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Abstract

Many real-time applications, such as video con-

ferencing, require the transmission of messages from

a sender to multiple receivers subject to Quality-of-

Service (QoS) delivery constraints (e.g. bounded de-

lay). This requires the underlying multicast protocol

to �nd a QoS-constrained minimum-cost communica-

tion path (tree). However, �nding such a tree is known

to be computationally expensive. In this paper, we

present a fast heuristic, called QDMR, for generating

delay-constrained low-cost multicast routing trees. A

salient feature of QDMR is that it dynamically adjusts

its low-cost tree construction policy based on how far

the current on-tree node is from violating the QoS de-

lay bound. This QoS dependent (adaptive) tree con-

struction, together with the capability to merge least-

delay paths into the low-cost tree in case of stringent

delay requirements, lead to the following properties:

(1) QDMR guarantees to �nd a feasible multicast tree

if such tree exists; (2) this delay-bounded multicast tree

is very rapidly generated; and (3) the tree has low cost.

Through analysis and extensive simulations, we con-

�rm the premise of QDMR by comparing it to many

existing multicast algorithms.

1. Introduction

Distributed real-time applications, such as audio-

and video-conferencing, collaborative environments

and distributed interactive simulation, by and large,

involve a source sending messages to a selected set of

destinations with varying Quality-of-Service (QoS) de-

livery constraints. This requires the underlying net-

work to provide multicasting (group communication)
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and QoS capabilities to e�ciently support these appli-

cations.

The routing of multicast tra�c requires the con-

struction of a tree, referred to as the multicast path.

When a source sends a message, this message is for-

warded along the multicast path replicating the mes-

sage only when the paths to di�erent destinations di-

verge, thereby taking advantage of common path seg-

ments.

There are many algorithms to construct multicast

paths. They can be broadly categorized as QoS-

oblivious algorithms and QoS-sensitive algorithms.

QoS-oblivious algorithms (e.g. [12, 18, 3, 1]) build

multicast trees in a best-e�ort way without explic-

itly accounting for the requested QoS. Some minimize

replication and bandwidth cost by building a so-called

\Steiner tree" [9] that spans all group members, and

the sum of its link costs is minimum. Others build a

tree of shortest (least-delay) paths rooted at the source

in order to minimize end-to-end delays to individual

destinations. Shortest path trees can be e�ciently

computed, while Steiner trees are very expensive to

compute (i.e., NP-complete [5]). For this reason, some

QoS-oblivious algorithms try heuristically to achieve

a balance between cost and delay by building a tree

of shortest paths rooted at some (heuristically chosen)

node in the center of the group [19, 1].

These latter QoS-oblivious algorithms may not,

however, provide feasible trees that satisfy the re-

quested QoS in terms of the end-to-end delay along the

individual paths from the source to each of the destina-

tion nodes. To overcome this limitation, a number of

QoS-sensitive algorithms have been proposed. These

QoS-sensitive algorithms (e.g. [10, 21, 13, 22, 17,

16]) try to heuristically construct a low-cost tree subject

to a given upper bound on end-to-end delay. However,

some of these heuristics may fail to provide a low-cost

tree as they assume that network links are symmet-

ric. Furthermore, the time required to construct such a



tree may be prohibitive, especially for large networks,

as they employ a brute-force approach to search for

low-cost delay-bounded paths.

In this paper, we propose an e�cient algorithm for

rapidly generating a low-cost multicast tree subject to

end-to-end delay constraints in large networks with

asymmetric link costs and delays. Our algorithm is

based on Shaikh and Shin's Destination-Driven Multi-

Casting (DDMC) algorithm [15]. DDMC is an e�cient

algorithm for generating low-cost unconstrained mul-

ticast trees. The basic idea of DDMC is to give the

low-cost path going through a destination node prior-

ity over other paths to be extended in order to add a

new node to the current tree. This helps reduce the

tree cost as the cost incurred to go to one destina-

tion node can be leveraged to reach other destination

nodes. However, this may result in a tree with long

paths connecting a \chain" of destination nodes, and

hence the end-to-end delay QoS requirement could be

violated. We extend DDMC to overcome this problem

by adjusting dynamically (on the 
y) the low-cost tree

construction policy so as to take into account how far

the current destination node is from violating the QoS

(delay) requirement. Furthermore, in the case where

the requested QoS is still violated for some destina-

tion node, we merge the least-delay path into the tree.

