Discrete-Event Simulation

A. Udaya Shankar

Department of Computer Science
University of Maryland
College Park, Maryland 20742

January, 1991

1. Introduction

Discrete-event simulation is a powerful computing technique for understanding the behavior of systems. By a
system, we mean a collection of entities (e.g., people and machines) that interact over time. The particular nature of
the system and the properties we wish to understand can vary. Here are three examples:

« A natural scientist may be interested in a system of wolves and sheep, where the number of wolves changes
with a constant birth rate and a death rate that is inversely proportional to the number of sheep, and the number
of sheep changes with a constant birth rate and a death rate that is directly proportional to the number of
wolves. The scientist would like to know the following: Do the number of wolves and the number of sheep sta-
bilize in the long run, and if so to what values? Or do they vary cyclically, and if so with what period and
phase?

» A computer scientist may be interested in a system of jobs that circulate in a network of servers (e.g., CPU’s
and 1/O devices). The computer scientist would like to know whether a particular server is a “bottleneck”, i.e.,
in the long run, is that server always busy while the other servers are mostly idle.

« A classical system example is a queueing system with a single server. Here, customers arrive with certain ser-
vice requirements, get served in some order, say first-come-first-served, and depart when their service is com-
pleted. Note that a customer who arrives when the server is busy has to wait (in a queue). For this system, we
would like to determine the average waiting time for customers, the average number of customers in the sys-
tem, the fraction of time the server is busy, etc.

In general, to determine whether a system satisfies a property, we have to come up with a mathematical model
of the system. In discrete-event simulation, the models are restricted to sodismlletd-event models. Here, a set
of system statesis specified for the system, and the evolution of the system is viewed as a sequence of the form:

< So» (e()’ tO)’ S1, (el! tl)! Sp, >

where thes’'s are system states, thegs are system events, and tte are nonnegative numbers representing event
occurrence times. Informally, the @te sequence means that the system started, say at time 0, i stiade event

€, occurred at timé, taking the system to stasg; then evente; occurred at time; taking the system to stasg;

and so on. Each event occurrence is assumed to take zero timé;'sTdre required to be nondecreasing, i.e.,

t; < t;44 for everyi. (We cannot insist thdf < t;;; because it is the case in discrete-event models that two unrelated
events can occur at the same time. However, in the discrete-event models that we shall consider, there are at most a
finite number of transitions over any finite time interval.)

Given the evolution of a system, we can determine its properties (e.g., does it reach steady state, is it cyclic,
etc.) and evaluate approprigterformance measures (e.g., the steady state values, the cycle period, etc.). Thus, our
objective is an efficient method to generate evolutions and evaluate properties and performance measures.

In general, there is a set of system parameters, referrednjoubparameters, that determines the evolution of
the system, and hence the properties and performance measures. For example, the input parameters to the queueing
system are the customer service requirements and arrival times. Typically, we want to describe the input parameters
of a systenmstochastically (or probabilistically), instead of deterministically. That is, instead of fixing the input
parameter values deterministically, we let thenrdmom variables, taking values from some domain with some
probability distribution. Each set of input parameter values gives rise to a unique evolution. The objective is to
obtain performance measures averaged over all such evolutions.

There are two reasons for introducing random variables. First, for most real-life system, we do not have exact
characterizations of the input parameters. Hence, using probabilistic inputs makes the results of the analysis more
robust. Second, even if we do have an exact characterization of the input parameters, it is often computationally too
expensively or analytically intractable to take them into account.

Organization of the notes

In Section 2, we define some performance measures for the single-server queueing system. In Section 3, we
describe the general structure of event-driven simulators. In Section 4, we describe a deterministic simulator for the
single-server queue. In Section 5, we describe a stochastic simulator for the single-server queue. In Section 6, we
describe how to generate random variables of given distributions. In Section 7, we describe a simulation project.

2. Performance Measuresfor Queueing Systems

Consider the queueing system with a single server mentioned in Section 1. Let costiemate theth cus-
tomer to arrive at the queueing system,rfer 1, 2,- - -

Let us represent the state of the system by the queue of customers in the system, in the order of their arrival.
For example, < 3, 4, 5 > means that customers 3, 4 and 5 are in the system. By convention, the head of the queue is
at the left. If the queue is not empty, then the customer at the head is being served. We use <> to denote an empty
queue.

