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Computer Science 

Laplace Transforms 

§  Formally, Laplace transform for a signal f(t) 
is: 

§  The Power: Ability to study linear systems 
using algebraic equations 
§  Example: 
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Computer Science 

Laplace Transforms 

§  Basic translations 
§  Impulse signal  f(t)=δ(t) ⇔ F(s)=1 
§  Step signal   f(t)=a.1(t) ⇔ F(s)=a/s 
§  Ramp signal   f(t)=a•t ⇔ F(s)=a/s2 

§  Exp signal   f(t)=eat ⇔ F(s)=1/(s-a) 
§  Sinusoid signal f(t)=sin(at) ⇔ F(s)=a/(s2+a2) 

§  Composition rules 
§  Linearity  L[a f(t)+b g(t)] = a L[f(t)] + b L[g(t)] 
§  Differentiation L[df(t)/dt] = sF(s) – f(0) = sF(s) if f(0)=0 
§  Integration  L[∫f(τ)dτ] = F(s)/s  
§  Convolution ∫ −==
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Computer Science 

Vegas-like  Model 

§  Error: e(t)=Br - b(t) 
§  Model (differential equation): 
§  Controller C?  e(t) ⇒ w(t) 
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Computer Science 

Vegas-like  Model 

§  Error: e(t)=Br - b(t) 
§  Model (differential equation): 
§  Controller C?  e(t) ⇒ w(t) 
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dt
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w(t) =  C(Br - b(t))

Computer Science 

Block Diagram 

§  A pictorial tool to represent a system based 
on transfer functions and signal flows 

§  Represent a feedback control system 
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Computer Science 

Vegas-like Model 
Transfer Function & Block Diagram 

§  Inputs: reference Br(s) ; service rate D(s) 
§  Closed-loop system transfer functions 

§  Br(s) as input:  T1(s) = C(s)Go(s)/(1+C(s)Go(s)) 
§  D(s) as input:  T2(s) = -Go(s)/(1+C(s)Go(s)) 

§  Output: B(s)=T1(s)Br (s)+T2(s)D(s) 
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•    Buffer occupancy is modeled as a differential equation 
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Proportional Control 
Stability of Vegas-like Control 

§  Proportional Controller   
§                              ; C(s) = K 

§  Transfer functions 
§  Br(s) as input:  T1(s) = K/(s+K) 
§  D(s) as input:  T2(s) = -1/(s+K) 

§  Stability  
§  Pole =  -K    ⇔ System is stable for K > 0 
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Computer Science 

Vegas-like  Model (PI controller) 

§  Error: e(t)=Br - b(t) 
§  Model (differential equation): 
§  Controller C?  e(t) ⇒ w(t) 
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Computer Science 

Integral Control 
Stability of Vegas-like Control 

§  Integral Controller   
§                              ; C(s) = K/s 

§  Transfer functions 
§  Br(s) as input:  T1(s) = K/(s2+K) 
§  D(s) as input:  T2(s) = -s/(s2+K) 

§  Stability  
§  Poles =                     ⇔ System is critically stable 
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•    Buffer occupancy is modeled as a differential equation 
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Performance Specifications 
Stability 

§  A linear time-invariant system is stable if all 
poles of its transfer function are in the left-
hand side of the s-plane (∀pi, Re[pi]<0)  
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Computer Science 

Poles and Zeros 

§  The impulse response of a linear time-
invariant (LTI) system 
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Computer Science 

Time Response vs. Pole Location 

•  f(t) = ept, p = σ+jω	



Unstable Stable 

Undamped  Oscillation (critically stable) if Re = 0 and Im ! 0
Underdamped Response if Re <  0 and Im !   0
Overdamped Response if Re <  0 and Im =  0
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Design Goals 
Performance Specifications 

§  Stability 
§  Transient response 
§  Steady-state error 

Computer Science 

Performance Specifications 
Stability 

§  A LTI system is stable if all poles of its 
impulse transfer function (i.e., U(s)=1) are in 
the LHP (∀pi, Re[pi]<0)  
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Computer Science 
Performance Specifications 

Settling time 

Overshoot 

Controlled 
variable 

Time       

Reference 
 
 
 
 
 
 

±ε% 

Steady State Transient State 

Steady state error 

Rise time 
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Computer Science 
Example: Control & Response 

Control 
(MaxPackets/Users) 

Response 
(queue length) 

Good 

Slow 

Bad 

Useless 

Computer Science 

Performance Specifications 
Steady-state error 

§  Steady-state (tracking) error of a stable 
system   
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   r(t) is the reference input, y(t) is the system output. 
 

•    How accurately can a system achieve the desired state? 
•    Final value theorem: 
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Performance Specifications 
Steady-state error 
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Computer Science 

Proportional Control 
Stability of Vegas-like Control 

§  Proportional Controller   
§                              ; C(s) = K 

§  Transfer functions 
§  Br(s) as input:  T1(s) = K/(s+K) 
§  D(s) as input:  T2(s) = -1/(s+K) 

§  Stability  
§  Pole =  -K    ⇔ System is stable for K > 0 

§  Steady-state error 
§  For step inputs, steady-state error = – D/K 
§  Steady-state error decreases as K increases 
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Integral Control 
Stability of Vegas-like Control 

§  Integral Controller   
§                              ; C(s) = K/s 

§  Transfer functions 
§  Br(s) as input:  T1(s) = K/(s2+K) 
§  D(s) as input:  T2(s) = -s/(s2+K) 

§  Stability  
§  Poles =                     ⇔ System is critically stable 

§  Steady-state error 
§  For step inputs, steady-state error = zero 
§  Steady-state oscillation decreases as K decreases, but  also rise time 

increases è tradeoff between transient performance and steady-state 
performance! 
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