Thus, the new algorithm guarantees to �nd a feasible

path if there is one, while keeping the tree cost low.

We call this algorithm QoS Dependent Multicast Rout-

ing (QDMR for short). To summarize, QDMR has the

following features compared to other algorithms: (1) a

tree generation process that is QoS delay-dependent so

as to minimize tree cost while at the same time keeping

an eye on how far it is from violating the delay bound;

(2) a very fast algorithm for generating low-cost delay-

bounded multicast trees because of its QoS-dependent

(adaptive) tree generation process; (3) it guarantees

that a feasible tree will be constructed if one exists by

merging least-delay paths into the low-cost tree if nec-

essary. The merging process of least-delay paths stops

as soon as the low-cost tree is encountered and the de-

lay bound is satis�ed, thus keeping the tree cost as low

as possible.

Through extensive simulations, we show that

QDMR yields trees that have comparable cost to other

existing heuristics. Furthermore, these low-cost trees

are very rapidly generated; the execution time of

QDMR is several orders of magnitude lower than that

of other heuristics, including the fastest heuristic re-

cently proposed in [17]. For lack of space, proofs of

correctness and time complexity are omitted and can

be found in [7].

The rest of the paper is organized as follows. Sec-

tion 2 de�nes the delay-constrained multicast routing

problem. Section 3 describes our QDMR algorithm.

Section 4 surveys some recently proposed heuristics

against which we compare QDMR via simulations in

Section 5. Section 6 concludes the paper with future

work.

2. The Delay-Constrained Steiner Tree

Problem

We represent the network by a directed graph G =

(V;E), where V is the set of all vertices (nodes) repre-

senting routers or switches, E is the set of edges (links)

representing physical or logical connectivity between

nodes. Each link is bidirectional, i.e., the existence of

a link e = (u; v) from node u to node v implies the

existence of another link e

0

= (v; u) for any u; v 2 V .

Any link e 2 E has a cost C(e) : E 7! R

+

and a de-

lay D(e) : E 7! R

+

associated with it. The function

C(:) de�nes the measure we want to optimize (mini-

mize). The function D(:) de�nes the measure we want

to constrain (bound). Due to the asymmetric nature

of computer networks, it is possible that C(e) 6= C(e

0

)

and D(e) 6= D(e

0

).

We denote a multicast group by the set ffsg[Rg �

V , where s is a source node which will send messages

to a set of receivers denoted by R. A multicast tree

T (s;R) � E is a tree rooted at s and spanning all mem-

bers of R. We denote by P

T

(r

i

) � T the set of links

in T that constitute the path from s to r

i

2 R. The

total (path) delay from s to r

i

, denoted by Delay[r

i

],

is simply the sum of the delay of links along P

T

(r

i

),

i.e.,

Delay[r

i

] =

X

e2P

T

(r

i

)

D(e)

The total cost of the tree, denoted by Cost(T ), is

de�ned as the sum of the cost of all links in the tree,

i.e.,

Cost(T ) =

X

e2T

C(e)

The application may assign an upper bound �

i

to

Delay[r

i

], and the upper bound can be di�erent for

each destination r

i

. For simplicity, in our network

model, we assume that the upper bound for all desti-

nations is the same, and is denoted by � = �

i

;8r

i

2 R.

We are currently extending this model to consider mul-

tiple delay bounds.

