
A Spectrum of TCP-friendly Window-based Congestion Control Algorithms�

Shudong Jin Liang Guo Ibrahim Matta Azer Bestavros

Computer Science Department

Boston University

Boston, MA 02215

fjins, guol, matta, bestg@cs.bu.edu

December 2001

Abstract

The increasing diversity of Internet application requirements has spurred recent interest in transport

protocols with
exible transmission controls. In window-based congestion control schemes, increase

rules determine how to probe available bandwidth, whereas decrease rules determine how to back o�

when losses due to congestion are detected. The control rules are parameterized so as to ensure that

the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate.

This paper presents a comprehensive study of a new spectrum of window-based congestion controls.

Contrary to previous memory-less controls, our controls utilize history information in their control rules.

They are TCP-friendly as well as TCP-compatible under RED. That is, the steady-state throughput

of our controls is roughly equal to that of TCP under the same conditions. Furthermore, our controls

solve the problems raised by recently-proposed slowly-responsive congestion controls such as general

AIMD and binomial controls. Our controls have much better transient behavior. That is, they can

achieve better tradeo�s among smoothness, aggressiveness, and responsiveness, and they can achieve

faster convergence. We demonstrate analytically and through extensive ns simulations the steady-state

and transient behavior of several instances of this new spectrum.

Keywords: Congestion Control, TCP-friendliness, TCP-compatibility, Fairness, Transient Behavior.

1 Introduction

TCP uses additive-increase and multiplicative-decrease (AIMD). It probes available bandwidth by increas-
ing the congestion window size linearly, and responds to increased congestion (indicated by packet losses)
by decreasing the window size multiplicatively. Recently proposed congestion control mechanisms include
generalizations of TCP-like window-based schemes [1, 2, 3, 4], and equation-based schemes [5, 6, 7]. A
common objective of these schemes is to reduce the high variability of TCP's transmission rate. Such high
variability may limit network utilization. In addition, it is not desirable for emerging applications such as
real-time streaming applications on the Internet.

A new transport protocol should implement congestion control mechanisms that interact well with
TCP [8]. That is, it should maintain TCP-compatibility, or fairness across connections using di�erent
protocols. To provide such fairness, one solution is to satisfy TCP-friendliness, which means the (�; p)

�This work was supported in part by NSF grants CAREER ANI-0096045, ANI-0095988, and ANI-9986397. Shudong Jin
was also supported by an IBM PhD Research Fellowship.

1

relationship � � 1=(R
p
p) should hold, where � is the throughput of a
ow, p is the loss rate, and R is the

round-trip time.
In addition to TCP friendliness, smoothness, aggressiveness, and responsiveness [1, 9] are important in-

dices of congestion control performance. Smoothness indicates the variability in transmission rate. Aggres-
siveness indicates how fast a connection probes extra bandwidth by opening up its window. Responsiveness
measures how fast a connection reacts to increased congestion by decreasing its window size. Smoothness
characterizes the steady-state behavior of congestion control protocols, whereas both aggressiveness and
responsiveness characterize transient behavior. An important observation is that there are tradeo�s among
smoothness, aggressiveness, and responsiveness [1, 9]. Comparisons of TCP, general AIMD [1, 3], TFRC [5],
and TEAR [2] have shown that typically higher smoothness means less aggressiveness and responsiveness.1

Several questions remain unanswered. First, both window-based and equation-based congestion control
schemes have been studied recently. Window-based schemes do not use history while equation-based
schemes do so. Could one explore the design space between these two schemes? Second, can one provide a
wider selection of TCP-friendly congestion control schemes by using history information? Third, previous
approaches provide smoothness of transmission rate but sacri�ce aggressiveness. Can one provide high
smoothness in steady state as well as better transient behavior when network conditions change drastically
(e.g., when there is a sudden increase in available bandwidth)?

We provide answers to these questions. This paper presents a thorough study of TCP-like window-
based congestion control schemes that utilize history information, in addition to current window size.
These schemes are fundamentally di�erent from memory-less AIMD [1, 3] and binomial schemes [4]. The
only history used in our schemes is the window size at the time of detecting the last loss. Such a small
step allows a much broader exploration of TCP-friendly congestion controls than memory-less AIMD and
binomial schemes. To this end, we propose a spectrum of window-based congestion controls possessing
high smoothness in steady state, while reacting promptly to sudden changes in network conditions. We
analyze the smoothness, transient behavior, and performance tradeo�s of this new spectrum of controls,
of which our recently proposed SIMD [10] is an instance.

Our work is the �rst step toward exploring a new design space between memory-less window-based
congestion control schemes and equation-based schemes which use more history information. Compared to
memory-less window-based schemes, our controls improve the transient behavior by using history. Com-
pared to equation-based schemes, our controls have several unique properties: the self-clocking nature of
window-based schemes, and simple modi�cations to TCP's implementation.

The remainder of this paper is organized as follows. We propose our controls in Section 2, and de�ne
our TCP-friendly controls in Section 3. We analyze the tradeo�s among smoothness, aggressiveness, and
responsiveness in Section 4. The convergence properties of our SIMD instance is studied in Section 5. Our
results from extensive simulations using the ns simulator [11] are presented in Section 6. We revisit related
work in Section 7 and �nally conclude the paper.

2 Window-based Congestion Control Using History

A TCP-like window-based congestion control scheme increases the congestion window as a result of the
successful transmission of a window of packets, and decreases the congestion window upon the detection
of a packet loss event. We call such a sequence of window increments followed by one window decrement
a congestion epoch. A congestion control scheme de�nes one control rule for window increase, and another

1In feedback control systems, of which congestion control is an example, there is inevitable tension between stability and
responsiveness. In our context, we use smoothness as a quality measure of stability, and both aggressiveness and responsiveness
as measures of responsiveness. Note, in the control-theory literature, responsiveness usually means how fast the system reaches
a target state (rise time), whereas we use aggressiveness and responsiveness to distinguish between how fast the window is
increased and decreased, respectively, to reach a target window size.

2

rule for window decrease. AIMD uses the following control rules:

Increase : wt+1 wt + �; � > 0;

Decrease : wt wt � �wt; 0 < � < 1:

where wt is the window size at time t (in RTTs). That is, for AIMD, the window size is increased by a
constant when a window of packets are transmitted successfully, and it is decreased by a constant factor
instantaneously when a packet loss event is detected. 2 Binomial controls [4] generalize AIMD and use the
following control rules:

Increase : wt+1 wt + �=wk
t ; � > 0;

Decrease : wt wt � �wl
t; 0 < � < 1:

That is, binomial controls generalize additive-increase by increasing inversely proportional to a power k of
the current window, and generalize multiplicative-decrease by decreasing proportional to a power l of the
current window.

We say that AIMD and binomial controls are memory-less since the increase and decrease rules use only
the current window size wt and constants (�, �, k, and l). Neither of them utilizes history information.
We argue that the window size at the end of the last congestion epoch is useful, not only as an indicator
of the current congestion level of the network, but also as a good predictor of the congestion state for
the next epoch. Thus, our proposed scheme maintains such a state variable wmax, which is updated at
the end of each congestion epoch. In addition, let w0 denote the window size after the decrease. Given a
decrease rule, w0 can be obtained from wmax, and vice versa. For example, for AIMD, w0 = (1� �)wmax.
Henceforth, for clarity, we use both wmax and w0.

3

Such history information can then be used to improve the transient behavior of the control. We propose
to adopt the following window increase function:

w(t) = w0 + ctu; u; c > 0; (1)

where w(t) is the continuous approximation of the window size at time t (in RTTs) elapsed since the
window started to increase. By de�nition, w0 = w(0). This window increase function is equivalent to the
following window increase rule: 4

wt+1 wt + �=(wt � w0)
k; � > 0; (2)

2We use AIMD(�; �) to refer to the general AIMD with additive constant � and multiplicative decrease parameter �. The
term TCP AIMD refers to AIMD(1; 0:5) or standard TCP. For simplicity, we also use AIMD for the general case.

3When the slow-start phase of TCP ends and the congestion avoidance phase starts, we have the �rst value of w0, i.e., the
current window size. Then the �rst value of wmax is obtained.