Let the events of the system Berival (n) denoting the arrival of customer and Departure(n) denoting the
departure of customer. (This assumes that if a customer completes service when other customers are waiting, then
the next customer’s service is started immediately; otherwise, we would need another event representing the start of
service.)

Let S, denote the service time of custonmeii.e., customen requires the server’s attention 8¢ seconds.
(Without loss of generality, we assume that time units are secondsTAl.denote the arrival time of custormer

The following sequence represents an evolution of the system, assumifg ¢gatals 2.0 seconds for al)
and TA, equals 2.6-2.5 seconds for odd and 2. % —4 seconds for even (i.e., customers arrive at times
0.0,1.0,5.0,6.0,10.0, 11.0,). For readability , each element of the evolution is listed on a new line. (Observe
that the system evolution is cyclic with a period of 5 seconds.)

States Event Occurrence time
<>

Arrival (1) 0.0
<1>

Arrival (2) 1.0
<1, 2>

Departure(1) 2.0
<2>

Departure(2) 4.0
<>

Arrival (3) 5.0
<3>

Arrival (4) 6.0
<3, 4>

Departure(3) 7.0
<4>

A queueing system has mapgrformance measures of interest. We will look at some of them, namely, (1)
the average number of customers (also called average system size), (2) the average response time, (3) the average
waiting time, and (4) the throughput.

Average Number of Customers

Let N(t) denote the number of customers in the system at ttinfé(t) is an integer-valued discontinuous
function that increases by 1 at each arrival and decreases by 1 at each departure. The following grayft)shows
versust.

A
Response time of cust 1
- - — — — — — — =

Response time of cust 2

- - - - - - === -
2
N(t)
1 F
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 100 TIME
custl cust2 custl cust2 cust3 cust4 cust3 cust4 custd
arrives arrives departs departs arrives arrives departs departs arrives

For a given evolution, thaverage number of customers in the system, which we shall denote b, is defined
to be the average @i (t) over time for the evolution. Formally, if the time duration of the evolutioh seconds,
then

.
L1
N—?JNmm

To illustrate, let us consider the evolution of our queueing system until just after the departure of customer 2.
4

For this evdution, N equals 1.25. (It is obtained as follows. Customer 2 departs at tin!eNﬁ(I)dt (which is the

area undeN(t) from time O to 4) equals 5. Thus, the average system sgz,e/\ibich equals 1.25.)

In general, we want the “steady-statesilue of N, i.e., N for extremely “long” evolutions. Formally, we
want
N = lim 1 (N(t)dt
= = '! .
In the almve queueing kample, the steady-staté equals 1.0. (We can obtain it easily by noting that the

evolution repeats itself every 5 seconds. Thus, it ficgirit to obtainN for any contiguous 5 second interval, such
5

5 .
as [0, 5].1!' N(t)dt equals 5. Thus, the average system swée ighich equals 1.0.)

Average Response Time

The response time of customerdenoted byR,, is the time spent by the customer in the system. For a given
evolution, theaverage response time, which we shall denote bR, is the average of th&,’s for the customers
departing in the evolution. Formally, i customers depart in the evolution, then

1 K
k&R

To illustrate, let us consider the evolution of our queueing system until just after the departure of customer 2.
For this evdution, R equals 2.5. (It is obtained as follows. There are two departures in this simulation, namely cus-
tomers 1 and 2. The response time of customer 1 is 2.0 seconds. The response time of customer 2 is 3.0 seconds.

. 2.0+3.0 .
Thus, the average response tlme—IST, which equals 2.5.)

In general, we want the “steady-statR, i.e., for extremely “long” evolutions. That is, we want

1 K
R=lim — >R
— 00 K i=1

For the abve queueing exampleRR, equals 2.0 seconds for oadand 3.0 seconds for even Thus, the
steady-statd& equals 2.5 seconds per customer.

Average Waiting Time
The waiting time of customar, denoted by, is defined byw, = R, - S,,. For an evolution, the average

waiting time, denotedV, is the average of thé/,’'s for the customers departing in the evolution. (For the above
evdution, the steady-stat®% equals 0.5 seconds per customer.)

Throughput

For an evolution, the throughput, denotedXyindicates the number of departures over the total time of the
evolution. (For the alve ewlution, the steady-stat¢ equals 0.4 customers per second.)

General comments

Note thatR andW are customer avages, wheread and X are time averages. In general, when we refer to a
performance measure we mean its steady-state value, unless otherwise mentioned. Note that the steady-state aver-
ages do not always exist. For example in thevailgueueing system, B, were greater than 2.5, théh W, and N
would not exist.

