
Accountable-Subgroup Multisignatures∗

Silvio Micali† Kazuo Ohta‡ Leonid Reyzin§

August 15, 2001

Abstract

Formal models and security proofs are especially important for multisignatures: in contrast to thresh-
old signatures, no precise definitions were ever provided for such schemes, and some proposals were
subsequently broken.

In this paper, we formalize and implement a variant of multi-signature schemes, Accountable-Subgroup
Multisignatures (ASM). In essence, ASM schemes enable any subgroup, S, of a given group, G, of potential
signers, to sign efficiently a message M so that the signature provably reveals the identities of the signers
in S to any verifier.

Specifically, we provide:

1. The first formal model of security for multisignature schemes that explicitly includes key generation
(without relying on trusted third parties);

2. A protocol, based on Schnorr’s signature scheme [Sch91], that is both provable and efficient:

• Only three rounds of communication are required per signature.

• The signing time per signer is the same as for the single-signer Schnorr scheme, regardless of
the number of signers.

• The verification time is only slightly greater than that for the single-signer Schnorr scheme.

• The signature length is the same as for the single-signer Schnorr scheme, regardless of the
number of signers.

Our proof of security relies on random oracles and the hardness of the Discrete Log Problem.

1 Introduction

Since their introduction by Itakura and Nakamura in [IN83], multisignatures have been extensively studied,
and yet no formal definition of this notion has been provided to date. This lack of formalism has led to
some confusion as to the precise meaning of multisignature, as well as to some proposals that have been
subsequently broken. We thus wish to address both problems.

1.1 Defining Multisignatures

1.1.1 The Need for Flexible Accountability

Given a group of potential signers G = P1, . . . , PL, multisignatures allow certain subsets S of signers (hence-
forth called subgroups) to sign messages together. A simple case, explicitly addressed, for example, in
∗An extended abstract of this work appears in CCS’01, Proceedings of the Eighth ACM Conference on Computer and

Communications Security, c©ACM, 2001.
†MIT Lab for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA
‡The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN, ota@ice.uec.ac.jp.

Work performed, in part, while visiting the MIT Laboratory for Computer Science.
§Boston University, Dept. of Computer Science, 111 Cummington Street, Boston, MA 02215 USA,reyzin@bu.edu. Work

performed at the MIT Laboratory for Computer Science and supported by the National Science Foundation graduate research
fellowship and by a grant from the NTT corporation.

1

[OO91, OO99], envisages S = G, that is, every signer in G must participate in producing a multisignature.
The case of more general subgroups S has been, in particular, addressed in [IN83, Har94, LHL94, HMP95].

General subgroups of signers are needed in many applications. (For example, if a certification authority
is distributed on L servers, it would be useful that only a subset of the servers is needed to issue a valid
certificate.) But: what properties should such general multisignatures satisfy? We suggest the following two
(informally, for now):

• Flexibility. Flexibility means that any subgroup S of G may easily jointly sign a document. It is then
up to the verifier of the signature to decide whether S was “sufficient” for the signature to be deemed
valid. This places no restriction on the size of S. In fact, it allows complex rules about S to be enforced,
such as, for example, the following: “either the CEO is in S, or three senior VPs are in S.”

• Accountability. Accountability means that, without use of trusted third parties, individual signers can
be identified from the signed document. This is desirable in many settings: if an incorrectly issued
certificate is discovered, it is important to identify the corrupted servers.

Notice that, in the “paper world,” these two properties are satisfied by the traditional solution in which
every member of S appends his own signature to the document to be jointly signed.

1.1.2 The Need for a Formal Model

Because of the lack of a formal model of security for multisignatures, there has been no consensus on the
precise meaning of the term. Even more troublesome is the fact that few of the previous proposals for
multisignature schemes ever attempted a formal security proof, and some proposals turned out, in fact,
to be insecure. For example, the proposals of [Har94] and [LHL94] were subsequently cryptanalyzed by
[HMP95], [Lan96] and [MH96].

Absent a complete formal model, even schemes that have formal proofs of “security” are vulnerable to
attacks: the “Type II” scheme of [OO99] is subject to a previously known attack on key generation, even
though the paper contains formal statements about the scheme’s security (see footnote 3 in Section 3.2 for
more details). This is so not because the theorems of [OO99] are wrong, but rather because the definition
of security simply does not address adversarial behavior during key generation.

1.1.3 Our Model

In Section 2, we provide a formal model for multisignatures that requires both flexibility and accountability.
To avoid confusion with other similar notions, we use the term “accountable-subgroup multisignatures”
(ASM) to describe the schemes in our model. The model is precise enough to allow for formal security
proofs, and, unlike the definition of [OO99], encompasses key generation. The adversary allowed in our
model is quite strong, thus ensuring that ASM schemes are, in fact, secure.

1.1.4 ASM vs. Other Notions

There have been a number other notions proposed for signatures by multiple signers. The terms “multisig-
nature,” “group signature,” and “threshold signature” are not always used consistently; moreover, other
terms, such as “threshold-multisignatures” [LHL94] are also sometimes used. We focus here only on the
most commonly used models and terminology.

Group signatures. In a group signature [CvH91, CS97]), there is a total group G of potential signers, but
each signature is produced by any (anonymous) individual member on behalf of the entire group. Therefore,
group signatures are not flexible: there is no mechanism for enforcing larger than one-member subgroups.
Furthermore, group signatures offer only partial accountability: the identity of the signing member is un-
known to a signature verifier, though it is available to a trusted party, the group manager, in case problems
arise.1

1This reliance on the trusted manager, who could be “eliminated” (at least electronically —e.g., by destroying its computer)
to avoid accountability, is a drawback in many settings.

2

Threshold signatures. In a threshold signature scheme (see, e.g., [DF89, GJKR96a, GJKR96b]), a
message can be signed only by a sufficiently large subgroup. Therefore, threshold schemes are reasonably
flexible, but do not offer accountability. In fact, there is no way of identifying the members of S from a
signature.2

Such anonymity, while desirable in some settings, is dangerous in others. By removing accountability
for what is signed, one may actually encourage cheating. If some senior officers of a corporation can enrich
themselves (e.g., by signing the sale of certain corporate assets) with a mathematical guarantee of anonymity,
then such enrichments would become more frequent than desirable.

1.2 Designing Multisignatures

1.2.1 The Key Generation Problem

Vulnerabilities in the key generation stage are a main problem in discrete-logarithm-based multisignatures.
In particular, they are the basis for the aforementioned attacks on [Har94], [LHL94] and [OO99]. The
problem stems from the fact that adversarial signers can choose their keys after seeing other signers’ keys,
and can therefore potentially affect the joint public key of the subgroup S.

Past discrete-logarithm-based multisignatures have therefore required a trusted third party for key gen-
eration (in particular, [HMP95] suggests using a trusted third party to fix the problem in [Har94]).

Key generation has also been a problem for threshold signatures. In this case, fortunately, the problem
has been resolved, at least for the discrete logarithm case (see, e.g., [Ped91], [GJKR99]). However, threshold
signatures, by design, exclude accountability, and thus the solutions available for them do not easily extend
to multisignatures (see 2.1).