4Equivalence of window increase function (1) and window increase rule (2):
Using linear interpolation and continuous approximation, from (2), we have

dw(t)

dt
=

�

(w(t)� w0)k
:

This gives us
(w(t)� w0)

k
dw(t) = �dt;

and then by integrating both sides, we have
(w(t)� w0)

k+1

k + 1
= �t+ C;

Notice that the constant C = 0 since when t = 0, w(t) = w0. We then rewrite it as (1):

w(t) = w0 + ((k + 1)�t)1=(k+1):

3

W
in

do
w

 S
iz

e

Time

(a) k < 0, u > 1

W
in

do
w

 S
iz

e

Time

(b) k = 0, u = 1

W
in

do
w

 S
iz

e

Time

(c) k > 0, 0 < u < 1

Figure 1: Di�erent increase patterns of congestion window.

k

l

1

−1 1

−1

Additive
Decrease

Multiplicative
Increase

Additive
Increase

Multiplicative
Decrease

AIAD

SIMD AIMD

0−0.5

 =1/(+1)−1l k

l k =1/(+1)

Figure 2: A spectrum of TCP-friendly congestion controls using history.

where k > �1 and � is independent of t. In particular, u = 1=(k + 1) and c = ((k + 1)�)u.
We are interested in congestion control schemes that have various window size increase patterns (dif-

ferent u's, or equivalently, di�erent k's). Consider three cases, as shown in Figure 1. First, if �1 < k < 0,
the congestion window increases super-linearly. The window is increased cautiously just after the detection
of packet loss, and the increase becomes more and more aggressive when no more loss occurs. Second, if
k = 0, the window increases linearly, i.e., additive increase. The aggressiveness does not change with time.
Third, if k > 0, the window increases sub-linearly. The connection approaches the previously probed win-
dow size fast, but it becomes less aggressive beyond that. These various schemes possess di�erent degrees
of aggressiveness, and may satisfy di�erent applications. For example, super-linear increase can support
applications that need to quickly acquire bandwidth as it becomes available.

Therefore, we consider the following control rules:

Increase : wt+1 wt + �=(wt � w0)
k; � > 0;

Decrease : wt wt � �wl
t; 0 < � < 1: (3)

Here we use the same decrease rule as binomial controls. It generalizes the multiplicative decrease of AIMD
control. For the increase rule, we consider k > �1, since otherwise the window size increases exponentially
or faster and we consider it unstable. For the decrease rule, we consider l � 1, since otherwise (wt � �wl

t)
can be negative when wt is large enough.

We illustrate this family of controls as the (k; l) space in Figure 2. In [12], we show that the spectrum
inside the shaded area satis�es the convergence-to-fairness property under the synchronized feedback model
used by Chiu and Jain [13].

Before further elaboration, we state several main properties of our controls. First, we show that our
controls can be TCP-friendly by appropriately de�ning � as a function of the constant � and the state

4

(k; l) Increase rule Decrease rule Increase function

k = 0; l = 1, AIMD wt+1 wt +
3�
2

wt wt � �wt w(t) = w0 +
3�
2
t

k = � 1
3 ; l = 1 wt+1 wt + 1:89�

2

3 (wt�w0

wmax
)1=3 wt wt � �wt w(t) = w0 +

1:4�p
wmax

t1:5

k = � 1
2 ; l = 1, SIMD wt+1 wt +

3
p
�

p
2

q
wt�w0

wmax
wt wt � �wt w(t) = w0 +

9�
8wmax

t2

k = 0; l = 1
2

wt+1 wt +
3�

2
p
wmax

wt wt � �
p
wt w(t) = w0 +

3�
2
p
wmax

t

k = 0; l = 0, AIAD wt+1 wt +
3�

2wmax
wt wt � � w(t) = w0 +

3�
2wmax

t

Table 1: Several special cases of our TCP-friendly congestion controls using history.

variable wmax. We elaborate on this in Section 3. Second, our controls enable di�erent tradeo�s among
smoothness, aggressiveness, and responsiveness. We elaborate on this in Section 4. Third, our controls
can have better convergence behavior as we show in Section 5 using SIMD [10] as an instance. For SIMD,
k = �0:5 and l = 1.

We need to point out that our controls are radically di�erent from binomial controls [4]. Binomial
controls generalize AIMD, but they are still in the memory-less space. Therefore, binomial controls cannot
be simply situated on the spectrum in Figure 2.

3 TCP-Friendliness

We show that our control scheme using the control rules in (3) can be TCP-friendly. The notion of TCP-
friendliness refers to the relationship between throughput and packet loss rate. We consider a random loss
model, where the losses are Bernoulli trials; packets are dropped uniformly with a �xed probability.

In Appendix A, assuming such a random loss model, and without considering the e�ect of TCP's
timeout mechanisms, we explain the use of the following de�nition of � to make our congestion control
scheme TCP-friendly:

� =
3

2(k + 1)(1� 1
k+2�w

l�1
max)

(
�

�(1
k+1 + 1)

)k+1wkl+l�1
max ; (4)

where the Gamma function �(.) is a constant. According to Section 2, c in Equation (1) is de�ned as a
function of � and we have:

c = (
3

2(1� 1
k+2�w

l�1
max)

)
1

k+1
�

�(1
k+1 + 1)

w
l� 1

k+1
max : (5)

When the window size variation is small, i.e., the window decrease is small, �wl
max � wmax, we can

simplify � and c as:

� � 3

2(k + 1)
(

�

�(1
k+1 + 1)

)k+1wkl+l�1
max : (6)

c � (
3

2
)

1
k+1

�

�(1
k+1 + 1)

w
l� 1

k+1
max : (7)

That is, � is a constant factor of wkl+l�1
max , and c is a constant factor of w

l� 1
k+1

max .
Table 1 gives several special cases. We give their control rules and the window increase functions using,

for simplicity, the de�nition of � in Equation (6) and the de�nition of c in Equation (7). When k = 0 and

5

l = 1, from (4) we have �AIMD = 3�=(2��). If � � 1, �AIMD � 3�=2. It degenerates to the memory-less
TCP-friendly AIMD control [1, 3]. When k = �0:5 and l = 1,

�SIMD =
3
p
�

(1� 2�
3)
p
2wmax

: (8)

If � � 1, �SIMD � 3
p
�p

2wmax
. In this case, the window size decreases multiplicatively upon the detection

of packet loss, but increases in proportion to the square of the time elapsed since the detection of the last
loss event (cf. Table 1). We call this control SIMD (Square-Increase/Multiplicative-Decrease).

Another way of illustrating TCP-friendliness is to compare our controls with binomial controls. In [4],
the authors show that binomial controls are TCP-friendly. We observe that for every instance of the
binomial controls, there is a corresponding point along the line where k = 0 and 0 � l � 1 in Figure 2
which roughly gives the same control rules. For example, the point k = l = 0 (marked as \AIAD" in
Figure 2) corresponds to the special case IIAD (Inverse-Increase/Additive-Decrease) of binomial controls.
IIAD has the following control rules:

Increase : wt+1 wt +
3�
2wt

;

Decrease : wt wt � �:

The only di�erence between IIAD and our AIAD is in the window increase factor: in IIAD, the factor is
inversely proportional to the current window size wt, while in AIAD, the factor is a constant whose value
is inversely proportional to wmax.

5 Notice that wmax records the maximum window size in the previous
congestion epoch, thus its value is proportional to the time average of wt if the TCP congestion window has
reached steady state. In other words, IIAD and AIAD controls are equivalent in steady state. However,
when there is a sudden increase in network bandwidth, AIAD's linear increase rule is more aggressive than
the IIAD's sub-linear increase rule.

The above observation applies to all instances of binomial controls, with only one exception at k =
0; l = 1, i.e. AIMD control, where our control algorithm degenerates precisely to general AIMD. However,
as shown earlier, for the whole shaded area in Figure 2, our controls can be adjusted to be TCP-friendly (cf.
equation (4)). This gives the needed
exibility to control the transient behavior. For example, as shown in
the next section, by exploiting the history information wmax, SIMD control is able to increase the window
super-linearly (more aggressively than AIMD) and shows much better transient behavior, without a�ecting
TCP-friendliness.