The input parameters of theale queueing system afs,} and{TA,}. In the alove description, we have
described them deterministically. As mentioned in Section 1, we typically want to describe them probabilistically.
For example, instead of havirgy equal 2.0 seconds for al] we may wantS, to be a value between 1.7 to 2.3 sec-
onds, such that each value in the range is chosen with uniform probability and successive &|aee ohosen
independently. We will see how to do this in Sections 5 and 6.

Observe that the ale \alues forN, R and X satisfy the following:
N =RxX
This is not a coincidence. In fact, this is a very important relationship, dattéels Law. It holds forany general
system in steady-state!

3. Event-Driven Simulators

In this section, we describe a classical method to generate evolutions and evaluate performance measures. The
method does not store the evolution it generates; it only stores sufficient information to evaluate the desired perfor-
mance measures. It proceeds in iterations. In each iteration, one event occurrence is simulated.

The following variables are used in the simulator:

Smulation Clock
Nonnegative real number. At the start of each iteration, it indicates the time of the last event occurrence
that has been simulated. Initially 0.

Event List
A sequence of tuples of the form €), wheree is an event andis a nonnegative real number not less than
Smulation Clock. Each g, t) tuple represents an event occurrence that is yet to be simulated. (Typically,

the tuples in the list are sorted according.Yolnitially, the list contains one or more event occurrence pairs
to trigger the simulation (e.g. a customer arrival at time 0).

Sate Variables
At the start of each iteration, these variables indicate the state of the system after the last simulated event
occurrence. Initially indicates an initial system state.

Performance Indicators
At the start of each iteration, these variables contain sufficient information to (1) evaluate the performance
measures for the evolution that has been simulated, and (2) evaluate new values of the performance indica-
tors if the evolution is extended by an event occurrence. Initially set to values corresponding to an empty
evolution.

We next define procedures used in the simulator. For each eeérthe system, the simulator has a proce-
dure referred to as thavent handler of e, and denoted byRoutine(e, t). Here,t is a parameter representing an
occurrence time.Routine(e, t) specifies the effect on the system due to an occurrence ofeegetimet. It can
update the system state and performance indicators, cause events to occur in the future (refeschedtoiras
events), and cause scheduled events to not occur (i.e. unschedule them). The stateRanieefé, t) can do the
following:

» Access (read and writ§ate Variables andPerformance Indicators.
« ReadSmulation Clock (the value may be needed to update the performance indicators).

* Make calls to the procedur&shedule(f, s) and Remove(f, s), defined as follows, whefds an event and is
a nonnegative real number strictly greater than

Schedule(f, s) = Enter the tuplef(s) into Event List.

Remove(f, s) = Removethe tuple {, s) from Event List.
(Remove(f, s) assumes thaf,(s) is in Event List.)

To complete the description of the simulator, we now define a procedure, referrefintolage, representing
the “main program”;
Smulate =
while “simulation not over” do
begin
Pick up an ¢, t) tuple with minimumt from Event List;
Call Routine(e, t);
(updates system state and performance indicators, and
perhaps schedules new event occurrences and removes scheduled event occurrences)
Smulation Clock ~ t
end

Many particular conditions can be used for the generic “simulation not over” in theegibocedure. For
example Smulation Clock>= 10000 seconds, dumber of events simulated> 1000. It may depend on the particular
system being simulated. For example, in simulating a queueing system, we &ambeeof Departures = 10000.

If we know that the queueing system eventually reaches steady state, we may use the Samgiti@hDeviation
of Throughput < 0. 001x Average Throughput. (The variabledNumber of events simulated, Number of Departures,
Sandard Deviation of Throughput, andAverage Throughput, would be performance indicators.)

Given a simulator of a system, we refer to 8ate Variables, Performance Indicators, and the event handlers
as thesmulation model of the system. Note that the simulation model is the only system-specific part of the simu-
lator.

Stochastic smulation models

Above, we have described deterministic simulation models. Recall that we typically want to simulate stochas-
tic models. To do this, when we schedule an event to occur at,tineeallowt to be a random variable with some
distribution.

For a distributionF, let Random(F) denote a function that returns a random number distributed according to
F. Successive calls tRandom(F) return numbers that are statistically independent. We allow event handlers to
contain Schedule(f, s) statements whers is an expression involvingRandom(F)’s, rather than just deterministic
functions. (Later, we will describe how to obtdRandom(F).)

