
6.889: New Developments in Cryptography February 8, 2011

Fully Homomorphic Encryption

Instructor: Boaz Barak Scribe: Alessandro Chiesa

Achieving fully-homomorphic encryption, under any kind of reasonable computational assump-
tions (and under any reasonable definition of “reasonable”) was a holy grail of cryptography for over
30 years. In 2009, Craig Gentry [Gen09a, Gen09b, Gen10] proposed the first fully-homomorphic
encryption scheme that is secure under a reasonable assumption. Craig Gentry and Shai Halevi
have already implemented the scheme, and are working on optimizations [GH10].

In the next two lectures, we will describe a somewhat simplified variant of Gentry’s construction,
obtained by Martin van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan [vDGHV10]
(with a slight simplification suggested by Sushant Sachdeva, which was also independently observed
by Ivan Damg̊ard).

1 Definitions

Two sequences of distributionsX = {Xn ∈ ∆({0, 1}poly(n))}n∈N and Y = {Yn ∈ ∆({0, 1}poly(n))}n∈N
are statistically indistinguishable if, for every function family {fn : {0, 1}poly(n) → {0, 1}}n∈N and

for all sufficiently large n ∈ N, �E[f(Xn)]−E[f(Yn)] � < 2−n1/1000
, where � · � denotes the �1 norm.

The definition of strongly fully-homomorphic encryption is as follows:

Definition 1. We say that a quadruple (Gen,Enc,Dec,Eval) of probabilistic polynomial-time al-
gorithms is a strongly fully-homomorphic (public-key) encryption scheme (FHE for short) if:

1. (Gen,Enc,Dec) is a semantically-secure (public-key) encryption scheme1 and,

2. For every polynomially-bounded function t : N → N, every polynomial-size t-input circuit
family {Cn}n∈N, every

3. For every sequence of key pairs {(pkn, skn) ∈ Gen(1n)}n∈N, every polynomially-bounded
function t : N → N, every polynomial-size t-input circuit family {Cn}n∈N, every sequence
of input bits {(b1,n, b2,n, . . . , bt(n),n) : bi,n ∈ {0, 1}}n∈N, every sequence of valid ciphertexts
{(c1,n, c2,n, . . . , ct(n),n) : ci,n ∈ Encpkn(bi,n)}n∈N, we have:2

�
c∗ ← Evalpkn(Cn, c1,n, . . . , ct(n),n) : c∗

�
n∈N ≈s

�
c∗ ← Encpkn(Cn(c1,n, . . . , ct(n),n)) : c∗

�
n∈N .

The second (very strong) condition implies, in particular, the following weaker one: for all suf-
ficiently large n ∈ N, for every b1, . . . , bt(n) ∈ {0, 1}, the following two distributions are statistically
indistinguishable:

�
(pk, sk) ← Gen(1n) ; c1 ← Encpk(b1) ; . . . ; ct(n) ← Encpk(bt(n)) ;

c∗ ← Evalpk(Cn, c1, . . . , ct(n)) : (pk, c1, . . . , ct(n), c
∗)
�
n∈N

1That is, the two sequences of distributions given by {(pk, sk) ← Gen(1n) ; c ← Encpk(0) : (pk, b)}n∈N and
{(pk, sk) ← Gen(1n) ; c ← Encpk(1) : (pk, b)}n∈N are computationally indistinguishable, i.e., any circuit of polynomial
size will succeed in distinguishing them with bias less than one over any polynomial; for the purposes of this class,

we can replace “any polynomial” with some fixed super-polynomial function such as 2−n0.001
.

2We require statistical indistinguishability, because we want the two distributions to be close even for a distin-
guisher that knows the secret key sk. That will ensure that they decrypt to the same value!

2-1

and

�
(pk, sk) ← Gen(1n) ; c1 ← Encpk(b1) ; . . . ; ct(n) ← Encpk(bt(n)) ;

c∗ ← Encpk(Cn(c1, . . . , ct(n))) : (pk, c1, . . . , ct(n), c
∗)
�
n∈N .

This latter condition allows for Eval to fail on “bad” public keys or “bad” ciphertexts.
Recall that, in the definition of weakly fully-homomorphic encryption, the second condition is

relaxed to an even weaker condition that only requires Eval to output ciphertexts not much longer
than the input ciphertexts.

Our first observation is that it suffices to construct an evaluation algorithm Eval only for XOR
and AND (or, equivalently, for addition and multiplication modulo 2), because {XOR,AND} is a
universal gate set and thus we can perform the evaluation of a circuit C gate by gate. (Though
one still has to argue that, since the size of the circuit is much smaller than the statistical distance,
performing an evaluation for each gate in the circuit will not increase the statistical distance by too
much.) Hence, we will work with the following equivalent formulation of strongly fully-homomorphic
encryption:

Definition 2. We say that a quadruple (Gen,Enc,Dec,Add,Mult) of probabilistic polynomial-time
algorithms is a strongly fully-homomorphic (public-key) encryption scheme (FHE for short) if:

1. (Gen,Enc,Dec) is a semantically-secure (public-key) encryption scheme and,

2. For every two bits b and b� in {0, 1}:

(a) for every three sequences {(pkn, skn) ∈ Gen(1n)}n∈N, {cn ∈ Encpkn(b)}, and {c�n ∈
Encpkn(b

�)},
�
c∗ ← Addpkn(cn, c

�
n) : c∗

�
n∈N ≈s

�
c∗ ← Encpkn(b⊕ b�) : c∗

�
n∈N .

(b) for every three sequences {(pkn, skn) ∈ Gen(1n)}n∈N, {cn ∈ Encpkn(b)}, and {c�n ∈
Encpkn(b

�)},
�
c∗ ← Multpkn(cn, c

�
n) : c∗

�
n∈N ≈s

�
c∗ ← Encpkn(b⊕ b�) : c∗

�
n∈N .