In this paper, due to space limitation, we only present results for SIMD, AIMD, and AIAD as instances
in the spectrum of Figure 2.

4 Tradeo�s among Smoothness, Aggressiveness, and Responsiveness

In this section, we consider important properties of congestion controls other than TCP-friendliness. These
are smoothness, aggressiveness, and responsiveness. Smoothness measures the variability in a connection's
window size over time. High variability is not desirable. Aggressiveness measures how fast a connec-
tion probes bandwidth as it becomes available by opening up its window. Higher aggressiveness implies
potentially higher utilization. Responsiveness measures how fast a connection decreases its window size
in response to increased congestion. Both aggressiveness and responsiveness are measures of transient
behavior.

5Unlike our history-based AIAD control, memory-less AIAD increases its window by an amount that is constant over all
congestion epochs. Memory-less AIAD controls have been shown not to converge [13].

6

Smoothness 1/Aggressiveness 1/Responsiveness

AIMD 0:41�
1��=2

m�1
�

2W
3

log(1��)
1
m

IIAD 0:41�
W��=2

(m2�1)W2

3�
W (1�1=m)

�

SIMD 0:73�
(1�2�=3)2

q
m�1
�

2
p
2W
3

log(1��)
1
m

AIAD 0:41�
W��=2

2(m�1)W2

3�
W (1�1=m)

�

Table 2: Smoothness, Aggressiveness, and Responsiveness comparisons of AIMD, IIAD, SIMD, and AIAD.

0

200

400

600

800

1000

1200

0.01 0.1

1/
A

gg
re

ss
iv

en
es

s
(R

T
T

s)

Smoothness(CoV)

IIAD
AIMD
SIMD

TCP AIMD
AIMD(1/5,1/8)

AIMD(1/10,1/16)
IIAD(1,2/3)
SIMD(1/16)

0

20

40

60

80

100

120

0.01 0.1

1/
R

es
po

ns
iv

en
es

s
(#

 lo
ss

 e
ve

nt
s)

Smoothness(CoV)

IIAD
SIMD
AIMD

TCP AIMD
AIMD(1/5,1/8)

AIMD(1/10,1/16)
IIAD(1,2/3)
SIMD(1/16)

(a) Aggressiveness vs Smoothness. (b) Responsiveness vs Smoothness.

Figure 3: Tradeo�s of smoothness, aggressiveness, and responsiveness. For (a), we assume available band-
width is doubled. For (b) we assume the window is reduced to half, i.e., m = 2. The initial average window
size, W , before bandwidth changes is 20.

Smoothness can be observed at di�erent time scales [1]. We consider short time scales since long-term
smoothness can be a�ected by other dynamics in the system. We de�ne smoothness as the variation of
the window size of a connection during one congestion epoch. In particular, we use the coeÆcient of
variation of window size in one congestion epoch as a measure of short-term smoothness. Note that the
coeÆcient of variation is not necessarily an accurate measure of smoothness, but it is adequate to give
insight into the tradeo�s. We de�ne aggressiveness as the inverse of the time needed for the connection to
increase the window size, in response to a step increase of available bandwidth [9]. That is, the available
bandwidth is increased by a factor of m. We de�ne responsiveness as the inverse of the number of loss
events required for the connection to decrease its window by a substantial amount, in response to a step
increase of congestion [9]. That is, a decrease of available bandwidth by a factor of m.

Table 2 gives the approximate expressions of smoothness, aggressiveness, and responsiveness for AIMD,
IIAD, SIMD, and AIAD controls. More details are given in [12]. Intuitively, the smoothness index is
proportional to the window decrease divided by the average window size. Aggressiveness is determined by
the window size increase function. Responsiveness is determined by the decrease rule.

Numerical results in Figure 3 show the tradeo�s among smoothness, aggressiveness, and responsiveness.
Results for AIAD are not shown here since they are similar to those of IIAD except that AIAD has
higher aggressiveness. Figure 3(a) shows the inverse of aggressiveness of AIMD, SIMD, and IIAD as the
coeÆcient of variation varies. Their special cases TCP, AIMD(1/5,1/8), AIMD(1/10,1/16), IIAD(1,2/3),
and SIMD(1/16) are also shown by points. The inverse of aggressiveness is computed as the number of
RTTs necessary to double the window size, i.e., m = 2. Figure 3(b) shows the inverse of responsiveness of
AIMD, IIAD, and SIMD as the coeÆcient of variation varies. The inverse of responsiveness is computed
assuming the target window size is half of the current window size, i.e., m = 2.

From this �gure, we can see that SIMD has much higher aggressiveness (fewer RTTs) than the others,

7

0

1000

2000

3000

4000

5000

6000

0.01 0.1

1/
A

gg
re

ss
iv

en
es

s
(R

T
T

s)

Smoothness(CoV)

IIAD
AIMD
SIMD

TCP AIMD
AIMD(1/5,1/8)

AIMD(1/10,1/16)
IIAD(1,2/3)
SIMD(1/16)

0

50

100

150

200

250

0.01 0.1

1/
R

es
po

ns
iv

en
es

s
(#

 lo
ss

 e
ve

nt
s)

Smoothness(CoV)

IIAD
SIMD
AIMD

TCP AIMD
AIMD(1/5,1/8)

AIMD(1/10,1/16)
IIAD(1,2/3)
SIMD(1/16)

(a) Aggressiveness vs Smoothness. (b) Responsiveness vs Smoothness.

Figure 4: Tradeo�s of smoothness, aggressiveness, and responsiveness. The con�gurations are the same as
those of Figure 3 except that here the bandwidth decrease or increase factor m = 5.

especially when high smoothness (low coeÆcient of variation) is needed. Meanwhile, SIMD has comparable
responsiveness index. In particular, SIMD shows up to order of magnitude better aggressiveness at less than
about 1.7 times lower responsiveness for about the same smoothness value. For example, we can predict
that AIMD(1/20,1/30), SIMD(1/30), and IIAD(1,2/3) have comparable smoothness when the average
window size is 20. However, SIMD(1/30) can react to a substantial increase of available bandwidth much
faster. The smoothness-aggressiveness relationship can also be inferred from Table 2. For both AIMD and
IIAD, aggressiveness varies in proportion to the coeÆcient of variation. For SIMD, aggressiveness varies
as the square root of the coeÆcient of variation. Thus, when the transmission rate is very smooth, SIMD
has much higher aggressiveness than AIMD and IIAD.

Figure 4 shows the same tradeo�s, except that we use a larger factor m = 5 for the sudden increase and
decrease of available bandwidth. It shows that the advantage of SIMD's aggressiveness is more pronounced.
We can also observe from Table 2 that, for SIMD, aggressiveness is inversely proportional to the square
root of m, and for AIMD and IIAD, aggressiveness is inversely proportional to m or even m2, respectively.
Therefore, larger m makes SIMD more favorable.

Remark: In the spectrum of controls in Figure 2, SIMD is the one whose aggressiveness grows the
fastest. SIMD has the best tradeo� between smoothness in steady state and aggressiveness during transient
periods. As k increases, the spectrum of controls have worse tradeo�s.

5 Convergence to Fairness and EÆciency

In this section, we �rst show the convergence of our SIMD instance. Then we show that SIMD has better
convergence behavior than AIMD.

We adopt the ideal synchronized feedback assumption [13]. To show that multiple users with syn-
chronized feedbacks using our control scheme converge to fairness, we use the vector space used by Chiu
and Jain [13] to view the system state transitions as a trajectory. For ease of presentation, we show a
two-user case. It is straightforward to apply the same technique to the multiple-user case to reach the
same conclusion.