4. A Deterministic Simulator for the Single-Server Queue

In this section, we obtain a deterministic simulation model of the single-server queueing system described in
Section 2. This, together with the “main progra®itnulate, forms a complete simulator.

Let us assume th&, and TA, are some arbitrary deterministic functionsnof Let us also assume that the
gueueing system is initially empty. We have the following variables; the comments associated with the variables
hold whenever control comes to the start of the while loop in the main pr&yrahate:

Q: queue of Customerld, ArrivalTime). Initially <>.
The queue of customers in the system in order of arrival, along with their arrival times.

NumDepartures: integer. Initially O.
The number of departures in the system since beginning of simulation.

SystSze: integer. Initially O.
The number of customers in the system.

AccumSystSizel: real. Initially O.
Integral ofSystSze with respect to time. Sufficient to obtain the mé&gstSze.

AccumSystSze2: real. Initially 0.
Integral ofSystSize? with respect to time. Sufficient to obtain the second mome8ysfize.

AccumResponseTimel: real. Initially 0.
Sum of the response times of all departed customers. Sufficient to obtain the mean response time.

AccumResponseTime2: real. Initially 0.
Sum of the squares of the response times of all departed customers. Sufficient to obtain the second moment
of the response time.

This completes the description of the variables of the simul@ds the only state variable. All the other
variables are performance indicators. Observe that the system state here is different from that in Section 2. There,
we identified customan by the integen, whereas here we also add the arrival tidg. We need this information
to compute the response time.

The set of events of the system{&rrival(n): forn=1, 2,---} 0 {Departure}. We next define the event
handlers:

For example in Section &, equals 2.0 seconds for all andTA, equals 2. & - 2. 5 seconds for oddand 2. % - 4 seconds for
evenn.

Routine(Arrival (n), t) =
Append (, t) to the tail ofQ;
Schedule(Arrival(n + 1), TAp1);
if SystSze =0 thenSchedule(Departure(n), t + S,);
UpdateStatePer formancel ndicators;
SystSze — SystSze+ 1,
end procedure

Routine(Departure, t) =
(Assumeg) is not empty)
U « Head(Q). Arrival Time;
Removethe element at the head @f
if SystSze=2
then begin
m — Head(Q). Customerld;
Schedule(Departure(m), t + S;,)
end;
UpdateStatePer formancel ndicators,
NumDepartures — NumDepartures + 1;
SystSze — SystSze-1;
AccumResponseTimel — AccumResponseTimel + (t — u);
AccumResponseTime2 — AccumResponseTime2 + (t — u)?;
end procedure

where
UpdateStatePer for mancel ndicators =
AccumSystSizel — AccumSystSizel + (t — Smulation Clock) x SystSze;

AccumSystSize2 — AccumSystSize2 + (t — Smulation Clock) x (SystSze?);
end procedure

At the end of the simulation (i.e., when proced8raulate has finished execution) or at any point during the
simulation, the following performance measures can be computed:

AccumResponseTimel

AverageResponseTime =
gerep NumbDepartures
- AccumResponseTime2) 1
Standard Deviation of Response Time = (LTIResD ! - AverageResponseTime?)2
NumbDepartures
. AccumSystSzel
AverageSystemSze= ———
0esy Smulation Clock
. AccumSystSze2 1
Standard Deviation of System Sze = (- AverageSystemSize?)2

Smulation Clock

5. A Stochastic Simulator for the Single-Server Queue

We now obtain a stochastic simulation model of the single-server queueing system. Define the interarrival
time A, = TA, - TA,-;. (It turns out to be more convenient to describe interarrival times than arrival times.) Let the
interarrival times{ A} to be random variables that are independent and identically distributed with the distribution
Fa. Let the service time§S,} be random variables that are independent and identically distributed with the distri-
butionFg.

The simulation model has the following variables:

Q: queue ofArrivalTime. Initially <>.
The queue of customers in the system in order of arrival. Each customer is identified only by its arrival time

(this turns out to be adequate).

NumDepartures, SystSze, AccumSystSizel, AccumSystSize2, AccumResponseTimel, and AccumResponseTime2
are defined as in the deterministic model above.