Given these de�nitions, we can formally present the

Delay-Constrained Steiner Tree (DCST) Problem as

follows:



The DCST Problem. Given a network G, a source

node s, destination node set R, a link delay function

D(:), a link cost function C(:), and a delay bound

�, the objective of the Delay-Constrained Steiner

Tree (DCST) Problem is to construct a multicast tree

T (s;R) such that the delay bound is satis�ed, i.e.,

Delay[r

i

] � � 8r

i

2 R

and that the tree cost Cost(T ) is minimized.

Proposition 1 The DCST problem is NP-complete.

3. Our QoS Dependent Multicast Rout-

ing Algorithm

3.1 Motivation and Mechanics

Our QoS Dependent Multicast Routing (QDMR) al-

gorithm is based on the Destination-Driven MultiCas-

ting (DDMC) algorithm recently proposed by Shaikh

and Shin [15]. The idea of DDMC comes from the

fact that the well-known algorithms of Prim's mini-

mum spanning tree and Dijkstra's shortest path tree

[2] both use essentially the same greedy strategy. In

Prim's algorithm, a minimum-cost tree that spans all

nodes is constructed by augmenting the current tree

with the minimum-cost edge emanating from some on-

tree node (not necessarily the source). In Dijkstra's

algorithm, at each step, a new node with the minimum

path cost from the source is added to the current tree.

Thus, the di�erence between the two algorithms lies

in the choice of the cost function used at each step.

In Prim's algorithm, the cost of a new (not-on-tree)

node to be added to the current tree is simply the cost

of the minimum-cost edge to it, whereas in Dijkstra's,

this cost is the minimum total cost from the source to

the node. The DDMC algorithm de�nes the cost of a

new node v =2 T via node u 2 T to be:

Cost[v] = I

D

(u)Cost[u] + C(u; v)

where the \indicator function" I

D

(u) : V 7! f0; 1g

is de�ned as

I

D

(u) =

�

0 if u 2 R

1 otherwise

The algorithm thus tries to make the destination

nodes appear as new \sources". This gives preference

to the paths going through destination nodes since the

path to a new node via a destination node is likely to

have a lower cost and thus be added to the tree. Since

we have to absorb the cost of reaching a destination

node anyway, the DDMC algorithm can multicast to

all destination nodes on a low-cost tree.

Modifications to DDMC

Because the DDMC algorithm treats each destina-

tion node as a new \source" after that node is added

to the tree, the �nally constructed tree can easily have

some very long branches which look like a \chain" of

destination nodes. This enables DDMC to e�ciently

generate a low-cost multicast tree. However, this may

also lead to some destination nodes violating the delay

bound. We illustrate the above observation by an ex-

ample in Figure 1. For ease of presentation, we assume

here that links are symmetric.

Figure 1(a) shows the tree generated by the DDMC

algorithm. This tree runs through nodes S, D

1

, D

2

,

D

3

, and D

4

, because at each step, the path ending at

a destination node will always be selected since it has

a lower cost. This gives a tree cost of 7, as opposed

to a cost of 14 if a tree of least-delay paths (LDT) is

constructed as shown in Figure 1(b). However, with a

DDMC tree, the path delays for nodes D

3

and D

4

are

7 and 8 respectively, and hence for both destinations

the delay bound of 6 is violated. To satisfy the delay

bound, a solution is to then replace the paths to D

3

and D

4

by the least-delay paths (LDP) as shown in

Figure 1(c). We call such a tree DDMC+LDP. Now

the cost of the �nally formed tree becomes 11, which

is not the lowest cost possible (as we show below).