As shown in Figure 5, any two-user resource allocation can be represented by a point X(x1; x2), where
xi is the resource allocation (normalized by total capacity) for the ith user, i = 1; 2. We de�ne the fairness
index as max(x1x2 ;

x2
x1
). If the fairness index is closer to unity, the resource allocation is more fair. The line

x1 = x2 is the \fairness line". The line x1 + x2 = 1 is the \eÆciency line". The goal of control schemes
is to bring the system to the intersection of the fairness line and the eÆciency line. When the system is

8

x1

x2

Efficiency Line

Fairness Line

X

X’

x1+x2=1

x1=x2

0

(a) AIMD trajectory

x1

x2

Efficiency Line

Fairness Line

X

X’
x1=x2

x1+x2=1

0

slope x1/x2

slope x2/x1

(b) SIMD trajectory

Figure 5: Convergence of AIMD and SIMD

T1

T
2

Efficiency Line

Fairness Line

W ,W1 2

δ δW + ,W +1 21 2

w1

w2

w = w1 2

w +w =W1 2

(a) Metrics De�nition

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

W
_2

W_1

AIMD is faster
SIMD is faster

(b) AIMD vs SIMD

Figure 6: Comparison of convergence speed

under-utilized, assuming x1 � x2 without loss of generality, AIMD increases the resource allocation of both
users by a constant. Figure 5(a) shows the trajectory to X 0 parallel to the fairness line. This movement
improves fairness, i.e., reduces the fairness index. Then both users use multiplicative decrease, which does
not change fairness. Hence, as the system evolves, AIMD brings the resource allocation point toward the
fairness line, �nally oscillating around the eÆciency line.

For SIMD control, we �rst observe Table 1. We can see that the window size of a connection increases
in proportion to 1

wmax
or 1=xi here for i = 1; 2. Thus, as shown in Figure 5(b), the increase trajectory

emanates from X(x1; x2) with slope x1
x2
. Indeed, at any point between the two lines emanating from the

origin with slopes x1
x2

and x2
x1
, the resource allocation X 0 is more fair than X as it reduces the value of

the fairness index. Therefore, the increase phase of SIMD improves fairness. Since like AIMD, SIMD uses
multiplicative decrease, the decrease phase of SIMD does not change fairness. Hence, SIMD converges to
fairness and eÆciency.

We also analytically compare the convergence time of SIMD, AIMD, and binomial control schemes. We
still assume synchronized feedback and use Figure 6(a) to illustrate the process of convergence. For ease
of analysis, we choose the variables to be the actual window sizes (w1,w2). We also divide the convergence
time into two parts: T1, the time it takes the control mechanism to bring an arbitrary initial point (W1,
W2), where W1 �W2 and W1 +W2 < W , close to the eÆciency line w1 +w2 =W , and T2, the time until
the di�erence between the two user windows stays within a certain small bound, i.e., jw1�w2j < �. T1 and
T2 are measured in round-trip times. We also denote the di�erence between the two user windows after
T1 as �. Due to space limitation, we only present the main results here in Table 3. The detailed analysis
can be found in [12].

9

Algorithm T1 (RTT) � T2 (RTT)

TCP W�W1�W2

2
W2 �W1

W
4
log1=2

�
�

AIMD (W�W1�W2)(2��)
6�

W2 �W1
(2��)W

6
log1��

�
�

IIAD 1
12�

((
(W2

2
�W2

1
)

W
)2 � 2(W 2

1 +W 2
2) +W 2)

W2

2
�W2

1

W
W
3
log1�2�=W

�
�

SIMD 2
3 (1�

2�
3)
q

2
�(1��)

q
W1W2(W�W1�W2)

W1+W2
(2� W

W1+W2
)(W2 �W1)

p
2W
3 log1�2�

�
�

Table 3: Performance measures on convergence to fairness and eÆciency

Description Value

Packet size 1000 bytes

Maximum window 128 packets

TCP version SACK

TCP timer granularity 0.1 seconds

RED queue limit Q 2.5 � B/W delay product

DropTail queue limit 1.5 � B/W delay product

RED parameters minth: 0.15Q, maxth: 0.5Q, wq:0.002
maxp:0.1, wait on, gentle on

Table 4: Network con�guration

We numerically solve the above equations for di�erent initial points. Figure 6(b) shows the regions
for which SIMD with � = 1=16 converges faster/slower (i.e., T1 + T2 is smaller/larger) than TCP-friendly
AIMD with � = 1=16 for � = 1 andW = 100. In most cases SIMD converges faster than AIMD. Numerical
results also show that IIAD with � = 1 and � = 2=3 is much slower than AIMD and SIMD in all cases.

6 Simulation Results

We use the ns simulator [11] to validate that with RED [14] queue management, our proposed controls, most
notably SIMD, are TCP-friendly and TCP-compatible. In addition, we compare our controls to standard
TCP [15], generalized AIMD [3], and IIAD [4], in terms of smoothness, responsiveness, and aggressiveness.
In most simulations, we also include AIAD. In addition, we investigate the way two homogeneous
ows
converge to their bandwidth fair share and show that our SIMD algorithm outperforms other algorithms.
Details about the implementation of SIMD in the ns simulator are described in Appendix B.

Unless explicitly speci�ed, in all of the experiments, RED is used as the queue management policy
at the bottleneck link. The bottleneck queue con�guration and other simulation parameters are listed in
Table 4.

The bottleneck queue size and RED queue parameters are tuned as recommended in [16]. The \gentle "
option of RED queue is turned on as recommended in [17]. We choose � = 1=16 for SIMD and AIMD (and
thus � � 1=10 for AIMD to ensure TCP-friendliness). For IIAD, � = 1 and � = 2=3. For AIAD, � = 2=3.
For ease of presentation, in the rest of this section, we will call these implementations by their family name,
e.g., AIMD for AIMD(1/10,1/16) when there is no confusion. We use SACK [18] for congestion detection.
We also obtained similar results for other mechanisms such as Reno and newReno. We assume no delayed
acknowledgments.

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.01 0.1 1
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

Loss Rate

SIMD(1/4)
SIMD(1/8)

SIMD(1/16)
AIMD(1/5,1/8)

Figure 7: TCP-Friendliness

6.1 TCP-Friendliness and TCP-Compatibility

6.1.1 TCP-Friendliness

We conduct the following experiment to test the TCP-friendliness of our SIMD control: A single
ow under
investigation is traveling through a single fat link with in�nite bandwidth and bu�er size. However, the link
drops an incoming packet uniformly with probability p. We vary the loss rate p and compare the normalized
long-term throughput of SIMD (with respect to standard TCP measured over 3000 RTT) for di�erent �
values and plot them in Figure 7. For comparison, we also plot the throughput of AIMD(1/5,1/8).

We notice that all of the curves have a dip when the loss rate is moderate. A close look at the following
TCP-friendly equation [19] can reveal one possible explanation of this abnormality.

�(p; �; �) � min(
Wmax

R
;

1

R
q

2�
�(2��)p+ T0min(1; 3

q
�(2��)

2� p)p(1 + 32p2)
)

When loss rate is low, TCP mainly stays in the congestion avoidance stage, and AIMD control dominates
the equation, while when loss rate is very high, TCP spends most of its time retransmitting packets, and the
exponential back-o� control dominates the equation. Since all controls studied in this paper use the same
timeout mechanism as standard TCP, and they carefully calibrate the values of their parameters during
congestion avoidance to match standard TCP, they can achieve comparable throughput as standard TCP
for very high and low loss rates. However, for the loss regime in between, it becomes hard, if not impossible,
to obtain � and � values that would approximate well both congestion avoidance and exponential backo�
components of the TCP-friendly equation [3].

Nevertheless, in the worst case with loss rate around 15%, SIMD(1/16), which is the worst among all
SIMD controls considered, can achieve at least 75% throughput as standard TCP, and performs much closer
to standard TCP than AIMD(1/5,1/8) 6. Given the fact that most parts of the Internet are experiencing
less than 5% loss rate [20], our control is TCP-friendly under these conditions.

6.1.2 TCP-Compatibility

We use the method described in [1] to test TCP-compatibility. n SIMD
ows and n standard TCP SACK

ows compete for bandwidth over a shared bottleneck link. There are also four background TCP
ows
transmitting packets in the opposite direction to introduce random ACK delays. We consider both RED

6The weakness of AIMD(�, �) with small � under intermediate loss conditions is also reported in [1]. The authors try to
compensate for the bandwidth loss by increasing the value of �. However, when loss rate is small (e.g. less than 3%), AIMD
with large � could achieve signi�cantly higher bandwidth than standard TCP and become less TCP-friendly. Therefore, we
maintain the theoretical � values throughout our simulations.

