distributionD as
follows: We start with a maximum utility valueM and a utility
decrement value per hopδ. Then we randomly select a field
location, v1, to be the center of the distribution. We assign
virtual utilities uv as follows:

uv(vi) = M − δ × |v1 − vi| (7)

whereuv(vi) is the virtual utility assigned to field locationvi,
and |v1 − vi| is the number of hops betweenv1 (the center
of the distribution) andvi. This function assigns tov1 the
maximum value of utility,M . The utility value of field location
vi drops as a linear function of the number of hops between
vi and the center of the distribution,v1. To get the required
distribution D, which specifies the percentage of timeD(vi)
that field locationvi should be covered, we use the following
equation:

D(vi) = uv(vi)/
∑

vx∈V

uv(vx) (8)

Figure 6 illustrates an example distribution over a compact
version of the map.
Results: In our comments on Theorem 2, we argued that
in case of systems with single nodes, the longer the PFP’s
used to estimate the coarse utility of directly neighboring
locations, the better the performance, provided we limit our
consideration to field locations that are reachable under the
scheduling constraints of the node. In this experiment we aim
to evaluate this Theorem in systems with multiple nodes, but
low node density. Towards this end, we calculated the KL
distance of TFM using different values of the maximum length
of PFP’shmax. For each value, we run 20 simulations using
the inferred schedule and the generated map. Each simulation
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TABLE II
KL DISTANCE RESULTING FROM APPLYINGTFM ON CAB TRACES WITH

DIFFERENT VALUES OF MAXIMUM LENGTH OF PFP’S hmax .

hmax 0 1 2 3
KL distance 1.0986 0.8975 0.7441 0.6528

has a different distribution centerv1. Table II shows the
average KL distance for different values ofh.

It is clear that the performance improves by increasing
h, provided that we only consider reachable field locations,
confirming our expectations. Sinceh = 3 yields the lowest
value of KL distance, we use this value in the query-based
performance evaluation. The KL value of WAD = 2.1, three
times that of TFM withh = 3.

Figure 7 shows the query performance of the two mobility
models. TFM achieves from 30% to 120% improvement in
QSR over WAD. Increasing the communication range im-
proves the performance of both protocols. However, we found
out in another experiment in which we measured performance
as a function of the communication range (results not shown
here) that this improvement reaches a plateau very fast.

VI. CONCLUSION

We considered a new mobility model whereby each node
is coarsely constrained by an external schedule. These node
schedules have slack which can be leveraged to coordinate
mobility between nodes so as to satisfy a field monitoring
objective. We coin the problem of Constrained Mobility Coor-
dination for Preferential field Coverage (CMC-PC). We show
that this problem is NP-complete and propose a distributed
heuristic (TFM) that provides nodes with mobility hints (de-
tours) so as to achieve field monitoring that is as close as
possible to the required monitoring distribution. We verify the
premise of our mobility planning technique using extensive
simulations, as well as taxi logs from the San Francisco area.
Our results underscore the evident performance improvement
attained by TFM.
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