To e�ciently obtain delay-bounded low-cost trees,

we modi�ed the original DDMC algorithm so as it dy-

namically adjusts its tree construction policy accord-

ing to how far a destination node is from the delay

bound|our QoS requirement; the further the desti-

nation node is away from the delay bound, the more

priority it has in being selected as parent of the newly

added node. In other words, if we are still far from

reaching the delay bound, our QDMR algorithm would

behave as DDMC, i.e. it can produce \less bushy" trees

with possibly long paths connecting a \chain" of des-

tination nodes. This is desirable so as to minimize the

cost of the tree. However, if the delay bound is about

to be violated, our QDMR algorithm would give less

priority to destination nodes and result in \bushier"

trees so as to reduce the likelihood of violating the delay

bound. A salient feature of QDMR is that it is simple

and hence computationally inexpensive by adjusting

its tree construction policy dynamically as nodes are

added to the tree. This is in sharp contrast to other al-

gorithms that exhibit higher computation cost because

they pre-compute multiple paths between the source

and each destination and then select those paths that

are least costly and do not violate the delay bound.

Because it is easy to maintain the delay from the

source to each on-tree node, our QDMR algorithm
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Figure 1. Example to show difference between DDMC and QDMR: ( a) Example network and DDMC
tree; (b) Least-delay tree (LDT); (c) DDMC+LDP tree; (d) QDM R tree.

achieves its delay dependent tree construction objec-

tive by replacing the simple indicator function I

D

(u) :

V 7! f0; 1g used in DDMC with a new indicator func-

tion de�ned as the ratio of the node delay to the delay

bound,

1

i.e.,

I

D

(u) =

�

Delay(u)=� if u 2 R

1 otherwise

Using this new function, when QDMR constructs

the multicast tree (cf. Figure 1(d)), node D

2

will have

a lower priority to be added to the tree than node D

1

,

because D

2

is farther away from the source (or equiv-

alently its delay is closer to the delay bound) and so

has a higher cost than D

1

.

2

On the other hand, D

2

still has a little higher priority than nodes N

1

and N

2

because it is a destination node.

3

Since D

3

has lower

cost via D

1

than via D

2

4

, the �nally constructed tree

would have a branch from node D

1

to D

3

and D

4

. This

tree satis�es the delay bound and has a cost of 8, which

1

Other de�nitions of I

D

(u) are also possible, but we found

through simulations that this simple de�nition provides su�-

ciently good results.

2

Cost[D

1

] = I

D

(s)Cost[s] + C(s;D

1

) = 1 � 0 + 2 = 2:

Cost[D

2

] = I

D

(D

1

)Cost[D

1

] +C(D

1

; D

2

) =

2

6

� 2 + 2 =

8

3

:

3

Cost[N

1

] = I

D

(s)Cost[s] + C(s;N

1

) = 1 � 0 + 3 = 3 =

Cost[N

2

]:

4

Cost[D

3

] = minfI

D

(D

1

)Cost[D

1

] + C(D

1

;D

3

); I

D

(D

2

)Cost[D

2

]

+ C(D

2

;D

3

)g = minf

2

6

� 2 + 2;

5

6

�

8

3

+ 1g = minf

8

3

;

29

9

g:

is lower than the cost of the DDMC+LDP tree shown

in Figure 1(c).

We note that even after applying the new indicator

function, our QDMR algorithm may still fail to �nd a

feasible path to a destination node (i.e., a path that

satis�es the delay bound) even if such path does ex-

ist. The reason for this is that we are using a greedy

strategy to minimize tree cost when selecting the next

not-on-tree node to be added. Thus we might miss

some feasible path because of its high cost. Therefore,

we add an additional phase in QDMR to fall back on

using the least-delay path if a feasible low-cost path

is not found for any destination node. In this case,

we include the destination node in the tree by merging

the least-delay path from the source to that node into

the partial QDMR tree as follows: we start from each

such (destination) node, and trace back the least-delay

path for it until some on-tree node (another destina-

tion node, a relay node or the source) is encountered.

If the merged path satis�es the delay bound, the merg-

ing process terminates for that destination. However,

if the merged path does not satisfy the delay bound,

we continue tracing back the least-delay path. In the

worst case, the merging succeeds at the source node. In

this case, the least-delay path in its entirety becomes

part of the tree. This merging process is illustrated in

Figure 2.
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Figure 2. Merging process.