11

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s RED

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s RED

Figure 8: TCP competing with SIMD(1/16), RED with ECN

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s RED

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s RED, no ECN

Figure 9: TCP competing with SIMD(1/16), RED without ECN

and DropTail queues. Figure 8 and Figure 9 show the simulation results for RED queues, with and without
ECN bit set, respectively. In each case, results are shown for a bottleneck link bandwidth of 15Mbps and
60Mbps. The measured average round-trip delay is around 0.1 second. Each point in the graph represents
the throughput of an individual
ow in the last 60 seconds, and the dashed lines represent the average
throughput of SIMD and standard TCP
ows. In the lower graphs, we also plot the packet loss rate for
the RED without ECN case, and the rate of ECN early marking plus dropping due to queue over
ow for
the RED with ECN case.

As can be observed from the graphs, when the loss rate is low, SIMD achieves very close throughput
as standard TCP. When the loss rate exceeds a certain level, SIMD achieves a slightly lower average
throughput. This is partly due to the reason we illustrate in Figure 7. Another possible explanation is that
when severe congestion happens, SIMD can not compete well against standard TCP since compared to
TCP, SIMD opens its congestion window more conservatively at the beginning of each congestion epoch.
Therefore, when the time between two consecutive packet losses is short, the more aggressive TCP tends
to gain more throughput. However, in a reasonable loss regime with loss rate below 10%, SIMD shows

12

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s DropTail

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t TCP Flows

SIMD Flows
Mean TCP

Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s DropTail

Figure 10: TCP competing with SIMD(1/16), with DropTail

very impressive TCP-compatibility 7.
We also found that with DropTail queue management, as shown in Figure 10, SIMD can still be

TCP-friendly and TCP-compatible. The di�erence, compared to the RED queue experiment, is that the
variance becomes larger and SIMD now gets slightly less share of bandwidth. Note that the assumption of
randomized packet losses made in our analysis does not apply to DropTail. Under DropTail, packet losses
are more correlated. We conjecture that because the round-trip times of connections are randomized in
the simulation, the chance of having synchronized packet arrivals is small, and the side e�ect of a DropTail
queue (correlated drops for each
ow) is thus not so signi�cant.

We also report corresponding results in Figure 11 for the case of AIAD competing for bandwidth with
TCP under the same simulation setup. The conclusion is similar: AIAD shows TCP-compatibility across
a wide range of simulation parameters.

6.2 Smoothness, Responsiveness and Aggressiveness

6.2.1 Smoothness

As revealed by the study in [1], the long-term smoothness of traÆc is mainly determined by packet loss
patterns and it tends to follow the same distribution at large time-scales (more than 100 RTT's), regardless
of which congestion control is used. We thus focus our simulation on short-term smoothness and use
the simulation code contributed by [1] to study the traÆc generated by the congestion controls under
investigation. To this end, we let n such
ows compete for a bottleneck link (with capacity C) with another
n standard TCP
ows. There are also some TCP
ows traversing in the opposite direction to introduce
random ACK delays. In Figure 12 we show the case for n = 16 and C = 60Mbps, which corresponds
to roughly 0.3% packet drop rate. The bottleneck queue strategy is RED with ECN enabled. Figure 13
shows the same setup with ECN turned o�. Each graph shows one
ow's throughput on the congested
link during the time interval between 250 to 270 seconds of a 500-second simulation. The throughput is
averaged over 0.2-second intervals, which correspond to twice a typical round-trip time for this simulation.
As in [5], we also plot the time at which a packet is marked (or dropped in Figure 13) at the bottom of
each curve.

We can observe from the graphs that all four controls AIMD, IIAD, SIMD, and AIAD have roughly

7Note that in case of 60Mbps link and less than four
ows, the length of the measurement period (60 seconds) is too short
compared to the length of each congestion epoch (more than 40 seconds), thus the variance of the results appears to be large.

13

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
AIAD Flows

Mean TCP
Mean AIAD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of AIAD Flows,
15Mb/s DropTail

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
AIAD Flows

Mean TCP
Mean AIAD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of AIAD Flows,
60Mb/s DropTail

Figure 11: TCP competing with AIAD(2/3), with DropTail

Throughput
Marked Packet

AIMD 1
AIMD 2

AIMD 3
AIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(a) AIMD(1/10,1/16) with TCP

Throughput
Marked Packet

IIAD 1
IIAD 2

IIAD 3
IIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

IIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(b) IIAD with TCP

Throughput
Marked Packet

SIMD 1
SIMD 2

SIMD 3
SIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

SIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(c) SIMD(1/16) with TCP

Throughput
Marked Packet

AIAD 1
AIAD 2

AIAD 3
AIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(d) AIAD(2/3) with TCP

Figure 12: TraÆc smoothness, 16 + 16
ows, 60Mbps link, RED with ECN

14

Throughput
Dropped Packet

AIMD 1
AIMD 2

AIMD 3
AIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(a) AIMD(1/10,1/16) with TCP

Throughput
Dropped Packet

IIAD 1
IIAD 2

IIAD 3
IIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

IIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(b) IIAD with TCP

Throughput
Dropped Packet

SIMD 1
SIMD 2

SIMD 3
SIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

SIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(c) SIMD(1/16) with TCP

Throughput
Dropped Packet

AIAD 1
AIAD 2

AIAD 3
AIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

20

40

60

80

100

120

140

Throughput (KB/0.2sec)

(d) AIAD(2/3) with TCP

Figure 13: TraÆc smoothness, 16 + 16
ows, 60Mbps link, RED without ECN

the same scale of short-term burstiness with SIMD having a little larger variation. This agrees with our
analysis (cf. Section 4). In particular, by plugging in equations of Table 2 the values we choose in our
simulation of � = 1=16 for AIMD and SIMD, and � = 2=3 for IIAD and AIAD, and since the average
window size in this simulation is about 23 packets, or W � 23, we �nd that the order of the coeÆcients
of variation of these controls (from low to high) is: IIAD (and AIAD), AIMD, and SIMD. Our experiment
results show that this is indeed the case.

We also decrease C to 15 Mbps (thus increase the congestion level to nearly 5% loss rate) in another
experiment set. We show the results in Figure 14 with ECN turned o�.

We observe that the smoothness of all four controls becomes worse when the network becomes more
congested. This is again due to the self-clocking mechanism of window-based congestion control. With
smaller average congestion window, the chance that a retransmission timeout happens becomes higher,
so does the chance that the congestion window reduces to 1. We thus can observe abrupt reduction of
sending rate more frequently. Although, in general, AIMD, IIAD, AIAD, and SIMD still exhibit smoother
transmission than TCP, it is not easy for window-based schemes to achieve high smoothness. This is
probably a common weakness of window-based schemes. On the contrary, equation-based schemes [5] can
achieve high smoothness even when the loss rate is high.

We also observe that the throughput of AIMD degrades signi�cantly. IIAD and AIAD also get less
than their fair share. This is in part due to the reason mentioned in Section 6.1.1, that is, AIMD becomes
less competitive than standard TCP in this loss regime. The other reason, we conjecture, is that AIMD
control does not give any preference to the sender with smaller congestion window (cf. Section 6.3). Thus,
when no loss happens, TCP increases its congestion window more aggressively and gets higher throughput
than AIMD, which eventually gives up the fair share it deserves. SIMD overcomes this problem and can
achieve throughput close to TCP in this scenario.