1.2.2 Our Implementation

In Section 3, we provide an efficient implementation of ASM schemes, based on the Discrete Logarithm
problem and the Schnorr [Sch91] signature scheme. Our starting point is a “two-cycle” scheme suggested
briefly in Section 6 of [OO99]. We modify it extensively, however, to obtain a scheme that is provably secure
in our model and does not suffer from the vulnerabilities during key generation that the original scheme has.

Our scheme has the following desirable efficiency properties, when compared to the obvious solution that
simply uses multiple single-signer signatures:

• The signature length does not grow with the number of signers: it is the same as that of a single-signer
Schnorr signature.

• The verification is almost the same as the time needed to verify a single Schnorr signature.

The cost of these improvements is quite moderate:

• The signing protocol requires only three rounds of communication among the members of S, irrespective
of the size of S.

• The signing time per member of S is almost the same as the time required to produce a single-signer
Schnorr signature.

• Only the key generation protocol (done once for a group G) requires each member of G to perform
communication and computation that is linear in the size of G.

2In essence, in most threshold schemes, signing involves (implicitly) interpolating an (`− 1)-degree polynomial from ` point-
value pairs. Thus, once the polynomial is (implicitly) reconstructed, there is no way of knowing which ` out of the possible L
point-value pairs were actually used in the interpolation.

3

1.2.3 Comparison with Prior Implementations

Implementations based on repeated use of trapdoor permutations (such as [IN83] and [Oka88]) require as
many rounds of communication as there are signers; the verification time grows linearly with the number
of signers as well. Additionally, they are not provable in our model (although it is possible to modify the
scheme of [Oka88] to make it provable at the expense of some efficiency loss).

Implementations based on discrete logarithms or the Fiat-Shamir scheme (such as, for example, [OO91,
HMP95, OO98, OO99], and the first scheme of [LHL94]) require a trusted third party for key generation.
Implementations that do not require a trusted party include the second scheme of [LHL94] and the multisig-
nature scheme of [Har94], both of which, however, have been successfully attacked (e.g., by [Lan96, MH96]).
An implementation that does not require a trusted party and can be proven secure in our model with-
out major modifications is the “Type III” scheme of [OO98, OO99]. However, its security holds only for
logarithmically many signers, and the scheme requires significantly more verification time per signature.

2 The Notion of an ASM

2.1 The Informal Notion

Let us now informally express what an ASM scheme is, that is, what it means to efficiently allow any subgroup
S of a group G of signers to sign a message, keeping each individual member of S accountable for what S
signs.

Informal Definition An accountable-subgroup multisignature of a subgroup of signers S for a message M
provides, without any trusted managers or third parties, a self-contained and universally verifiable proof of
(1) the composition of S and (2) the fact that each member of S stood behind M .

The above definition, due to its informality, is quite vague. For instance, it does not specify whether S
should be chosen in advance, or whether the members of S are aware of their co-signers. To remove such
ambiguities, ASM schemes are best defined by specifying a basic solution that may be quite inefficient, but
spells out the rules of the game. The goal of an ASM scheme will then be achieving the properties of the
basic solution more efficiently.

The Inefficient Solution: Let G be a group of signers, in which each member Pi has his own
individual public key PKi and corresponding secret key SKi. Arbitrarily order the members of the
group. Then, the signature of subgroup S = (Pi1 , . . . , Pim) of a message M consists of the sequence
(σ1, . . . , σm), where σj is Pij ’s individual signature (relative to public key PKij) of the pair (M,S).

A formal definition of an ASM scheme is essentially obtained by adding a proper adversarial model to
the basic solution. We do this in Section 2.2. For now, let us understand better the properties of our
basic solution. To this end, it is important to realize that the following simple-minded attempt at adding
accountability to existing threshold schemes does not work.

A Non-Solution: Start with any threshold signature scheme, and add the requirement that each
signed message include the list of the members of S who participated in the signing protocol.

This does not work, because any player P not belonging to S can be “framed” by the members of S,
who can simply add P ’s name to the list. Moreover, the real signers may not include their own names in the
list. In a 3-out-of-6 scheme, for example, this would be particularly unacceptable: the signers may be a, b,
and c, but they may pretend to be d, e and f instead. Indeed, even if the threshold were to be higher than
half of G, one could only conclude that one of the purported signers is genuine, but it is still impossible to
determine which one.

2.1.1 Understanding the informal notion

We take our inefficient basic solution to be the ideal in terms of the properties we want from ASM schemes.
Our goal is to define a model that captures these properties, and come up with schemes in this model that

4

are more efficient than the basic solution (note that the basic solution is quite inefficient: both the signature
size and the verification time grow linearly with the size of S). We therefore gain better understanding of
the new notion by further examining the basic solution.

The Role of S. Specifying S in the signed message ensures that each signer know his co-signers in advance:
if all members of S do not individually sign (M,S), the signature is not deemed legitimate. Thus, each
signer knows precisely with whom he shares responsibility for the signed message. (In fact, some attacks
on previous multisignature schemes resulted not in forged signatures, but in providing a signer incorrect
information about his co-signers.)

One may envisage a different basic solution in which any member of G that wishes to sign M does so,
sending the signature to a clerk. The clerk then “constructs” S using the signatures received. This approach
has the advantage of not requiring any advance agreement on S. The disadvantage, however, is that the
clerk, acting adversarially, can become a “guardian angel” for some signers. Suppose a member of G wants to
get a document M signed but prefers not to have to take responsibility for it if possible; that is, if sufficiently
many other signers are willing to sign M , she would like her signature to be excluded. She can then send
her signature to the clerk, but the clerk will include it in the final output only if it is absolutely necessary
for the document to be deemed valid.

Of course, both notions are valid and have applications. In this paper, however, we only consider the
first one, in which S is explicitly specified. It is worth pointing out that designing a non-trivial provable
scheme of the other kind, where the composition of S can be decided after the signatures are received, is an
interesting open problem.

ASM vs. Threshold. ASM schemes are different from threshold schemes not only because they “add
accountability”, but also because they empower any subgroup (rather one of sufficient cardinality) to sign a
message. At the same time, a threshold can be easily added to an ASM scheme: the verifier simply checks
that the cardinality of S exceeds the threshold.

Security vs. Robustness. Notice that the basic solution is secure, in the sense that the adversary may
not forge the signature of a subgroup S (containing a “good” player). Notice too, however, that the basic
solution is not robust: if a corrupted player of S “shuts off”, then, by definition, S’s signature of a message
M cannot be computed. We are therefore not seeking robustness in our model. This allows us to define
the model in terms of a very strong adversary who controls all possible communication lines, and thus can
prevent also the messages from good players to good players from reaching their destinations. Such extreme
adversarial behavior, naturally, prevents robustness. At the same time, such adversarial ability makes the
security properties of ASM schemes much stronger.