In this example, node D

4

can not be included in

the QDMR tree in the initial construction phase since

QDMR fails to �nd a feasible path to D

4

. The merging

phase then starts to merge the least-delay path (shown

as dashed line) into the tree by tracing it back to the

source until the on-tree node N

2

is encountered. How-

ever, at this point, it �nds that the delay bound still

can not be satis�ed, i.e., Delay[N

2

] + D(N

2

; D

4

) >

�. It then continues the merging process, and up-

dates the parent pointer of node N

2

from node N

3

to node N

1

(cutting o� the branch (N

3

; N

2

) from the

tree). At node N

1

, the merging process �nds that

Delay[N

1

] +D(N

1

; N

2

) +D(N

2

; D

4

) � �, so the sub-

path (N

1

; D

4

) is added as a new branch in the tree and

now the destination node D

4

is included in the tree.

Finally, a pruning phase is necessary to prune (s;N

3

)

since node N

3

is a leaf node that is not a destination.

The pseudo-code of our QDMR algorithm is given in

Figure 3. Steps 0-13 show the initial tree construction

phase. Steps 14-23 show the merging phase. Steps

24-25 show the pruning phase.

3.2 Correctness and Time Complexity of QDMR

Theorem 1 The path generated by QDMR is loop-

free.

Theorem 2 The QDMR algorithm always constructs

a delay-bounded multicast tree if such a tree exists.

Lemma 1 The time complexity of QDMR is

O(jEj log jV j).

4. Related Work

In this section, we brie
y discuss some recently pro-

posed delay-constrained Steiner tree heuristics. (Ref-

erence [14] provides a good survey.) The KPP [10]

and the CKMB [17] heuristics both extend KMB, an

unconstrained Steiner tree heuristic [11]. KMB �rst

QDMR (G(V;E); s;R;�; D;C)

0. /* Initial Tree Construction Phase */

1. Call Dijkstra's algorithm DJK(G; s;R;D) to compute the

least-delay tree (LDT) to �nd out the lowest possible

delay bound �

min

 min

r

i

2R

fDelay[r

i

]g

2. if �

min

> �

3. Return FAILED /* a feasible tree does not exist */

4. Cost[s] 0; Delay[s] 0

Cost[u] 1;Delay[u] 1 for u 6= s

5. T  �, Q V

6. while Q 6= � and R � T 6= � do

7. u Extract-Min(Q) /* pick next node */

8. T  T [ fug

9. for each vertex v 2 Adj[u] /* for each adjacent node */

10. if Delay[u] +D(u; v) < � and v =2 T

11. if Cost[v] > I

D

(u)Cost[u] + C(u; v)

12. Cost[v] I

D

(u)Cost[u] + C(u; v)

13. �[v] u /* u is the parent */

14. /* Merging Phase */

15. if R� T 6= � /* some destinations haven't been reached*/

16. for each u 2 R� T do

17. d

cumm

 0, p �

LDP

[u] /* merge LDP */

18. while u 6= s

19. �[u] p, d

cumm

 d

cumm

+D(p; u)

20. T  T [ fug

21. if Delay[p] + d

cumm

� �

22. go to 16

23. u p, p �

LDP

[u]

24. /* Pruning Phase */

25. return PruneLeaves(T)

Figure 3. Our QDMR algorithm.

converts the original network graph into a complete

graph connecting multicast group members, where a

(logical) edge represents the least-cost path between

two members. Then KMB constructs a minimum-cost

(spanning) tree, and �nally replaces each logical edge

in the tree with the corresponding (physical) least-cost

path.

KPP extends KMB to compute delay-bounded

paths assuming the delay bound and link delays are

all integers. This assumption limits its applicability

although an approximate solution was proposed that

transforms real delay values into integer values. This

approximation, however, may compromise the accu-

racy of the algorithm by failing to �nd a feasible tree

even though one exists. The time complexity of KPP

is O(�jV j

3

). CKMB also extends KMB without as-

suming integer delay values. However, CKMB, like

KPP, builds a minimum-cost tree of logical edges. Thus

they may fail to exploit common physical edges, lead-

ing to high tree cost. The time complexity of CKMB



is O(jRjjV j

2

).