For the stochastic model, it is sufficient to consider only two evantszal and Departure. The event han-
dlers are as follows:

Routine(Arrival, t) =
Appendt to the tail ofQ;
Schedule(Arrival, t + Random(F »));
if SystSze = 0 thenSchedule(Departure, t + Random(Fs));
UpdateStatePerformancel ndicators;
SystSze ~ SystSze+1;
end procedure

Routine(Departure, t) =
(Assumesg) is not empty)
u — Head(Q);
Removethe element at the head @f
if SystSze = 2 thenSchedule(Departure, t + Random(Fg));
UpdateStatePerformancel ndicators;
NumbDepartures — NumDepartures + 1;
SystSze ~ SystSze-1;
AccumResponseTimel — AccumResponseTimel + (t — u);
AccumResponseTime2 — AccumResponseTime2 + (t — u)?;
end procedure

whereUpdateStatePerformancelndicatorsis defined as in the deterministic model.

An example execution

The alove state variables and event handlers define the simulation model. This, together with the main pro-
gram— i.e. the variableSmulation Clock andEvent List, and the procedur@mulate— make up the simulator.

To help the reader understand how the simulator works, we trace the execution of the simulator for a few event
occurrences. In the trace, we give the simulation state (i.e. the values of the variables) each time that control comes

to statementvhile simulation not over in the main program.Between successive states, we briefly describe the
execution of the relevant event handler. While going through the trace, the reader may find it convenieN{tp plot
versugt as the simulation proceeds.

Initial simulation state
Smulation Clock = 0.0
Event List =< (Arrival, 0.0) >
Q=<>
NumDepartures=0
SystSze=0
AccumSystSizel = 0.0
AccumResponseTimel = 0.0

Handle next event occurrence
Removethe next event occurrence frdavent List and execute the appropriate event handler. In this case, the

2For brevity, we omit indicating the values AécumSystSze2 and AccumResponseTime2.

next event occurrence i\(rival, 0.0). From the body oRoutine(Arrival, 0.0), we see that it schedules a
new arrival at time 0.8 Random(F ,) and a departure at time 0+(Random(Fg) (the departure is because the
system was empty prior to this arrival event). Let us assumerdmaibm(F) returned 2.1 andRandom(Fs)
returned 1.8. The resulting simulation state is given below. (Note that the state would be different if
Random(F ,) had returned a smaller value thigandom(Fg).)

Resulting simulation state
Smulation Clock = 0.0
Event List =< (Departure, 1.8) , (Arrival, 2.1) >
Q=<(0.0) >
NumDepartures =0
SystSze=1
AccumSystSze1 =0.0+0x0.0=0.0
AccumResponseTimel = 0.0

Handle next event occurrence
The next event occurrence Bvent List is (Departure, 1.8). From the body oRoutine(Departure, 1. 8), we
see that no event is scheduled (because the system is empty after this departure event). The resulting simulation
state is given below.

Resulting simulation state
Smulation Clock =1.8
Event List =< (Arrival, 2.1) >
Q=<>
NumDepartures = 1
SystSze=0
AccumSystSzel =0.0+1x(1.8-0.0)=1.8
AccumResponseTimel =0.0+(1.8-0.0)=1.8

Handle next event occurrence
The next event occurrence isArfival, 2.1). Its event handler schedules a new arrival at time
2.1+ Random(F ») and a departure at time 2+IRandom(Fg). Let us assume th&andom(F ») returned 1.7
and Random(Fg) returned 3.1.

Resulting simulation state
Smulation Clock = 2.1
Event List =< (Arrival, 3.8) >, Departure, 5.2) >
Q=<(2.1)>
NumDepartures = 1
SystSze=1
AccumSystSzel =1.8+0x%x(2.1-1.8)=1.8
AccumResponseTimel = 1. 8

Handle next event occurrence
The next event occurrence isArfival, 3.8). Its event handler schedules a new arrival at time
3.8+ Random(F ») (note that it does not schedule a departure because the server was busy prior to this arrival
event). Let us assume tiRandom(F) returned 1.1.

-10-

Resulting ssimulation state
Smulation Clock = 3.8
Event List =< (Arrival, 4.9) >, QDeparture, 5.2) >
Q=<(2.1), (3.8)>
NumDepartures =1
SystSze=2
AccumSystSizel =1.8+1x%x(3.8-2.1)=3.5
AccumResponseTimel = 1. 8

Handle next event occurrence
The next event occurrence isAr(ival, 4.9). Its event handler schedules a new arrival at time

4.9+ Random(F 5). Let us assume th&andom(F ») returned 2.6.