Weak Robustness. One could endow the basic solution with a weak robustness property. Roughly
said, if a subgroup S fails to produce S’s signature of a message M , then at least one corrupted player
P in S will be exposed. This way, the players may have the option of trying to sign M again on behalf
of a different subgroup S′ not containing P . Weak robustness could be achieved in the basic solution if
broadcasting is available. Broadcasting could also be added (in a simple fashion) to make our ASM scheme
in Section 3 weakly robust. (Of course, weak robustness could also be achieved by using some variant of
secure computation [GMW87, BGW88, CCD88], but with some efficiency loss.)

2.2 The Formal Notion

We will assume that the total group G consists of L signers, and that every signer is a probabilistic
polynomial-time Turing machine that initially knows nothing but its unique identification number (which is,
w.l.o.g., one of the numbers 1, 2, . . . , L) and a unary value 1k called the “security parameter.” We will also
assume that 1k is the same for all the signers. As will be explained in more detail later, we will allow the
adversary to control the network connecting the members of G.

Components of an accountable-subgroup multisignature. A ASM scheme has three components:

1. A (probabilistic) key generation protocol.

5

This protocol is performed only once (at the very beginning) by all members of G. Each member
receives as input a description of G, that is, the list of the identities of all members of G. (If these
identities are the integers 1 through L, then it suffices to have just the integer L as an input.)

The key generation protocol produces a local output for each party Pi: a secret key, SKi, and the
corresponding public key, PKi.

If an adversary is present during key generation, it may provide different inputs “G” to different parties.

2. A (probabilistic) signing protocol.

This protocol is performed by the actual signers in S for every message being signed. The input of
each signer consists of (a) a description of the subgroup S; (b) the public keys of the members of S;
(c) the message M ; and (d) the signer’s own secret key. The signature σ is generated jointly by the
members of S, and is actually output by one of the parties in S.

If an adversary is present during an execution of the signing protocol, it may provide different inputs
S and M to each signer, as well as incorrect public keys for the other signers.

3. A (deterministic) verification algorithm.

This algorithm is run to verify a given signature by an individual verifier, possibly not belonging to G.
The inputs of the verification algorithm are: the subgroup S, the public keys of the members of S, the
message M , and the alleged signature σ. The output is “YES” or “NO”.

We require that these components be “correct.” That is, suppose the signers in a subgroup S follow the
protocols faithfully, and suppose key generation terminates successfully for every party in S. Then, if the
signers in S perform a signing protocol on a message M (with correct inputs), they will produce a signature
σ that the verification algorithm will accept (if, again, given correct inputs).

The adversarial model. We consider an adversary F (for “forger”) with the following capabilities:

• F fully controls all messages exchanged in the network: whether the sender or the recipient is good
or bad, it can read any message sent, modify it or prevent its delivery. In addition, F can send any
message it wants on behalf of any player. (In a sense, therefore, there are no private or authenticated
channels: all players communicate via the adversary.)

• F can corrupt any player at any time, during both key generation and signing. Upon corrupting a
player Pi, F learns the entire internal state of Pi (including all secret information and past coin tosses).

• F controls the input of any uncorrupted player during key generation (e.g., it can specify different total
groups G to different players).

• For any uncorrupted player Pi, F can conduct an adaptive chosen-message-and-subgroup attack: at any
time, it can request that Pi execute the signing protocol on some specified message with some specified
subgroup of co-signers. (Because the adversary fully controls the network, it can choose whether the
co-signers will actually be really involved in this execution.)

Definition of Security. Because the adversary fully controls the network, it can always prevent the
parties from signing a message. Our security goal, therefore, is to prevent forgeries of new signatures.

Definition 1 We will say that an ASM scheme is secure if, for all constants c > 0 and all sufficiently large
security parameters k, no polynomial-time (in k) adversary has better than k−c chance of outputting a triple
(σ,M, S) such that:

• σ is a valid signature on the message M by the subgroup S of players

• there exists an uncorrupted player P ∈ S who has never been asked by F to execute the signing protocol
on M and S.

6

Note that, in the above definition, S may not be a subgroup of the original G. That is, we want also to
prevent the adversary from adding one of more “fictitious” players, so as to (1) form a different total group
G′, and then (2) be able to forge a signature of (M,S), where S is a subgroup of G′. (Naturally, the single
uncorrupted player P cannot be fictitious: it should be a member of the original G.)

Of course, as is also the case for the single-signer schemes, it is assumed that, when verifying an ASM
signature of (M,S), the verifier obtains the proper public keys of the members of S∩G. (The mechanism for
enforcing the authenticity and availability of such public keys is, as usual, outside the scope of our definition.)
The public keys of the fictitious players (S \ S ∩G) might as well be successfully faked by the adversary.

The Meaning of S in a Signature. Given that there are no authentic channels and the adversary can
provide incorrect inputs during the signing phase, one can reasonably ask what exactly it means for signer
P1 to be assured that she is signing M with a signer named “P2,” when P1 doesn’t even necessarily know
who P2 is. It means the following. While P1 may not know who P2 is, the verifier (necessarily) must know
authentically who P2 is, and must obtain P2’s authentic public key for verification. Then, assuming that P2

has not been corrupted, P1 is assured that the verifier will deem the signature valid only if the person whom
the verifier knows as P2 actually participated in the signing protocol on M,S.

Random Oracles. As usual, it is possible to extend the above definitions to the random oracle model,
and the actual schemes we present will be in that model. To extend the definitions, we will add a second
security parameter k2 and assume the existence of an oracle H : {0, 1}∗ → {0, 1}k2 to which all the parties
have access. As is usual in the random oracle model [BR93], security will be based on the assumption that
the oracle is chosen at random from all functions {0, 1}∗ → {0, 1}k2 . The adversary is now also allowed
queries to H, which we will call “hash queries.”

Equivalent, but simpler adversary. The adversary described above is extremely powerful, and pro-
vides for a compelling notion of security. However, in Section A of the Appendix, we show it equivalent to
a different type of adversary, for which proofs of security become much easier.

3 An Implementation of ASM

The ASM scheme proposed here has a complex key generation, but it allows for very efficient signing and
verifying. Namely, a subgroup S signs a message M by means of a 3-round protocol, where each signer
sends/receives a total of 3 messages and performs a single modular exponentiation. The main cost of
verification is |S| modular multiplications (that need be performed only once for a given S), and two modular
exponentiations. The signature length is that of a single-signer signature, and does not grow with the number
of signers.

We construct our scheme by modifying the “two-cycle” scheme of Section 6 of [OO99]. The scheme is
based on the discrete logarithm problem (DLP); more precisely, on the signature scheme of Schnorr [Sch91],
summarized below, which is known to be equivalent to the DLP in the random oracle model.

3.1 The Schnorr (Single-Signer)
Signature Scheme

A user U generates two primes p and q such that q divides p−1, g ∈ Z∗p of order q, and a random s ∈ [0, q−1].
U ’s secret key is s and its public key is (p, q, g, I), where I = gs mod p. To sign a message M , U does the
following:

• picks a random r ∈ [0, q − 1];

• computes a commitment X = gr mod p;

• queries the random oracle H to compute the challenge e = H(X,M);

• computes y = es+ r mod q;

• outputs (X, y) as the signature of M .

7

To verify a signature (X ′, y′) for M , one computes e′ = H(X ′,M) and checks whether gy
′ ≡ X ′ · Ie′

(mod p).