The CDKS [16] algorithm di�ers from QDMR in

that the cost of a node is simply the total cost from

the source, i.e. unlike QDMR, it does not attempt

to reduce tree cost by using a dynamic cost function.

Furthermore, if the delay bound is violated for some

destination node, the least-delay path is simply used

in its entirety, leading to further increase in tree cost.

The time complexity of CDKS is O(jV j

2

).

BSMA [22] is another multicast algorithm that is

considered the best in terms of tree cost [14]. BSMA

iteratively replaces the edges in the tree until the tree

cost can not be further reduced. This makes the al-

gorithm computationally very expensive to be used for

large-scale networks. The average time complexity of

BSMA is O(kjV j

3

log jV j), where k is the average num-

ber of lower cost paths examined to replace a lower

delay path.

Another algorithm is CAO [21]. It incremen-

tally adds new tree branches by merging in delay-

constrained low-cost unicast paths leading to new desti-

nation nodes. The time complexity of CAO is O(t(A)�

jRj), where A is the algorithm used to �nd unicast

paths. The original version of CAO uses a constrained

breadth-�rst search algorithm, thus its time complex-

ity can be exponential in some cases. However, even

with an e�cient unicast routing heuristic (e.g. [8]), it

may still need a much longer time than QDMR to form

a tree.

In Section 5, we compare the various heuristics in

terms of actual execution time via extensive simula-

tions. Our results show that QDMR is the fastest

in generating multicast trees that are competitive in

terms of tree cost. This indicates that QDMR is an

attractive algorithm for real-time multicasting in large

networks.

5. Simulation Model and Results

To evaluate the e�ciency of our QDMR al-

gorithm, we use the multicast routing simulator

MCRSIM [4] developed at North Carolina State Uni-

versity. MCRSIM allows the simulation of arbitrary

networks and supports multiple tra�c types, as well

as background tra�c on each link. MCRSIM already

implements many existing Steiner tree heuristics, in-

cluding BSMA [22], CAO [21], KPP [10], CDKS [16],

and CKMB [17]. We implement our QDMR algorithm

in the MCRSIM simulator and compare it to these

other heuristics.

5

5

In our simulation experiments, for the KPP algorithm, we

map real delay values in [0;�] to integer values in [0; 10].

We consider randomly generated network topologies

using a modi�ed version of the graph generation algo-

rithm described in [20]. The average degree of a node

is set to 4, and the capacity of each link is 155 Mbps.

The link delay function D(e) is de�ned as the propa-

gation delay of the link plus a �xed switching delay of

30 �sec.

6

The link cost function, C(e), is de�ned as the current

total bandwidth reserved on the link

7

. We conducted

two sets of experiments. We present each next.

Experiments 1

In this �rst set of experiments, we investigate the

quality of the multicast tree generated by each heuristic

and their computation requirement. This was done by

measuring for an arriving group the cost of the tree and

the actual execution time to generate the tree under

each heuristic. All simulations were running on a SUN

SPARCstation-10, and the codes for all the simulated

algorithms were not optimized for speed. For each run,

the cost of a link is the amount of bandwidth reserved

on the link for some background tra�c. This reserved

bandwidth is a random variable uniformly distributed

between B

min

and B

max

. We set B

min

to 10 Mbps and

B

max

to 120 Mbps. The di�erence between B

min

and

B

max

re
ects the asymmetry of the link loads when

the multicast group arrives. The group members are

also randomly selected. We obtain results for di�erent

network sizes, multicast group sizes and di�erent delay

bounds. For a speci�c network/group con�guration,

each algorithm is executed. This was repeated until

con�dence intervals of less than 5% (using 95% con�-

dence level) were achieved for all measured quantities.