15

Throughput
Dropped Packet

AIMD 1
AIMD 2

AIMD 3
AIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

10

20

30

40

50

60

Throughput (KB/0.2sec)

(a) AIMD(1/10,1/16) with TCP

Throughput
Dropped Packet

IIAD 1
IIAD 2

IIAD 3
IIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

IIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

10

20

30

40

50

60

Throughput (KB/0.2sec)

(b) IIAD with TCP

Throughput
Dropped Packet

SIMD 1
SIMD 2

SIMD 3
SIMD 4

TCP 1
TCP 2

TCP 3
TCP 4

SIMD vs TCP flow
250

255

260

265

270

Time (sec)

0

10

20

30

40

50

60

Throughput (KB/0.2sec)

(c) SIMD(1/16) with TCP

Throughput
Dropped Packet

AIAD 1
AIAD 2

AIAD 3
AIAD 4

TCP 1
TCP 2

TCP 3
TCP 4

AIAD vs TCP flow
250

255

260

265

270

Time (sec)

0

10

20

30

40

50

60

Throughput (KB/0.2sec)

(d) AIAD(2/3) with TCP

Figure 14: TraÆc smoothness, 16 + 16
ows, 15Mbps link, RED without ECN

6.2.2 Impulse Response

To better illustrate the aggressiveness and responsiveness properties of di�erent controls, we now study the
behavior of di�erent controls responding to impulse disturbance from a periodical On/O� constant-bit-rate
(CBR)
ow. 8 The model is similar to the \square-wave" model used in the simulation study of [21]. In the
experiment, we let the CBR
ow alternate between On and O� state, each of which lasts for ton and toff ,
respectively. The sending rate of the CBR
ow during the active period is set to
 times C, the capacity
of the bottleneck link. We intend to see the e�ect of such bandwidth oscillation on the transmission of
a long TCP
ow using the control under study. The results reported here are for C = 1:5Mbps, average
end-to-end RTT (including queueing delay) = 100ms, ton = 30 seconds, toff = 30 seconds, and
 = 0:5.
Both
ows start around time 0 with some random disturbance. Figure 15 plots the congestion window
value of di�erent controls over time period [80:200].

We also prolong our simulation to repeat this impulse disturbance pattern and measure the average
aggressiveness and responsiveness according to our de�nitions in Section 4 and report these data in Table 5.
We choose the steady-state error to be one packet within the target window size, and the simulation results
are shown in the form of 95% con�dence intervals.

As expected, standard TCP is highly variable, IIAD and AIMD are the smoothest since the average
window size is larger than 10, at the expense of slow response to bandwidth increases. With similar
smoothness, SIMD is much more aggressive than AIMD, IIAD, and AIAD. In addition, AIAD is more

8To make the graphs more readable, we use error detection mechanisms of TCP newReno, instead of SACK, so that
di�erent controls detect and react to loss at about the same time, in response to duplicate acknowledgments. Using TCP
SACK does not qualitatively change the conclusion.

16

0

5

10

15

20

25

30

35

40

45

80 100 120 140 160 180 200

C
on

ge
st

io
n

W
in

do
w

Time (sec)

TCP
AIMD(1/10,1/16)

IIAD
SIMD(1/16)

AIAD

Figure 15: Impulse response to square-wave CBR
ow.

Algorithm 1/Aggressiveness (RTT) 1/Responsiveness (losses)
simulation analysis simulation analysis

TCP (12.8,14.1) 14.7 (1.54,1.63) 1

AIMD (108.1,110.7) 117.6 (3.85,5.19) 10.7

IIAD (172.8,176.0) 181.5 (4.20,5.82) 16.5

SIMD (31.6,34.6) 41.5 (4.21,5.47) 10.7

AIAD (103.3,107.9) 121.0 (3.73,4.81) 16.5

Table 5: Quantitative Measures

aggressive than IIAD. Notice the close match between the simulated measure of aggressiveness and the
analytical results.

Aggressiveness of a congestion control is directly related to how much bandwidth a
ow can get when
it is competing with other
ows. It has been shown in [21] that the set of slowly-responsive congestion
controls proposed so far all tend to receive signi�cantly less bandwidth than competing standard TCP
ows
in a highly dynamic network environment. However, since SIMD maintains good aggressiveness property,
the loss of bandwidth is relatively minor (cf. Figure 9).

We also notice that the responsiveness of a control is hard to measure due to the extreme way TCP
responds to burst of losses, which will occur when it sees sudden decrease of bandwidth. In this case,
all TCP
ows reduce their congestion window to one regardless of which congestion avoidance strategy is
used. However, we still show the measured responsiveness in Table 5 to provide a qualitative comparison.
Generally speaking, the smooth transmission of a slower responsive
ow comes at the cost of more packet
losses when available bandwidth is suddenly decreased.

6.3 Convergence to Fairness and EÆciency

In this section, we assume a homogeneous protocol environment, i.e., all
ows use the same algorithm for
congestion control. We then vary the network con�guration to study the convergence time of di�erent
algorithms.

We use the topology shown in Figure 16 to perform this experiment. In the beginning of the simulation,
there are c1 + 1 connections sharing link (b1, b2), 2 connections sharing link (b2, b3), c2 + 1 connections
between b3 and b4. Link bandwidths and delays are shown in the �gure. At time 400, all background
ows
terminate and only two
ows (s1-r1) and (s2-r2) stay to compete for the bottleneck link (b2,b3). We use
packet size of 500 bytes in these experiments.

17

b1 b2 b3 b4

s1 s2 r1 r2

c1 flows c2 flows

10Mbps,10ms x Mbps,10ms y Mbps,10ms

all access links 10Mbps,5ms

Figure 16: Simulation topology for convergence test

Algorithm Experiment 1 Experiment 2
W1 W2 T2 (RTT) W1 W2 T1 (RTT) � (pkts)

simu anal simu anal simu anal

TCP 6.1 99.6 68.0 88.7 8.8 13.8 55 43.7 5.8 6.0
AIMD 7.9 99.2 776 1217 12.7 31.0 349 342 18.6 18.3
IIAD 7.7 99.8 4232 6684 11.8 31.2 1284 1242 8.1 7.6
SIMD 6.6 96.3 218 852 10.2 33.2 90 85.1 13.6 12.3

Table 6: Quantitative measures on convergence time

6.3.1 Convergence to Fairness (W1 +W2 =W ,W1 < W2)

We create this scenario to study the convergence time to fairness given that the initial point (W1; W2) is
on the eÆciency line (w1+w2 =W). To create this setup, we let c1 = 15, c2 = 0, x = 6Mbps, y = 6Mbps.
So the bottleneck link for
ow (s2,r2) remains link (b2,b3), but for
ow (s1,r1), the bottleneck changes
from link (b3,b4) to (b2, b3) at time 400. We can also compute that: W � 110, W1 � 7, and W2 � 100.
Figure 17 plots the transient behavior of the congestion window of di�erent protocols.

0

20

40

60

80

100

120

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

TCP1
TCP2

(a) TCP

0
10
20
30
40
50
60
70
80
90

100
110

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

AIMD1
AIMD2

(b) AIMD(1/10,1/16)

0
10
20
30
40
50
60
70
80
90

100
110

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

IIAD1
IIAD2

(c) IIAD

0

20

40

60

80

100

120

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

SIMD1
SIMD2

(d) SIMD(1/16)

Figure 17: Two
ows converge to fair share of bandwidth

We observe that standard TCP has the highest convergence speed, and IIAD generates the smoothest
but least responsive traÆc. It is worth noticing that in this scenario, where signi�cant bandwidth change
happens, our proposed algorithm converges much faster than AIMD to the fair share of the bandwidth.

Table 6 gives the convergence time to fairness (T2). Here we use � = 10 packets (cf. Section 5). The

18

theoretical value is also given in the table for comparison. The following observations can be made from
the table.

First, the simulation results agree with the theoretical analysis in the ranking of various protocols
except that all measured convergence times are smaller than the corresponding theoretical values. This
is expected since our analysis is based on synchronized feedback assumption, and routers that do not
di�erentiate among
ows when dropping packets. In contrast, in the simulation, we use RED, so
ows
with larger window sizes would see more packet drops. In other words, RED helps the convergence speed
to fairness.

Second, SIMD bene�ts from RED much more than other schemes. The T2 value from simulations is
much smaller than the value obtained from analysis (shown in boldface). This is because RED allows
SIMD
ows with smaller windows to experience fewer packet losses, which gives them a better chance to
become more aggressive9. On the contrary, AIMD does not fully capitalize on the random loss property of
RED since its window increase rate does not change. As a result, SIMD converges to fairness much faster.

6.3.2 Convergence to EÆciency (W1 < W2 <
W
2)

To create such scenario, we let c1 = 11, c2 = 3, x = 6Mbps, y = 10Mbps. So initially the bottleneck link
for
ow (s1,r1) is (b1,b2), and for
ow (s2,r2) the bottleneck is (b3,b4). But at time 400, both of them
switch to link (b2, b3). Roughly, we have W � 110, W1 � 10, and W2 � 30. We can then study T1,
the convergence time to eÆciency of di�erent control schemes. Figure 18 plots the transient behavior of
di�erent protocols.