3.2 Informal Description

This subsection provides an introduction to our scheme by presenting an (underlying) naive scheme (essen-
tially, the “two-cycle” scheme from [OO99]), and then pointing out different reasons for which it does not
work, together with the corresponding fixes.

The naive scheme. All signers in G know each other and common parameters p, q and g as in the Schnorr
scheme. Each signer i randomly and independently selects si ∈ [0, q − 1] and sets Ii = gsi mod p.

An (unordered) subgroup S = {Pi1 , . . . , Pi`} signs a message M in three rounds: all players i in S
select a random ri ∈ [0, q − 1], compute individual commitments Xi = gri mod p, and multiply their Xi’s
together (modulo p) to obtain a joint commitment, X̃. Then, all players i in S compute the joint challenge
e = H(X̃,M, S); the “individual signatures” yi = esi+ ri mod q; and finally add (modulo q) their individual
signatures together to obtain ỹ, and output (X̃, ỹ) as S’s signature of M .

One verifies (X̃ ′, ỹ′) to be S’s signature of M by computing e′ = H(X̃ ′,M, S) and checking whether

gỹ
′
≡ X̃ ′ ·

(∏
Pi∈S

Ii

)e′
(mod p).

Problems and fixes.

Problem 1: How to generate common p, q and g? Only the security parameter k and the random oracle H
are assumed to be common to all players. Thus, common p, q and g can be individually generated by the
players in G using a common generating subroutine and relying on a canonical use of H as a (common) source
of randomness. Unlike the Schnorr scheme, however, the adversary now also knows additional information
about p, q and g, namely, the very coin tosses that generated them. This that may help the adversary
solve the discrete log problem in the g-generated subgroup modulo p. (For instance, if p and q are found by
running Bach’s algorithm [Bac88], then one also gets the entire factorization of p− 1, which may perhaps be
useful to a clever DLP algorithm.)

Fix 1. The fix simply consists of realizing this weakness and incorporating the (p, q, g) generation process
into the DLP assumption. To be precise, one needs to incorporate also the performance of this generation
process. (For instance, starting with a large prime q and searching for a prime p ≡ 1 (mod q) is not known
to be guaranteed to terminate in expected poly(|q|) time.) To keep this fix simple, we actually propose to
make q “as big as possible”, that is, we assume that one can easily find primes p of the form 2q+ 1 (though
in Section B of the Appendix, weaker assumptions are considered.)

Problem 2: The naive scheme is not secure at all if the adversary attacks key generation. Assume that player
L is bad and generates his public key last by choosing a secret key s ∈ [0, q − 1] and then setting

IL =

(
L−1∏
i=1

Ii

)−1

· gs (mod p).

In this case, player L can sign any message M it wants on behalf of the entire group G: in fact s ends up
being the “group’s secret key,” corresponding to the “public key”

∏L
i=1 Ii (mod p).3

Fix 2. We fix this problem by requiring that each player i provides a zero-knowledge proof of knowledge
(ZKPoK) of the secret key relative to Ii (i.e., a ZKPoK of the discrete log of Ii in base g). To remove
interaction in this ZKPoK, we use the random oracle á la Fiat-Shamir [FS86].

Problem 3: Fix 2 is insufficient. Indeed, what is the verifier that checks the validity of this ZKPoK? Assuming
that the public-key database is implemented via a trusted center (or certifying authority), this verifier could

3 This attack has appeared in the past, in particular, in the works of [HMP95, Lan96, MH96]. The same attack can be used
against the “Type II” scheme of [OO98, OO99].

8

be the center itself (this, in fact, was the solution proposed in previous works on DLP-based multisignatures).
However, this is an additional requirement that also introduces potential weaknesses and constraints. Indeed,
there are ways to implement exchange of public keys without trusted centers. For instance, each signer can
hand its public key to all potential verifiers at the next CCS conference. Alternatively, signer i can use its
previously certified public key to sign its current public key Ii. (And, though a trusted center may have
been involved in publicizing the previous key, it may not be around to certify the current Ii.)

Fix 3. These problems can be solved by having each signer i include in its public key not only Ii, but also
the (non-interactive, random-oracle based) ZKPoK. This results in a moderate loss of efficiency: each public
key gets slightly longer, and each verification requires 2|S|+ 2 exponentiations rather than just two. (This is
so because the verifier of S’s signature of M also needs to verify the proofs in the public keys of the members
of S, and each verification takes two exponentiations) . However, each public key of a member of G needs
to be checked at most once by each verifier if the verifier keeps careful records.

Problem 4: We cannot prove Fix 3 secure for many signers. For Fix 3 to work in the security proof, it is
necessary that, for each bad player Pj , a polynomial-time simulator succeeds in extracting the discrete log
of Ij from the ZKPoK that the Pj provides. However, for all known proof techniques in the random-oracle
model, if player Pj computes Ij after making q queries to oracle H, then the simulator succeeds in computing
the discrete log of Ij with probability at most 1/q. Thus, if there are k bad signers, then the simulator will
succeed for all of them with probability at most 1/qk. That is, for the simulator to be polynomial time,
there can be at most logarithmically many signers.

Fix 4. All signers i in G after computing their own si and Ii, exchange the Ii values and their commitments
Xi for the ZKPoK. Then, each individual signer i proves knowledge of si by using the “joint challenge”
e = H(X1, I1, . . . , XL, IL) and the Schnorr signature relative to Ii. The above simulator can now extract
the sj for all k bad signers Pj with the total success probability of about 1/(kq) (because there are kq total
queries to the oracle). Notice that the adversary may cause the key generation protocol to fail (and thus, it
will need to be restarted with a different total group G). All in all, this is a modest problem, because the
same phenomenon occurs during each signature computation, while key generation is only done once.

Problem 5: The public keys in Fix 4 are too long. In order for the ZKPoK in Fix 4 to be verifiable, each player
i has to include its signature σi in its public key, as well as X1, I1, . . . , XL, IL on which it was computed.
In fact, the verifier better check that the vector (I1, . . . , IL) is the same for all members of S. Such public
keys are too long, because their length is proportional to G, regardless of how small S may be. Note that,
in the basic solution of Section 1, the verifier needs to retrieve only |S| ordinary (and, thus, short) public
keys. Even if the public key database contains a special entry for (X1, I1, . . . , XL, IL), the verifier of a single
signature by, say, a 3-member subgroup has to download a vector of length proportional to L.

Fix 5. After the ZKPoKs, as in Fix 4, are exchanged, each signer i verifies all of them and then computes a
Merkle tree (using the random oracle H as the hash function) with the leaves I1, . . . , IL. (Merkle trees are
recalled in Section C of the Appendix.) This Merkle tree will have depth exactly logL (for simplicity, assume
that L is a power of 2). Then, signer i includes in its public key PKi, the value Ii and the authenticating
path of Ii in the Merkle tree. Notice that PKi is quite short: it contains one public key and logL hash
values (for instance, if each ordinary public key is 2000 bits long, the length of the hash values is 200, and
there are 1000 potential signers, then each PKi is only as long as two ordinary public keys).