Figure 4 shows the tree cost and the execution time

for varying network size. For clarity, execution times

are shown in log-scale. We �x the group size at 10,

and we choose a stringent delay bound of 30 ms. Fig-

ure 4(a) shows that as the size of the network increases

from 20 nodes to 100 nodes, the di�erence between the

sub-optimal BSMA heuristic and other heuristics be-

comes larger. CAO always yields the closest tree cost

to that of BSMA. The remaining three heuristics per-

form very close to each other (less than 4%); CKMB

has relatively lower tree cost, followed closely by KPP

then QDMR. Figure 4(b) shows that BSMA and KPP

are the most computationally expensive algorithms.

QDMR is the fastest algorithm, followed by CKMB,

6

It is assumed that queueing delays are negligible given

enough bandwidth is reserved on the link for each multicast

group, and that transmission delays are very small.

7

This de�nition re
ects the relationship between cost and link

utilization; a highly loaded link usually costs more. Other de�-

nitions are also possible.



then CAO. QDMR is orders of magnitude faster than

all other algorithms.

Figure 5 shows the performance measures versus

group size for a 50-node network and a delay bound

of 30 ms. It can be seen from Figure 5(a) that the per-

formance of CAO in terms of tree cost degrades as the

group size increases. Other heuristics have similar per-

formance; in general QDMR gives slightly higher tree

cost (less than 4%) than KPP and CKMB.

Figure 5(b) shows that the execution times of BSMA

and KPP are very large, almost 3 orders of magnitude

higher than that of QDMR. As the group size increases,

the execution times of both CAO and CKMB grow. On

the contrary, the execution time of QDMR remains al-

most the same with increasing group size, and it can be

up to 1 order of magnitude lower than that of CKMB.

Thus QDMR scales very well to large networks

and multicast groups. It can produce low-cost

trees at a signi�cantly higher speed.

Figure 6 shows the performance of di�erent heuris-

tics for varying delay bound, for a 50-node network and

a group size of 15. Figure 6(a) shows that all heuristics

can �nd a lower cost tree as the delay bound increases.

CKMB is slightly more sensitive to the delay bound

than others. When the delay bound is not so stringent

(i.e. large), both CKMB and QDMR perform better

than KPP. Figure 6(b) shows that the execution time

of all heuristics is not very much a�ected by the delay

bound.

Since CDKS was suggested to be a suitable al-

gorithm for large networks [14], Figure 7 compares

our QDMR algorithm to CDKS as well as CKMB

for relatively large networks. We also show re-

sults for DDMC+LDP. The only di�erence between

DDMC+LDP and QDMR is in the de�nition of

the indicator function used to give priority to paths

going through destination nodes; f0; 1g is used in

DDMC+LDP, whereas QDMR uses the linear delay-

dependent function (cf. Section 3.1). We vary the net-

work size from 200 nodes to 600 nodes, and set the

group size to be 10% of the network size and the de-

lay bound to be 30 ms. Figure 7(a) shows that CKMB

yields the lowest tree cost. QDMR has a slightly higher

tree cost (always less than 2%). QDMR always has

a lower tree cost than CDKS. Figure 7(b) shows that

QDMR is signi�cantly faster. Both QDMR and CKMB

have a lower rate of increase in execution time than

CDKS as the network size increases. Note that even

for a very large network (600 nodes), the time required

for constructing a QDMR tree is less than 1 second on

a SUN SPARCstation-10. (Recall that the code for the

various algorithms under study was not optimized for

speed.) It is also important to note that QDMR signif-

icantly outperforms DDMC+LDP in terms of tree cost

due to its use of a QoS dependent tree construction

process, while maintaining its fast execution feature.

This indicates that QDMR is a promising QoS multi-

cast routing algorithm for large networks.

