CAS CS 655 Computer Networks

Abraham Matta

Discrete-Event Simulation

Abraham Matta -CAS CS 655 at CS @ BU

Discrete-Event Models

- Evolution of the system viewed as:
 < s0, (e0, t0), s1, (e1, t1), s2,... >
- Performance measures (output parameters)
 - average number of packets
 - average response time
 - throughput
- Input parameters
 - constants (deterministic)
 - random variables (stochastic / probabilistic) Abraham Matta - CAS CS 655 at CS @ BU

Average Performance

- Each set of input parameter values gives a *unique* evolution
- Goal: obtain performance measures *averaged* over all such evolutions

Example

- Single server, single queue
- Service time = 2
- Arrivals: 0, 1, 5, 6, 10, 11, ...
- **Define:** state = packets in queue + service
- Events: arrivals and departures
- Show evolution of # packets in system q(t)
- Compute average Q
- Compute average response time T and throughput λ (rate of departures)
- Little's Law: $Q = \lambda * T$
 - holds for any general system in steady-state!
 - Abraham Matta -CAS CS 655 at CS @ BU

Flow of Control

SimulationClock = 0; Initialize system state and performance counters; Initialize EventQueue;

While "simulation not over" do

Pick up (e, t) tuple with *minimum* t from EventQueue; Call Routine (e, t);

// update system state and performance counters, schedule new events and add them to EventQueue SimulationClock ← t;

Compute performance measures;

Abraham Matta -CAS CS 655 at CS @ BU

Event Routines

Routine (Arrival(n), t) =

 $\begin{array}{l} \mbox{Append }(n,t) \mbox{ to the tail of }Q; \\ \mbox{Schedule }(Arrival(n+1),AT(n+1)); \\ \mbox{If }SystSize = 0 \mbox{ then } \mbox{Schedule }(Departure(n),t+S(n)); \end{array}$

UpdatePerformanceCounters; SystSize ← SystSize + 1;

Event Routines (cont.)

Routine (Departure, t) =

// assumes Q is not empty u ← Head(Q).ArrivalTime; Remove Head(Q); If SystSize >= 2 then m ← Head(Q).PacketID; Schedule (Departure(m), t + S(m));

UpdatePerformanceCounters;

NumDepartures ← NumDepartures + 1; SystSize ← SystSize - 1; AccumResponseTime ← AccumResponseTime + (t - u);

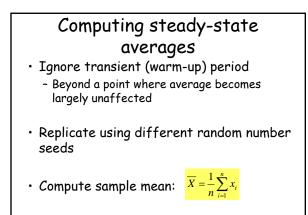
Abraham Matta -CAS CS 655 at CS @ BU

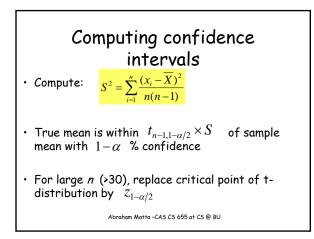
Performance Measures

UpdatePerformanceCounters = AccumSystSize ← AccumSystSize + (t - SimulationClock) * SystSize;

At end of simulation : AverageResponseTime = AccumResponseTime / NumDepartures; AverageSystemSize = AccumSystSize / SimulationClock;

Abraham Matta -CAS CS 655 at CS @ BU


Generating Random Numbers


- **Random**: returns a random variable of *uniform* distribution [0, 1]
- Uniform(a, b) =

return (a + (b - a) * Random);

Exponential(s) =

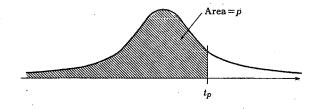
return (-s * ln(Random));

630

APPENDIX A

A.3 COMMONLY USED NORMAL QUANTILES

Table A.3 lists commonly used normal quantiles. The confidence levels listed in the first column are for a two-sided confidence intervals. For example, for a two-sided confidence interval at 99%, $\alpha = 0.01$, $\alpha/2 = 0.005$ and $z_{0.995} = 2.576$. For a one-sided confidence interval at 99%, $\alpha = 0.01$, and $z_{1-\alpha} = 2.326$.