To verify S’s signature of M , for each signer i in S, the verifier uses Ii and the alleged authenticating
path for Ii to compute the alleged root value Vi, and checks that Vi = Vj for all signers i, j in S. In a sense,
if player i is honest and puts Ii together with its authenticating path into PKi, it implicitly puts into PKi

the root value Vi, and claims that any Ij that correctly “Merkle-hashes” to Vi has been checked by i to be
part of a valid ZKPoK. (Of course, a corrupted player j can use Vi so as to find some other value I ′j 6= Ij ,
also Merkle-hashing to Vi, for which it knows no ZKPoK; but this can be done only by finding a collision
for the random oracle H, which is extremely hard to do.) Thus, if at least one good signer exists in S, all
the other signers in S are forced to have correct keys.

Problem 6: Concurrent signing. The naive scheme is silent about the possibility of concurrent signing. That
is, a good player i belonging to two subgroups S and S′, would be permitted to participate simultaneously in
signing protocols for (M,S) and (M ′, S′). Our proof of security, however, needs to use rewinding, for reasons

9

explained in Section 3.5. It is a well-know fact that rewinding is incompatible with concurrency (unless the
amount of concurrency is very small).

Fix 6: To prevent concurrency from messing up our security proof, we do not allow a signer to begin a new
signing protocol until the previous one has been completed or aborted. This is not a serious loss, given that
signing in our DLP-based scheme is a 3-round protocol. (Note, however, that if two subgroups are disjoint,
then their signing processes can go on simultaneously.)

3.3 The DLP′ Assumption

1. Samplability. The following probabilistic algorithm Gen(1k) runs in expected polynomial time:

Repeat

Let q be a random k-bit string

Until q is prime and p = 2q + 1 is prime

Output p and q.

2. Hardness. For any algorithm A, denote by pAk the probability that, on inputs

(a) a random k-bit prime q such that p = 2q + 1 is also prime,

(b) a random element g ∈ Z∗p of order q, and

(c) a random I in the g-generated subgroup of Z∗p ,

A outputs s ∈ [0, q − 1] such that I ≡ gs (mod p). Then, ∀ probabilistic polynomial-time A, ∀c > 0,
and ∀ sufficiently large k,

pAk < k−c.

Remark. If p and q are generated by Gen above, then it is easy to find a random element g ∈ Z∗p of order q
(by picking a random element r ∈ Z∗p until g = r(p−1)/q mod p 6= 1).

We note that our scheme continues to be provably secure based on a more general, but more complex,
DLP assumption, described in Section B of the appendix.

3.4 Description

• Preliminaries

Security Parameters. All players are assumed to have, as a common input, the security parameter k,
and the number L of players is assumed to be polynomial in k. A second security parameter k′ < k is
deterministically computed from k. (Typically, k′ = 100.)4

Random Oracles. The players use (in any fixed standard way) the single random oracle H to implement
five independent random oracles H1,H2,H3,H4 and H5, such that

H1,H2 : {0, 1}∗ → {0, 1},
H3,H5 : {0, 1}∗ → {0, 1}k

′
, and

H4 : {0, 1}∗ → {0, 1}2k
′
.

Subroutine Gen. Key generation will use the algorithm Gen of assumption DLP′ (or DLP′′).

Distinguished Player. In describing the scheme, we shall use a distinguished player D. This is for
convenience only, and does not require changing our model. In fact, D is a player who knows no

4As for all Fiat-Shamir-like schemes, including Schnorr’s, k′ controls the security of our scheme in a way that is quite
different and independent of k. Indeed, k should be large enough so that solving the discreet logarithm problem when q is a

k-bit prime is practically impossible. Parameter k′ should be large enough so that it is practically impossible to perform 2k
′

steps of computation, and the probability 2−k
′

is practically negligible. Of course, we can always set k′ = k−1, but our scheme
can be made much more efficient while maintaining the same level of security by selecting an appropriately lower value of k′.

10

secrets and can be implemented by any one of the players in the subgroup S, or even collectively by
the members of S.

Merkle Trees. We assume some familiarity with the notion of a Merkle tree [Mer89], whose description
is given in Section C of the Appendix.

• Key generation

Common keys. All players run Gen(1k) using H1(2k),H1(2k + 1), . . . , as the random tape in order to
generate primes p and q. They then generate a random g ∈ Z∗p of order q using H2(2k),H2(2k+1), . . . ,
as the random tape.

Individual keys. Each player Pi (1 ≤ i ≤ L) does the following:

1. chooses si ∈ [0, q − 1] and sets the secret key SKi = si;

2. computes its public value Ii = gsi mod p;

3. chooses a random ri ∈ [0, q − 1] and computes a commitment Xi = gri mod p

4. broadcasts (Xi, Ii) to all the players;

5. upon receipt of (X1, I1), . . . , (XL, IL), computes e = H3(X1, I1, . . . , XL, IL) and yi = esi + ri;

6. broadcasts yi to all the players;

7. for each (Xj , yj) received from player Pj , verifies that gyj ≡ XjI
e
j mod p. If all checks are satisfied,

Pi computes the authenticating path, Pathi, of leaf i in the L-leaf binary Merkle tree whose j-th
leaf contains Ij and whose hash function is H4.

8. registers PKi = (p, q, g, Ii,Pathi) as its public key.

(Comment: p, q, g are included in PKi only to save time for the verifier. Alternatively, p, q and g could
be a special entry in the public key database, if one exists, or could be re-computed by the verifier.)

• Signing: Suppose the players in a subgroup S = {Pi1 , . . . , Pim} wish to sign jointly a message M .
Then they perform the following three-round protocol:

1. Each signer Pij ∈ S, if not currently involved in another signing protocol,

1.1 picks a random rj ∈ [0, q − 1];
1.2 computes its individual commitment Xj = grj mod p;
1.3 sends Xj to D.

2. D computes the joint commitment as the product X̃ =
∏m
j=1Xj mod p and broadcasts it to each

signer Pij ∈ S.

3. Each signer Pij ∈ S

3.1 queries the random oracle H5 to compute the challenge e = H5(X̃,M, S)
3.2 computes yj = esj + rj mod q;
3.3 sends yj to D.

4. D computes ỹ =
∑m
j=1 yj mod q and outputs σ = (X̃, ỹ) as the signature.

(Remark: The role of D in steps 2 and 4 can be performed by Pi1 or by all players in S, e.g., “arranged
in a circle” by having Pij send

∏j
α=1Xα —or

∑j
α=1 yα, respectively— to Pij+1 .)

• Verification: To verify a signature σ = (X̃, ỹ) of a message M of a subgroup S = {Pi1 , . . . , Pim}
whose members have public keys PKi1 , . . . , PKim , one does the following:

1. Check that all public keys contain the same p, q and g.

2. For each Pij ∈ S, use Iij and Pathij to compute a candidate root value Vij for that player’s
alleged Merkle tree, and check that all such Vij are equal.

11

3. Compute ĨS =
∏m
j=1 Iij mod p.

4. Compute e = H5(X̃,M, S).

5. Check that gỹ ≡ X̃ĨeS (mod p).

(Remark: Steps 1-3 need be performed only once for a given subgroup S.)