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

TCP1
TCP2

(a) TCP

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

AIMD1
AIMD2

(b) AIMD(1/10,1/16)

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

IIAD1
IIAD2

(c) IIAD

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

SIMD1
SIMD2

(d) SIMD(1/16)

Figure 18: Two
ows converge to fair share of bandwidth

The advantage of our SIMD algorithm is more pronounced in this scenario. TCP is still the fastest
responding protocol, but still at the expense of high variability in steady state. In addition, general AIMD
su�ers from the problem of convergence eÆciency, i.e, all
ows have the same window increments, so before
packet loss happens, they increase their congestion windows at the same rate and thus do not eÆciently
converge to the fair share. On the contrary, our SIMD algorithm allows the two competing
ows to quickly
transit to the fair steady state, since the
ow with smaller window grows more aggressive than the one
with larger window. IIAD takes a much longer time to converge due to its inherent weak aggressiveness
(sub-linear increase).

9Recall that the congestion window size of a SIMD connection increases in proportion to 1
wmax

.

19

We also give convergence time to eÆciency (T1) in Table 6. Analytical results closely match the
simulation results.

7 Related Work

The earliest congestion controls known are Jacobson's TCP Reno [15] and Ramakrishnan and Jain's DECbit
scheme [22]. To provide smoother transmission rate than that given by TCP, several TCP-like window-
based congestion control mechanisms have been proposed, including the general AIMD [1, 3] and TEAR [2].
These mechanisms use a moderate window decrease parameter to reduce rate variability, meanwhile use a
matching window increase parameter to satisfy TCP-friendliness.

Non-linear control was initially considered not robust and not suitable for practical purposes [13]. On
the contrary, Bansal and Balakrishnan [4] proposed binomial controls that interact well with TCP. Binomial
controls are memory-less in that they use only the current window size in their control rules. Our controls
are fundamentally di�erent from memory-less binomial controls. To our knowledge, our proposed scheme
presents the �rst set of window-based TCP-friendly congestion controls that use history information in
their control rules. By doing so, our controls improve transient behavior without sacri�cing smoothness in
steady state.

Another approach to provide smoother transmission rate is equation-based congestion controls [5, 6, 7],
�rst proposed in [23]. In these schemes, the end-systems measure the packet loss rate and round-trip
time, and use the TCP-friendly equation [19] to compute the transmission rate. Two comparisons [1, 9]
of equation-based and window-based congestion controls have shown that equation-based schemes and
window-based AIMD share similar transient behavior but equation-based schemes provide higher smooth-
ness. However, the aggressiveness of equation-based schemes is limited by the nature of rate-based control,
which lacks a self-clocking mechanism for overload protection as in window-based control. In [21], Bansal
et al: integrate self-clocking into the equation-based control to enhance its safety in deployment. They also
compared such enhanced control with other slowly-responsive but smooth congestion control schemes such
as binomial controls. Their simulation results show that all schemes become less competitive to standard
TCP in a highly dynamic environment. They also have the problem of converging slowly to fairness in case
of sudden increase/decrease of available bandwidth. Notably, equation-based schemes use more history
information up to eight congestion epochs [5]. Therefore, our work is a step toward enhancing transient
measures like aggressiveness by exploring the design space between window-based memory-less control
schemes and equation-based schemes that make use of longer history.

Much of the literature has focused on the modeling of TCP congestion control [24, 25, 26, 27, 28, 19, 29].
Ott et al: showed that if packet losses are independent with small probability p, the average window size
and long-term throughput are of the order of 1=

p
p. Lakshman et al: [26] studied the properties of TCP in

a regime where the bandwidth-delay product is high and losses are random. In [27], Mathis et al: studied
the relationship between TCP throughput and packet loss rate when TCP is in congestion avoidance mode
and came up with the well-known TCP-friendly equation. Padhye et al: [19] extended this method and
used a stochastic model that also captures the e�ect of TCP's timeout mechanism on throughput. Altman
et al: [24] analyze TCP throughput under a more general loss process which is assumed to be stationary.
The model thus can account for any correlation and inter-loss time distributions. Recently, Low et al: [29]
presented a duality model of TCP Vegas congestion control mechanism [30].

8 Conclusions

We proposed a spectrum of TCP-like window-based congestion controls. Unlike memory-less controls such
as AIMD and binomial controls, our controls utilize history information. They are TCP-friendly and
TCP-compatible under RED queue management. They possess di�erent smoothness, aggressiveness, and

20

responsiveness tradeo�s. Thus instances from our spectrum can be chosen as the transport schemes of
various applications, for example, streaming applications on the Internet which are required to be TCP-
friendly and need smoothness of transmission rates. We conducted extensive simulations using the ns
simulator. In particular, we presented simulation results of SIMD, AIMD, and AIAD as special instances.
Analysis and simulation were used to demonstrate the TCP-friendliness and TCP-compatibility of our
controls, the possible tradeo�s among smoothness, aggressiveness, and responsiveness, as well as better
convergence behavior of our SIMD instance. The code for our ns implementations and the simulation
scripts used for this paper are available on-line [31].

To summarize, most encouragingly, in a new design space where control rules use history information,
window-based congestion control mechanisms can be TCP-friendly, and still provide smoothness as well
as better transient behavior. They can solve the problem raised by slowly-responsive congestion controls.
Given that equation-based congestion control schemes use longer history, we believe comparisons between
equation-based schemes and our scheme remain an interesting future work.

References

[1] Sally Floyd, Mark Handley, and Jitendra Padhye, \A comparison of equation-based and AIMD
congestion control. http://www.aciri.org/
oyd/papers.html," May 2000.

[2] Injong Rhee, Volkan Ozdemir, and Yung Yi, \TEAR: TCP Emulation At Receivers {
ow control
for multimedia streaming," Tech. Rep., Department of Computer Science, North Carolina State
University, April 2000.

[3] Y. Richard Yang and Simon S. Lam, \General AIMD congestion control," in Proceedings of ICNP,
November 2000.

[4] Deepak Bansal and Hari Balakrishnan, \Binomial congestion control algorithms," in Proceedings of
INFOCOM, April 2001.

[5] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer, \Equation-based congestion control
for unicast applications," in Proceedings of SIGCOMM, August 2000.

[6] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, \A model based TCP-friendly rate control protocol,"
in Proceedings of NOSSDAV, June 1999.

[7] Wai-Tian Tan and Avideh Zakhor, \Real-time Internet video using error resilient scalable compression
and TCP-friendly transport protocol," IEEE Transactions on Multimedia, vol. 1(2), pp. 172{186, June
1999.

[8] Sally Floyd and Kevin Fall, \Promoting the use of end-to-end congestion control in the Internet,"
IEEE/ACM Transactions on Networking, vol. 7(4), pp. 458{472, August 1999.

[9] Y. Richard Yang, Min Sik Kim, and Simon S. Lam, \Transient behavior of TCP-friendly congestion
control protocols," in Proceedings of INFOCOM, April 2001.

[10] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, \TCP-friendly SIMD congestion control
and its convergence behavior," in Proceedings of ICNP, November 2001.

[11] E. Amir et al, \UCB/LBNL/VINT Network Simulator - ns (version 2)," Available at
http://http://www.isi.edu/nsnam/ns/.

[12] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, \A spectrum of TCP-friendly window-
based congestion control algorithms," Tech. Rep. BU-CS-2001-015, Computer Science Department,
Boston University, July 2001, Available at http://www.cs.bu.edu/techreports/2001-015-spectrum-
tcp-friendly.ps.Z.

21

[13] Dah-Ming Chiu and Raj Jain, \Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks," Computer Networks and ISDN Systems, vol. 17, pp. 1{14, 1989.

[14] Sally Floyd and Van Jacobson, \Random early detection gateways for congestion avoidance,"
IEEE/ACM Transactions on Networking, vol. 1(4), pp. 393{417, August 1993.