Resulting ssimulation state
Smulation Clock = 4.9
Event List =< (Departure, 5.2) >, (Arrival, 7.5) >
Q=<(2.1), (3.8, (4.9 >
NumDepartures =1
SystSze=3
AccumSystSzel =3.5+2x%x(4.9-3.8)=5.7
AccumResponseTimel = 1. 8

Handle next event occurrence
The next event occurrence Bdparture, 5. 2). It schedules a new departure at timeRandom(Fs). Let us

assume thaRandom(Fg) returned 1.1.

Resulting ssimulation state
Smulation Clock = 5.2
Event List = < (Departure, 6.3) >, (Arrival, 7.5) >
Q=<(3.8), 4.9 >
NumDepartures = 2
SystSze=2
AccumSystSizel =5.7+3%x(5.2-4.9)=6.6
AccumResponseTimel =1.8+(5.2-2.1)=4.9

Handle next event occurrence
The next event occurrence Bdparture, 6. 3). It schedules a new departure at time#6Random(Fs). Let us

assume thaRandom(Fg) returned 1.5.

Resulting ssimulation state
Smulation Clock = 6.3
Event List =< (Arrival, 7.5) >, QDeparture, 7.8) >
Q=< (4, 9) >
NumDepartures =3
SystSze=1
AccumSystSizel =6.6+2x(6.3-5.2)=8.8
AccumResponseTimel = 4.9+ (6.3-3.8)=7.4

. . . . 8.8
If we stop the simulation at this point, then therageSystemS ze would be6—3 =1. 39 and thé\verageRe-

7.4
sponseTime would be? =2.47. Of course, typically we would continue the simulation for (at least) hundreds of

departures.

-11-

6. Generating Random Numbers

Before describing how to generate the random numbers needed for your project, we will first give some back-
ground. If you do not understand the background, don’'t worry. Just make sure you understand the procedures given
in the last part of this section.

Random variables are defined by their distribution functions. There are two kinds of distribution functions:
discrete andcontinuous.

A discrete distribution function has a subset of the integers as its domaifi0.e1, {0, 1,---}. If a random
variableR has a discrete distributidn, then it means the following:

Probability(R = n) = F(n) for everyn in the domain of
A continuous distribution function has the real numbers as its domain. If a random vRrizddea continu-
ous distributiorF, then it means the following:
Emo Probability(R O(x, x +d]) = F(x)d for every realx
In this project, we will be concerned with one discrete distribution, nameBetimeulli, and two continuous
distributions, namely th&niform and theExponential. We now define them:
« The Bernoulli distribution has a real-valued parameterpsayhere 0< p < 1, and a domain of two values, say
{0, . A Bernoulli distributionF with parameteip is defined by
Up n=0
F(n) = Bl _ -
p n=1

» The Uniform distribution has two real-valued parametersasaydb, wherea < b. A uniform distributionF
with parametersa andb is defined by

DD 1 x0Oa b
F(X):Eg_a x [, b]
0

» The Exponential distribution has one real-valued parametes, sdyeres > 0. An exponential distributiofr
with parametesis defined by

th

X
O-expe =) %20

F(X):%Js " S) Xx<0
0

Most computer systems have a function, Bagdom, that returns a random variable of uniform distribution
with parameters 0, 1. Usirgandom, we can obtain random number generators for other distributions.

» The following procedure returns a random variable that has a Bernoulli distribution with parameter

Bernoulli(p) =
if Random < p then return(1) else return(0)
end procedure

» The following procedure returns a random variable that has a Uniform distribution with paransatdis

Uniform(a, b) =
return @ + (b — a) x Random)
end procedure

« The following procedure returns a random variable that has an Exponential distribution with pasameter
(below, Ln stands for the natural logarithm):

-12-

Exponential (s) =
return ¢ s x Ln(Random))
end procedure

7. Project

Your project involves the simulation of a closed network of (single-server) queues. By “closed network”, we
mean that (1) there are no external arrivals, and (2) when a customer leaves one queue, it joins another queue.
Closed networks are very useful for modeling jobs in a multi-programming system, packets in a communication net-
work, etc.

Your project will simulate a network with 3 queues, as shown in the following figure:

queue 1 2 queue 2 (1/3
- ()(%_» 1/3

1/2 1/3 queue 3 ;o

.