3.5 Security

Theorem 1 Under the DLP′ assumption, the above is a secure ASM scheme.

See Section D for the proof of this theorem. Below we describe the two main ingredients of the proof.

1. We use the “forking lemma” [FFS88, PS96] technique in order to violate the DLP′ assumption.

Unlike the usual forking-lemma-based proofs, however, we need to use the technique twice, because
adversarial players can participate in the forgery output by the adversary. Thus, we use the forking
lemma during key generation to obtain the secret keys of the adversarial players5, and again when
the adversary outputs a forged signature on (M,S) to compute the discrete logarithm α of

∏
Pi∈S Ii.

The secret keys of the adversarial players in S are then subtracted from α to get the desired discrete
logarithm.

2. We use rewinding, not commonly used in similar random oracle proofs, for reasons explained below.

In ASM schemes, as in single-signer signatures, the adversary is entitled to a chosen message attack.
That is, it can ask for and receive the signature of any message M it wants. However, this capability
is much more powerful and dangerous for ASM schemes than for single-signer signatures.

In the single-signer Schnorr scheme (as in any other Fiat-Shamir-like scheme in the random oracle
model), during a signature query the adversary can provide the (single) signer only with a message M .
The signer will then select its own commitment X relative to which it produces the signature of M
(via the challenge e = H(X,M)). Assume, however, that, in our DLP-based ASM scheme, adversary
F wishes that a good player i in S to sign a message M as a member of S. Then, F will first receive
i’s individual commitment, Xi. Now, F can give player i a (fake) joint commitment X̃ of its choice.
And it will be relative to this X̃ that player i will provide its own individual signature, yi, of (M,S).

In previous proofs, for single-signer random-oracle signatures, answering signature queries was easy
because the simulator could imitate the oracle so as to produce commitments and challenges “simul-
taneously.” In our security proof, however, the simulator needs to rewind the adversary (even though
the simulator controls the random oracle). This is so because the simulator must commit to Xi before
knowing what the challenge e (which may be based on a previously asked X̃) will actually be.

References

[ACM88] Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illi-
nois, 2–4 May 1988.

[Bac88] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing, 17(2):179–
193, April 1988.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In ACM [ACM88],
pages 1–10.

5Note that our definition does not require adversarial players to participate in the key generation protocol, or to have any
secret keys at all. Our construction, however, ensures that they will both participate and know their secret keys: otherwise,
their public keys will not be included in the Merkle tree, and the forgery will not be deemed valid.

12

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communication Security, pages 62–73, November 1993. Revised version appears in
http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[Bra89] G. Brassard, editor. Advances in Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science. Springer-Verlag, 1990, 20–24 August 1989.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols
(extended abstract). In ACM [ACM88], pages 11–19.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended
abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 410–424. Springer-Verlag, 17–21 August 1997.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Davies [Dav91], pages 257–265.

[Dav91] D. W. Davies, editor. Advances in Cryptology—EUROCRYPT 91, volume 547 of Lecture Notes
in Computer Science. Springer-Verlag, 8–11 April 1991.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Brassard [Bra89], pages 307–315.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of Cryp-
tology, 1(2):77–94, 1988.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology—CRYPTO ’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer-Verlag, 1987, 11–
15 August 1986.

[GJKR96a] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and efficient
sharing of RSA functions. In Koblitz [Kob96], pages 157–172.

[GJKR96b] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. In Maurer [Mau96], pages 354–371.

[GJKR99] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. In Jacques Stern, editor, Advances in Cryptology—
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 295–310. Springer-
Verlag, 2–6 May 1999.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, pages 218–229, New York City, 25–27 May 1987.

[Har94] L. Harn. Group-oriented (t, n) threshold digital signature scheme and digital multisignature.
IEE Proc.-Comput. Digit. Tech., 141(5), September 1994.

[HMP95] Patrick Horster, Markus Michels, and Holger Petersen. Meta-multisignatures schemes based on
the discrete logarithm problem. In Information Security: The Next Decade. Proceedings of the
IFIP TC11 Eleventh International Conference on Information Security, IFIP/Sec ’95, pages
128–141. Chapman & Hall, 1995.

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisignatures.
NEC Research & Development, (71):1–8, October 1983.

[Kob96] Neal Koblitz, editor. Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science. Springer-Verlag, 18–22 August 1996.

13

[Lan96] Susan K. Langford. Weaknesses in some threshold cryptosystems. In Koblitz [Kob96], pages
74–82.

[LHL94] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-multisignature schemes where
suspected forgery implies traceability of adversarial shareholders. In Alfredo De Santis, editor,
Advances in Cryptology—EUROCRYPT 94, volume 950 of Lecture Notes in Computer Science,
pages 194–204. Springer-Verlag, 1995, 9–12 May 1994.

[Mau96] Ueli Maurer, editor. Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes
in Computer Science. Springer-Verlag, 12–16 May 1996.

[Mer89] Ralph C. Merkle. A certified digital signature. In Brassard [Bra89], pages 218–238.

[MH96] Markus Michels and Patrick Horster. On the risk of disruption in several multiparty signa-
ture schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology—
ASIACRYPT ’96, volume 1163 of Lecture Notes in Computer Science, pages 334–345, Kyongju,
Korea, 3–7 November 1996. Springer-Verlag.

[Mic00] Silvio Micali. CS proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000.

[Oka88] Tatsuaki Okamoto. A digital multisignature schema using bijective public-key cryptosystems.
ACM Transatction on Computer Systems, 6(4):432–441, November 1988.

[OO91] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the Fiat-Shamir
scheme. In H. Imai H, R. Rivest, and T. Matsumoto, editors, Advances in Cryptology —
ASIACRYPT 91, pages 139–148. Spring-Verlag, 1993, 11–14 November 1991.

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Hugo Krawczyk, editor, Advances in Cryptology—CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 354–369. Springer-Verlag, 23–27 August 1998.

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes secure against active insider at-
tacks. IEICE Transactions on Fundamentals of Electronics Communications and Computer
Sciences, E82-A(1):21–31, January 1999.

[Ped91] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party (extended abstract).
In Davies [Dav91], pages 522–526.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Maurer [Mau96],
pages 387–398.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

A Simplifying the Adversary

The adversary F described in Section 2 is extremely powerful. It can corrupt and attack arbitrary parties at
arbitrary, adaptively determined times. The resulting notion of security is, therefore, very compelling, but
is also difficult to work with when analyzing a concrete implementation of ASM schemes. We will therefore
define a weak adversary F ′ that operates in a rather simple and easy to analyze manner, and prove that,
despite such simplicity, an ASM scheme is secure against F ′ if and only if it is secure against F . In the
sequel, therefore, we shall analyze the security of schemes in terms of F ′ rather than F .

Unlike F , the weak adversary F ′ does not have the ability to corrupt players. In fact, it does not even
interact with a network of players: at the outset (before key generation), it has to pick one player Pi that it
will be attacking. The other players then cease to exist, and F ′ has to provide all the inputs and network
traffic for Pi. It can also see all the outputs and network traffic coming out of Pi.