[15] Van Jacobson, \Congestion avoidance and control," in Proceedings of SIGCOMM, August 1988.

[16] M. Christiansen, K. Je�ay, D. Ott, and F.D. Smith, \Tuning RED for Web TraÆc," in Proceedings
SIGCOMM, Stockholm, Sweden, Aug.-Sep. 2000.

[17] Sally Floyd, \Recommendation on using the \gentle " variant of RED,"
http://www.aciri.org/
oyd/red/gentle.html, March 2000.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, \TCP Selective Acknowledgement Options,"
Internet RFC 2018, April 1996.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, \Modeling TCP throughput: A simple model and
its empirical validation," in Proceedings of SIGCOMM, 1998.

[20] Cooperative Association for Internet Data Analysis, \The CAIDA Website," http://www.caida.org.

[21] Deepak Bansal, Hari Balakrishnan, and Sally Floyd, \Dynamic behavior of slowly-responsive conges-
tion control algorithms," in Proceedings of SIGCOMM, August 2001.

[22] K. Ramakrishnan and R. Jain, \Congestion avoidance in computer networks with a connectionless
network layer: Part IV: A selective binary feedback scheme for general topologies," Tech. Rep., DEC,
August 1987.

[23] J. Mahdavi and Sally Floyd, \TCP-friendly unicast rate-based
ow control. Note sent to end2end-
interest mailing list," 1997.

[24] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat, \A stochastic model of TCP/IP with
stationary random losses," in Proceedings of SIGCOMM, August 2000.

[25] Sally Floyd, \Connections with multiple congested gateways in packet-switched networks part 1:
One-way traÆc," Computer Communication Review, vol. 21(5), August 1991.

[26] T. V. Lakshman and Upamanyu Madhow, \The performance of TCP/IP for networks with high
bandwidth-delay products and random loss," IEEE/ACM Trans. on Networking, vol. 5(3), 1997.

[27] M. Mathis, J. Semske, J. Mahdavi, and T. Ott, \The macroscopic behavior of the TCP congestion
avoidance algorithms," Computer Communication Review, vol. 27(3), July 1997.

[28] Teunis J. Ott, J.H.B. Kemperman, and Matt Mathis, \The stationary behavior of ideal TCP conges-
tion avoidance. http://www.argreenhouse.com/papers/tjo," 1996.

[29] Steven H. Low, Larry Peterson, and Limin Wang, \Understanding TCP Vegas: A duality model," in
Proceedings of SIGMETRICS, June 2001.

[30] Lawrence S. Brakmo and Larry L.Peterson, \TCP Vegas: end to end congestion avoidance on a global
Internet," IEEE Journal on Selected Areas in Communications, vol. 13(8), October 1995.

[31] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, \Simulations for Stateful TCP Con-
gestion Control," Available at http://csr.bu.edu/simd/sims.html.

22

Appendix

A TCP-friendliness of Our Control Scheme

-Time

Wi Wi+1

@
@
@
@@

@
@
@

@
@
@
@

@
@
@
@
@

@
@
@
@
@@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@

@
@
@
@@

@
@
@@

@
@
@

@
@
@@

w(t) =Wi � �W l
i + ctu

A
AU

Xi packets

Figure 19: Window increases with time, and decreases on packet losses.

This appendix explains our choice of � in Equation (4), or equivalently, the choice of c in Equation (5)
to make our control scheme TCP-friendly. We assume packet losses occur randomly with a �xed probability
p, and the window size variation is small. We do not consider the e�ect of TCP's timeout mechanisms.

Consider many congestion epochs where the window increases and decreases alternately in steady state,
as shown in Figure 19. Let Wi be the window size in the beginning of the ith epoch. In this epoch, the
window size is decreased to Wi � �W l

i , then increased by, say Ii packets, to Wi+1 before the �rst packet
loss happens. Assume Xi packets are sent successfully in this epoch. Before we consider random losses, it
will be helpful to consider periodic losses �rst.

Periodic Losses

Under a periodic loss model, the window size increase and decrease are deterministic. Both Wi and Xi

are constants, denoted as W and X, respectively. Ii is a constant equal to �W
l.

Given the window increase function (1) in Section 2, we can compute the duration (in RTTs) of each
congestion epoch:

T = (
�W l

c
)1=u;

and the number of packets in each epoch is given by:

X =

Z T

0
(W � �W l + ctu)dt

= (W � �W l)T +
c

u+ 1
T u+1:

For the congestion control to be TCP-friendly, the throughput and loss rate relationship must hold. With-
out considering the e�ect of TCP's timeout mechanisms, the relationship is � =

p
3=2=(R

p
p), where � is

the average throughput and R is the round-trip time. We have � = X
TR , i.e., average throughput is the

number of packets between two consecutive losses divided by the time (in seconds) between the two losses.
We also have p = 1

X . Plugging them into the (�; p) relationship, we get

c = (
3

2(1� 1
k+2�W

l�1)
)

1
k+1�W l� 1

k+1 : (9)

Notice that here wmax is equal toW , by de�nition. Therefore, under the periodic loss model, this de�nition
satis�es TCP-friendliness.

23

Random Losses

Now we consider a random loss model where the losses are Bernoulli trails: packets are dropped
uniformly with a �xed probability p. Consider the random process fXig where Xi is the number of packets
sent in the ith epoch up to but not including the �rst packet lost. Given the random loss model, the
probability that j packets are acknowledged successfully before the �rst loss is

P [Xi = j] = (1� p)jp; j = 0; 1; 2; :::

� pe�pj; p� 1

Let Ti denote the number of rounds between two consecutive loss events. Ti can be computed by Xi

divided by the average window size in the ith epoch wi, i.e., Ti = Xi=wi. Using (1), this results in a window
increase of size

Ii � c(
Xi

wi
)u:

Computing E[Ii] is diÆcult since Xi and wi are correlated. However, when the window size variation
is small enough, we ignore such correlation and use the time-average window size w to approximate wi.
Therefore,

Ii � c(
Xi

w
)u:

Then the expected window increase is:

E[Ii] =
1X
j=0

IiP [Xi = j]

�
1X
j=0

c(
j

w
)u(1� p)jp

�
Z 1
0

c(
x

w
)upe�pxdx

=
c�(u+ 1)

(pw)u
; (10)

Note that, under the periodic loss model, Xi = 1=p, and Ti = Xi=w = 1
pw . Therefore,

E[Ii] =
c

(pw)u
: (11)

For TCP-friendliness, we need to equalize the expected window increases E[Ii] under both loss models.
In steady state, the expected increase of the window size is equal to the expected decrease of the window
size. Under both loss models, the expected decreases of the window size are roughly equal, given the same
loss rate and roughly the same average window size. Therefore, we need only to equalize the expected
increases under both loss models. Noticing the only di�erence between (10) and (11) is a factor of �(u+1),
we only adjust the de�nition in (9). Thus, we get Equation (5), and equivalently, Equation (4).

Considering that the random loss model is obviously more realistic, we use the de�nition in Equation (4)
and (5) in this paper. In Section 6, we use simulations to validate the TCP-friendliness of SIMD under a
wide range of loss rate.

24

B Implementation

To implement our SIMD algorithm, we only need to change the way the congestion window is updated in
standard TCP according to Equation (3). However, since now we need to know the value of the congestion
window after the last packet loss, we add a special variable w0 to record this value. We then divide the
increment in each RTT by the current window size to approximate the window increment rule upon each
acknowledgment packet. For example, for SIMD(�), we have the following equation:

wnew = wold + �

p
wold � w0

wold
; (12)

where � is given in Equation (4). Note that w0 = wmax(1��), where wmax is the window size right before
the loss is detected.

There's one problem with this approximation rule: for the �rst acknowledgment, we have to use some
other equation since the current window size wt = w0 and that will make the increment to be zero. We
solved this problem by noticing that since w(t) = w0 + ct2, we have w(1)� w0 = c. Thus, upon receiving
the �rst ACK packet, we increment the window as:

wnew = w0 + c=w0 = w0 + (
�

2
)2=w0

The value of w0 is reset to the current congestion window size whenever the congestion window is
decreased. And the decrement rule is as follows:

wnew = wold � �wold

25