‘ 2/3

As indicated in the figure, a customer that departs from queue 1 joins queue 2 with probability 1/2 and joins
gueue 3 with probability 1/2. A customer that departs from queue 2 joins queue 3 with probability 1/3, joins queue
1 with probability 1/3, and returns to queue 2 with probability 1/3. A customer that departs from queue 3 joins
gueue 1 with probability 1/3 and joins queue 2 with probability 2/3. Each departure from a queue is routed accord-
ing to a Bernoulli distribution. Successive departures from a queue are routed independently.

Queues 1 and 2 use FCFS (first-come-first-served) discipline, as in the single-server examples of Section 2.
Queue 3 uses LCFS-PR (last-come-first-serve preemptive resume) discipline. Here, if a cAstorivess when
another customeB is being served, custom8is preempted and put on a stack of preempted customers, and cus-
tomer A's service starts immediately. When the server completes service of a customer, it resumes service of the
customer at the top of the stackd gke sure you under stand the L CFS-PR discipline.)

Develop a simulator for the abke network, with input and output specifications as described below.

Input Specification

Your program should prompt for the following inputs, in the order given below. For each prompt, the user
should type in one of the allowed inputs; below, we usg’ ‘to separate different types of inputs for the same
prompt. Begin each prompt on a new line. Each input ends with a new line.

e Prompt: Maximum Simulation time:
Input: x
X is the maximum time for which the simulation should be run. i.e., stop the simulationrSimhéation
Clock > x.
¢ Prompt: Number of customers.
Input: n

nis an positive integer indicating the number of customers in the system. Initially, let all the customers be
in queue 1.

¢ Prompt: Service distribution at 1.
Input: Uab or Es

-13-

The service distribution at server 1. The first inpua U, indicates a uniform distribution with parame-
tersa andb. The second input, B, indicates an exponential distribution with parameteiFor each
input, the first value is a character while the other(s) are reals.

e Prompt: Service distribution at 2.
Input: Uab or Es

e Prompt: Service distribution at 3.
Input: Uab or Es

¢ Prompt: Trace?
Input: Y or N

The input is a character, indicating whether the output trace feature is to be on (Y) or off (N).

Output Specification
Your program should output the following, in the order given below. Begin each output on a new line.

Output: Maximum simulation time x
x equals the maximum simulation time.

e OQutput: Number of customers x
x equals the number of customers.

e Output: Average Service Time at queue k=

x equals the mean of the service times actually generated during your simulation. This should be close to,
but not necessarily exactly the same as, the mean of the distribution that was input. For example, if server
1 was exponentially distributed with paramesethenx = s. If server 1 was uniformly distributed with

+b

>

a
parameters andb, thenx =

e Output: Standard Deviation of the Service Time at queuexl =
x equals the standard deviation of the service times actually generated during your simulation.

e Output: Average System Size at queue & =
x equals the mean number of customers in queue 1.

e OQutput: Standard Deviation of the System Size at queue 1 =
x equals the standard deviation of the number of customers in queue 1.

e Output: Average Response Time at queue ® =
x equals the mean of the response times experienced by the customers in queue 1.

¢ OQutput: Standard Deviation of the Response Time at queug 1 =
x equals the standard deviation of the response times experienced by the customers in queue 1.

e Qutput: Throughput of queue 1 x

X equals the throughput of queue 1, i.e., number of customers who exited queue 1 divided by the total
time.

¢ Output: Average Service Time at queue X=

-14-

Output: Standard Deviation of the Service Time at queuex2 =
Output: Average System Size at queue 2 =

Output: Standard Deviation of the System Size at queue?2 =
Output: Average Response Time at queue =

Output: Standard Deviation of the Response Time at queug 2 =
Output: Throughput of queue 2 x

Output: Average Service Time at queue X=

Output: Standard Deviation of the Service Time at queuex3 =
Output: Average System Size at queue R =

Output: Standard Deviation of the System Size at queue3 =
Output: Average Response Time at queue 8 =

Output: Standard Deviation of the Response Time at queug 3 =
Output: Throughput of queue 3 x

Output: Average System Cycle Timex
Time between successive departures of a given customer from queue 1, averaged over all customers.

Output: Standard Deviation of System Cycle Time =
x equals the standard deviation of the time between successive departures of a given customer from queue
1, averaged over all customers.

Output: Trace = sequence df, (j, t) tuples.

Each {, j, t) tuple means that a customer left quéwsnd joined queug at timet. The tuples in the
sequence are in the order generated in the simulation. This output should be done if and only if the input
Trace? flag was setto V.