After Pi generates its keys, F ′ is allowed to carry out an adaptive chosen-message-and-subgroup attack
on Pi, just like F . The goal of F ′ is similar to that of F .

14

Definition 2 An ASM scheme is called weakly secure if, for all constants c > 0 and all sufficiently large
security parameters k, no polynomial-time (in k) weak adversary has better than k−c chance of outputing a
triple (σ,M, S) such that:

• σ is a valid signature on the message M by the subgroup S of players

• Pi ∈ S,

• Pi has not been asked by F ′ to execute the signing protocol on M and S.

Because the other players don’t exist, in some sense, they will now necessarily be “fictitious.”
Note that the weak adversary can also be seen as the strong adversary that is not allowed to adaptively

corrupt players: rather, it has to pick at the outset the L− 1 players it will corrupt. This observation leads
to the following theorem.

Theorem 2 Assume that there exists a polynomial Q such that for any security parameter k, the size L of
G is bounded by L < Q(k). Then an ASM signature scheme is weakly secure if and only if it is (strongly)
secure.

Proof Suppose the scheme is not weakly secure, with respect to a polynomial-time weak adversary F ′.
Notice that a weak adversary is a special case of the strong adversary, so the scheme is also not strongly
secure.

The other direction is only a little bit harder. Suppose the scheme is not strongly secure, with respect to
a polynomial-time strong adversary F . Note that at the end, in order for F to succeed, there has to exist a
player Pi that has not been corrupted by F . We therefore will contsruct a polynomial-time weak adversary
F ′ as follows. It picks a random i s.t. 1 ≤ i ≤ L in order to attack Pi (hoping that Pi is a player that will
not corrupted by F). It then simulates all the other players to F by simply running their protocols for them.
If F decides to corrupt any player but Pi, F ′ will be able to provide F with the private information for that
player. Same if F attacks any player but Pi: F ′ will be able to provide F with the answers. If F attacks
Pi, with a chosen-message-and-subgroup attack, F ′ simply passes on that attack query to Pi, and sends Pi’s
outputs back to F . If F decides to corrupt Pi, F ′ fails.

If F does not output a valid forgery (σ,M, S), or if Pi /∈ S, then F ′ also fails. Otherwise, F ′ simply
outputs the forgery of F and succeeds.

Pr[F ′ succeeds]
= Pr[F ′ picks i s.t. Pi is not corrupted by F , and F outputs a forgery (σ,M, S) s.t. Pi ∈ S]

=
L∑
i=1

Pr[F ′ picks Pi] · Pr[F outputs a forgery (σ,M, S), and Pi ∈ S and is uncorrupted]

≥
L∑
i=1

1
L
· Pr[Pi ∈ S and is uncorrupted | F outputs a forgery (σ,M, S)] · Pr[F outputs a forgery]

≥ 1
L

Pr[F outputs a forgery] ,

because
∑L
i=1 Pr[Pi ∈ S and is uncorrupted | F outputs forgery (σ,M, S)] ≥ 1, because for a forgery to be

valid, at least one player in G ∩ S has to be uncorrupted.
Thus, F ′ succeeds at most L times less often than F , so the scheme is not weakly secure.

B A More General DL Assumption

DLP′′ Assumption:

1. Samplability. There exist constants c1, c2 > 0 and a probabilistic polynomial-time algorithm Gen such
that, on input 1k, Gen outputs two random primes p and q such that q is k-bit long and divides p− 1,
and p is c1kc2 bits long.

15

2. Hardness. For any algorithm A, denote by pAk the probability that, on inputs

(a) a random tape, R, such that Gen (defined immediately above) on input 1k and tape R outputs p
and q,

(b) a random element g ∈ Z∗p of order q, and

(c) a random I in the g-generated subgroup of Z∗p ,

A outputs s ∈ [0, q − 1] such that I ≡ gs (mod p). Then, ∀ probabilistic polynomial-time A, ∀c > 0,
and ∀ sufficiently large k,

pAk < k−c.

C Merkle Trees

(The following description is taken almost verbatim from [Mic00].) Recall that a binary tree is a tree in
which every node has at most two children, hereafter called the 0-child and the 1-child. A collision-free
hash function is, informally speaking, a polynomial-time computable function H mapping binary strings of
arbitrary length into reasonably short ones, so that it is computationally infeasible to find any collision (for
H), that is, any two different strings x and y for which H(x) = H(y).

A Merkle tree [Mer89] then is a binary tree whose nodes store values, some of which computed by means
of a collision-free hash function H in a special manner. A leaf node can store any value, but each internal
node should store a value that is the one-way hash of the concatenation of the values in its children.6 Thus,
if the collision-free hash function produces k-bit outputs, each internal node of a Merkle tree, including the
root, stores a k-bit value. Except for the root value, each value stored in a node of a Merkle tree is said to
be a 0-value, if it is stored in a node that is the 0-child of its parent, a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one succeeds in finding a collision for H, it is
computationally hard to change any value in the tree (and, in particular, a value stored in a leaf node)
without also changing the root value. This property allows a party A to “commit” to L values, v1, . . . , vL (for
simplicity assume that L is a power of 2 and let d = logL), by means of a single k-bit value. That is, A stores
value vi in the i-th leaf of a full binary tree of depth d, and uses a collision-free hash function H to build a
Merkle tree, thereby obtaining a k-bit value, V , stored in the root. This root value V “implicitly defines”
what the L original values were. Assume in fact that, as some point in time, A gives V , but not the original
values, to another party B. Then, whenever, at a later point in time, A wants to “prove” to B what the
value of, say, vi was, he may just reveal all L original values to B, so that B can recompute the Merkle tree
and the verify that the newly computed root-value indeed equals V . More interestingly, A may “prove” what
vi was by revealing just d + 1 (that is, just 1 + logL) values: vi together with its authenticating path, that
is, the values stored in the siblings of the nodes along the path from leaf i (included) to the root (excluded),
w1, . . . , wd. Party B verifies the received alleged leaf-value Ii and the received alleged authenticating path
w1, . . . , wd as follows. She sets u1 = vi and, letting i1, . . . , id be the binary expansion of i, computes the
values u2, . . . , ud as follows: if ij = 0, she sets uj+1 = H(wjuj); else, she sets uj+1 = H(ujwj). Finally, B
checks whether the computed k-bit value ud equals V .

D Proof of Theorem 1

Note: Below we provide just the most essential aspects of our security proof.

Overview. We will show that if the scheme is insecure with respect to a polynomial-time weak adversary
F ′ (see Section A for why its equivalent to the usual adversary F), then there exists a polynomial-time
algorithm A that violates the DLP′ assumption.

Suppose A is given an DLP′ instance p, q, g, I to invert: that is,
A needs to find s ∈ [0, q − 1] such that gs ≡ I (mod q). Suppose F ′, at the outset, selects player Pi to

attack. Recall that F ′ can ask the single uncorrupted player Pi to sign any message M with any subgroup
6I.e., if an internal node has a 0-child storing the value U and a 1-child storing a value V , then it stores the value H(UV).