Experiments 2

In this second set of experiments, we compare the

e�ciency of di�erent heuristics in terms of how well

they distribute arriving multicast groups (tra�c) over

the network so as to increase network utilization (or

revenue). In each run, we start with an empty network

and generate successive arrivals of multicast groups. A

multicast group is randomly generated. The source of

each arriving group is assumed to be a variable bit rate

(VBR) video source. The QoS requirement is guaran-

teed by reserving some amount of bandwidth (or the

equivalent bandwidth of the source [6]) on each link of

the multicast tree. In these experiments, the equiva-

lent bandwidth of each multicast session is 0.5 Mbps.

Each group requests a delay bound of 30 msec.

A group is not admitted into the network (i.e. re-

jected) if the total bandwidth reserved on a link would

exceed 85% of the link's capacity. The run is termi-

nated when the total group rejection rate exceeds 15%.

We note that an arriving group could be rejected either

because of failure to reserve bandwidth or because a

feasible tree could not be found

8

. Figure 8 shows the

number of admitted multicast groups on a 20-node net-

work for di�erent group sizes. Again, 95% con�dence

intervals were computed for the results. We observe

that QDMR performs as well as BSMA, which was

suggested in [14] to be the most e�cient in distribut-

ing sessions over the network and thus increasing the

likelihood of an arriving group being admitted into the

network. We also note that an algorithm that simply

builds a tree of least-delay paths (LDT) performs the

worst as it produces costly trees.

6. Conclusions and Future work

We presented an e�cient algorithm for obtaining

delay-constrained low-cost multicast trees. Our algo-

rithm extends a recently proposed unconstrained al-

gorithm [15] so as to rapidly generate a low-cost tree

while adapting (on the 
y) the generation process to

account for application's end-to-end delay demands.

We showed through extensive simulations that the pro-

posed algorithm generates low-cost trees with a com-

8

KPP is the only simulated algorithm which may not �nd a

feasible tree even though one exists, because of its real-to-integer

conversion of delay values.



putation overhead that is several orders of magnitude

lower than that of other algorithms.

Since the problem of �nding a delay-constrained

minimum-cost path is NP-complete, we resorted to a

simple heuristic in order to keep the computational cost

low. Like other existing algorithms (such as CKMB

and KPP), our algorithm may fall back on using least-

delay paths (or segments of them) so as to �nd a feasi-

ble tree. A more sophisticated search may yield lower

cost paths that are also feasible. To that end, we will

investigate the use of our recently proposed heuristic to

�nd low-cost QoS-constrained (unicast) paths [8]. An

interesting question here is whether the gain in tree

cost will justify the additional computational cost.

It is worth mentioning that our QDMR algorithm, as

well as all the other algorithms presented in this paper,

assumes that information regarding the state of each

link (i.e. link cost and delay) and the location of group

members is available at each node. This is the same

link-state approach used in current Internet protocols

like MOSPF [12]. If the network provides best-e�ort

service, then the delay bound satis�ed by the computed

tree is not guaranteed (i.e. may be violated for some

packets). For all packets to satisfy the delay bound,

resources must be reserved over the computed tree to

guarantee the associated link delays.

Other future work include investigating other QoS

constraints (e.g. delay jitter) and applications where

group members join and leave the multicast group at

will. Such dynamic group membership makes it very

hard, if not impossible, to maintain all the time an op-

timal cost multicast tree that also satis�es given per-

formance (delay) constraints. One possible solution to

this problem is to, whenever a new group member joins

or an existing member becomes out-of-bound, add or

replace the old path with a new low-cost delay-bounded

(unicast) path. QDMR could be applied regularly to

restore optimality of the whole multicast tree. We will

investigate this approach in our future work.
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Figure 4. Tree cost and execution time versus network size: g roup size=10, delay bound=30 ms.
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Figure 5. Tree cost and execution time versus group size: net work size=50, delay bound=30 ms.
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Figure 6. Tree cost and execution time versus delay bound: ne twork size=50, group size=15.
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Figure 7. Tree cost and execution time vs network size: group size=10% of network size, delay
bound=30 ms.
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