TABLE A.3	Commonly	Used Normal	Quantiles
-----------	----------	--------------------	-----------

Confidence		-	
Level (%)	α	α/2	$z_{1-\alpha/2}$
20	0.8	0.4	0.253
40	0.6	0.3	0.524
60	0.4	0.2	0.842
68.26	0.3174	0.1587	1.000
80	0.2	0.1	1.282
- 90	0.1	0.05	1.645
95	0.05	0.025	1.960
95.46	0.0454	0.0228	2.000
98	0.02	0.01	2.326
99	0.01	0.005	2.576
99.74	0.0026	0.0013	3.000
99.8	0.002	0.001	3.090
99.9	0.001	0.0005	3.29
99.98	0.0002	0.0001	3.72

STATISTICAL TABLES

A.4 QUANTILES OF THE t DISTRIBUTION

Table A.4 lists $t_{[p;n]}$. For example, the $t_{[0.95;13]}$ required for a two-sided 90% confidence interval of the mean of a sample of 14 observation is 1.771.

TABLE A.4 Quantiles of the t Distribution

	Р							
n	0.6000	0.7000	0.8000	0.9000	0.9500	0.9750	0.9950	0.9995
1	0.325	0.727	1.377	3.078	6.314	12.706	63.657	636.619
2	0.289	0.617	1.061	1.886	2.920	4.303	9.925	31.599
3	0.277	0.584	0.978	1.638	2. <u>35</u> 3	3.182	5.841	12.924
(4)	0.271	0.569	0.941	1.533	2.132	2.776	4.604	8.610
5	0.267	0.559	0.920	1.476	2.015	2.571	4.032	6.869
6	0.265	0.553	0.906	1.440	1.943	2.447	3.707	5.959
7	0.263	0.549	0.896	1.415	1.895	- 2.365	3.499	5.408
8	0.262	0.546	0.889	1.397	1.860	2.306	3.355	5.041
9	0.261	0.543	0.883	1.383	1.833	2.262	3.250	4.781
10	0.260	0.542	0.879	1.372	1.812	2.228	3.169	4.587
11	0.260	0.540	0.876	1.363	1.796	2.201	3.106	4.437
12	0.259	0.539	0.873	1.356	1.782	2.179	3.055	4.318
13	0.259	0.538	0.870	1.350	1.771	2.160	3.012	4.221
14	0.258	0.537	0.868	1.345	1.761	2.145	2.977	4.140
15	0.258	0.536	0.866	1.341	1.753	2.131	2.947	4.073
16	0.258	0.535	0.865	1.337	1.746	2.120	2.921	4.015
17	0.257	0.534	0.863	1.333	1.740	2.110	2.898	3.965
18	0.257	0.534	0.862	1.330	1.734	2.101	2.878	3.922
19	0.257	0.533	0.861	1.328	1.729	2.093	2.861	3.883
20	0.257	0.533	0.860	1.325	1.725	2.086	2.845	3.850
21	0.257	0.532	0.859	1.323	1.721	2.080	2.831	3.819
22	0.256	0.532	0.858	1.321	1.717	2.074	2.819	3.792
23	0.256	0.532	0.858	1.319	1.714	2.069	2.807	3.768
24	0.256	0.531	0.857	1.318	1.711	2.064	2.797	3.745
25	0.256	0.531	0.856	1.316	1.708	2.060	2.787	3.725
26	0.256	0.531	0.856	1.315	1.706	2.056	2.779	3.707
27	0.256	0.531	0.855	1.314	1.703	2.052	2.771	3.690
28	0.256	0.530	0.855	1.313	1.701	2.048	2.763	3.674
29 °	0.256	0.530	0.854	1.311	1.699	2.045	2.756	3.659
30	0.256	0.530	0.854	1.310	1.697	2.042	2.750	3.646
.60	0.254	0.527	0.848	1.296	1.671	2.000	2.660	3.460
90	0.254	0.526	0.846	1.291	1,662	1.987	2.632	3.402
120	0.254	0.526	0.845	1.289	1.658>	1.980	2.617	3.373