16

S 3 Pi. F ′ does so by making a corresponding signature query. In addition, F ′ is free to query the random
oracle H on any string it wants, by making a hash query. Thus, the algorithm A will need to be able to
simulate Pi during key generation and answer both types of queries of F ′. Only then, using the forgery
generated by F ′, will A be able to invert the given DLP′ instance.

Hash queries can be answered, essentially, at random. Note, however, that signature queries to an
attacked player Pi in the DLP-based scheme consist of two rounds. First, the adversary provides M and S
to Pi and receives the individual commitment Xi from Pi in response. Second, playing the role of D, the
adversary provides the joint commitment X̃ to Pi and receives yi from Pi in response. Therefore, as we shall
see, answering signature queries will be more complex.

Simplifying the Adversary. Let qhash be the maximum number of hash queries, and qsig be the
maximum number of signature queries that F ′ makes. Let F ′′ be the same algorithm as F ′, except that
whenever F ′ is about to make the second half of the signature query to Pi on a message M , subgroup S
and joint commitment X̃ (having already received Xi from Pi in the first half of the query), F ′′ first makes
a hash query to H5 on (X̃,M, S). Similarly, when F ′ is ready to output a forged signature (X̃, ỹ) on a
message MF and subgroup S, F ′′ will first ask a hash query to H5 on (X̃,MF , S). Clearly, if F ′ exists and
runs in polynomial time, so will F ′′. F ′′ has the same success probability as F ′, makes qhash + qsig + 1 hash
queries and qsig signature queries. Finally, we let F be the same algorithm as F ′′, except that it performs
the necessary bookkeeping to avoid asking the same hash query twice (i.e., it asks a hash query only if it
has not been asked before, and stores the result for subsequent requests of the same query).

We will construct the algorithm A using F instead of F ′. The advantage of working with F is that A
gets, through hash queries, a “preview” of the signing queries and the final output. For F , every signing
query is based on a unique hash query that occurs prior to the second half of the signing query. The forgery
output by F also based on a unique hash query that occurs prior to the forgery.

Assume that F asks qH hash queries to H5.

Answering queries. The answers to all the H5 queries are picked in advance at random as e1, . . . , eqH .
To answer a signature query to player Pi on M,S, A does the following:

1. Save the configuration of F .

2. Pick j between 1 and qH at random (hoping that the second round of this signature query will be
based on the j-th hash query).

3. Pick y ∈ [0, q − 1] at random.

4. Compute Xi = I
−ej
i gy mod p, and send Xi to F as the response to the first round of the query.

5. Upon receiving X̃ from F , verify if the j-th hash query was indeed on (X̃,M, S). If so, output y.
Otherwise, rewind F to its stored configuration and repeat, starting at Step 2.

Note that A has to rewind the adversary an expected number of qH times for each signature query.

Using F to violate the DLP
′

assumption. Suppose A is given an instance p, q, g, I of DLP′, and
player i is the single uncorrupted player. A “concocts” H1 and H2 so that p, q and g are generated as the
common keys (in the case of DLP′′ assumption, A is already given the random string that produces p and
q). A then sets Ii = I and “concocts” H3 so as to be able to “prove” the knowledge of the discrete log
of Ii to the base g. Note that in this proof, just like in answering signature queries, A has to provide the
commitment Xi before it receives Xj from other players and thus before it knows the challenge e; thus, it
may need to rewind the adversary in the same way as when answering signature queries (this needs to be
done an expected number of qH3 times, where qH3 is the number of queries F makes to H3).

A then runs F , answering its queries as described above. Suppose that F outputs a forgery (X̃0, ỹ0) of
a signature by a subgroup S0 of a message M0. Suppose further that the forgery was based on the j0-th
hash query to H5 on (X̃0,M0, S0), which was answered with ej0 . Using the usual “forking lemma” technique
[FFS88, PS96], A resets F with the same random tape as the first time and runs it again, giving the same
answers to its hash queries, except for the j0-th hash query, which is answered with a new random number
e′j0 .

17

Suppose there are r signature queries whose first round occurs before the j0-th hash query (the r-th
signature query may have its second round occur after the j0-th hash query, but the first r − 1 signature
queries mush complete before j0-th hash query begins, because we do not allow parallel signing queries).
Note that, because F is reset with the same random tape and given the same answers, the first r−1 signature
queries will, again, be the same, provided that they are answered in the same way. Also note that, in the
first run, no signature queries could be based on the j0-th hash query, because the forgery was based on it
(and F is not allowed to forge on M,S for which it already asked a signing query). Therefore, as one can
easily show by induction on the signature query number, none of the first r − 1 signature queries will be
based on the j0-th hash query, and therefore, all these signature queries can be answered in the same way
as in the first run (thus, no rewinding is needed to answer them in the second run, because A remembers
its answers from the first run). We are also assured that the first round of the r-th signature query is the
same. Because the second round of the r-th signature query may occur after the j0-th hash query, and the
j0-th hash query is answered differently, we cannot be sure that A will not need to rewind F when answering
the r-th signature query. However, with probability 1/qH , F ’s second round of the r-th signature query will
indeed be based on the same hash query as in the first run, in which case A will not need to rewind. If this
is the case, then, because the random tape and answers to all the queries up to j0-th hash query are the
same, we are assured that j0-th hash query to H5 will also be the same: (X̃0,M0, S0).

If F again outputs a forgery (X̃1, ỹ1) of a signature by a subgroup S1 of a message M1, and if that forgery
is again based on j0-th hash query, then M1 = M0, S1 = S0, X̃1 = X̃0, and

gỹ0 ≡ X̃0Ĩ
ej0
S0

(mod p) and gỹ1 ≡ X̃0Ĩ
e′j0
S0

(mod p), so ,

gỹ0

Ĩ
ej0
S0

≡ gỹ1

Ĩ
e′
j0
S0

(mod p), so

Ĩ
ej0−e

′
j0

S0
≡ gỹ0−ỹ1 (mod p), so

ĨS0 ≡ g(ỹ0−ỹ1)/(ej0−e′j0) (mod p).

Thus, A can compute the discrete log of ĨS0 as (ỹ0 − ỹ1)/(ej0 − e′j0) mod q.
Note that if S0 = {Pi1 , . . . , Pil}, then ĨS0 =

∏l
j=1 Iij . One of those Iij ’s is Ii (because the forgery

subgroup S0 has to contain player i), whose discrete log A is trying to compute. Thus, to get discrete log
of Ii from discrete log of ĨS0 , A needs to find and subtract the discrete logs of the other Iij ’s. This can
be done because the adversary (unless it is able to find a collision in H4 and thus “break” the Merkle-tree)
has to provide Pi (and, therefore, A), with a ZKPoK of the discrete log of all Iij for ij 6= i. Using, again,
the forking lemma in a standard way, A can rewind F to obtain the discrete log sij whose knowledge F is
proving. Note that A will only need to fork once in order to do this, because in the proof of knowledge each
player ij has to use the same challenge, computed as H3(X1, I1, . . . , XL, IL).

Note that the running time of A, because of rewinding an expected number of qH times for each signature
query and for key generation, is proportional to qH , but is still polynomial in k. The probability of A’s success
is inverse polynomial in qH , and thus also in k.

18