Similarly to Definition 1, the second condition implies, in particular, that

�
(pk, sk) ← Gen(1n) ; c ← Encpk(b) ; c

� ← Encpk(b
�) ; c∗ ← Addpk(c, c

�) : (pk, c, c�, c∗)
�
n∈N

≈s
�
(pk, sk) ← Gen(1n) ; c ← Encpk(b) ; c

� ← Encpk(b
�) ; c∗ ← Encpk(b⊕ b�) : (pk, c, c�, c∗)

�
n∈N .

and

�
(pk, sk) ← Gen(1n) ; c ← Encpk(b) ; c

� ← Encpk(b
�) ; c∗ ← Multpk(c, c

�) : (pk, c, c�, c∗)
�
n∈N

≈s
�
(pk, sk) ← Gen(1n) ; c ← Encpk(b) ; c

� ← Encpk(b
�) ; c∗ ← Encpk(b ∧ b�) : (pk, c, c�, c∗)

�
n∈N .

However, for simplicity, we will use the stronger definition, as it is easier to work with (and we can
anyways achieve it). Thus, henceforth we will focus on constructing a scheme satisfying Definition 2.

2-2

Private-key FHE. The definitions for private-key strongly fully-homomorphic encryption schemes
are analogous, except that the algorithms Eval, Add, and Mult do not get the secret key as input.
(Else, the “computing on ciphertext” task would be trivial: Eval could simply decrypt, evaluate
the circuit on the plaintexts, and then re-encrypt.)

Also, one can easily transform a private-key FHE into a public-key FHE, by letting the public
key be encryptions of zero and one. (In fact, this is an even easier transformation than the one of
Rothblum [Rot10] that we discussed in the last lecture, and can be approached as an easier variant
of the homework exercise.)

2 Construction of a “noisy” homomorphic encryption scheme

Our first step is to construct a primitive, which is weaker than a strongly fully-homomorphic en-
cryption scheme, that we call a “noisy homomorphic encryption scheme”. This primitive is an
encryption scheme with Add and Mult algorithms that satisfies a relaxed notion of homomorphism.
It will be easier to first construct the scheme, and only after define precisely the notion of homo-
morphism that it satisfies.

We remark that our notion of noisy homomorphism does imply weak homomorphism (i.e., com-
pact encryption) with respect to some subclass of circuits (specifically arithmetic circuits modulo
2 with depth up to n/100, where n is our security parameter).

2.1 LDN Assumption

Let N = PQ, where P and Q are two large random primes, and suppose that we are given several
random multiples of P , i.e., R1P (mod N), . . . , RtP (mod N) where the Ri’s are chosen randomly
in ZQ. Can we efficiently recover P from the t random products? In this case, recovering P can
easily be done by computing the greatest common divisor of, say, R1P and R2P , because with
good probability P will be the only common factor between them.

However, the algorithm for computing the greatest common divisor (which is the Euclidean
algorithm) is extremely sensitive to noise (just like the algorithm for Gaussian elimination). In
particular, it is not at all clear how to adapt the algorithm to (or even how to come up with a new
efficient algorithm for) the case when we are given “noisy” random multiples of P , i.e., R1P + E1

(mod N), . . . , RtP +Et (mod N) where the Ei’s are noise factors that are chosen in some interval
[−E,+E] for some noise parameter E � N .

This motivates us to make the following computational assumption, on which we will base the
security of our scheme:

Learning Divisor with Noise (LDN) assumption. Let P be a random n-bit prime, Q a
random n4-bit prime, set N = PQ, and choose any arbitrary E ≥ 2n

0.1
. Then, for any polynomially-

bounded function t : N → N there is no polynomial-time algorithm that, on input (N,E) and
X1, . . . , Xt ∈ ZN , can distinguish between the following two distributions:

1. the Xi’s are independently drawn at random from ZN , and

2. the Xi = PRi + 2Ei (mod N), where Ri is drawn independently at random from ZQ and Ei

is chosen independently at random from [−E,+E].

Some notes are in order:

2-3

1. We use lowercase letters (such as t) for values that are polynomial in the security parameter
n, and capital letters (such as N , P , Q, and R) for large numbers that have poly(n) digits
(and hence are exponential in the security parameter n).

2. We denote by ZN the set {0, . . . , N − 1} and by Z∗
N the set {X ∈ ZN : gcd(X,N) = 1}. If N

is prime then Z∗
N = {1, . . . , N − 1}. When speaking about a “random” X, it usually will not

matter if we take it from ZN or Z∗
N since |Z∗

N |/|ZN | � |ZN |.

3. The assumption can be seen to be “monotone in E”. That is, increasing E only makes the
problem of distinguishing between the two cases harder. (The intuition is that the distin-
guisher can always add more noise to the inputs on its own.)

4. We made the noise even (i.e., 2Ei instead of Ei) for convenience, but the two choices are
equivalent. (Indeed, given a number of the form RP + E if you multiply it by two you get
2RP + 2E but since Q is odd, if R is uniform over ZQ then 2R is uniform over ZQ as well.)

5. The LDN assumption is clearly stronger than the assumption that factoring N is hard. There
is a variant of the LDN assumption that is still useful for FHE but is not known to imply that
factoring is hard. (On the one hand, this is good news in light of Shor’s factoring algorithm;
on the other hand, it would have been fantastic to obtain FHE under more well-studied
assumptions such as hardness of the RSA problem, factoring, or discrete logarithm.)

2.2 The noisy homomorphic encryption scheme

We now describe the noisy homomorphic encryption scheme (Gen,Enc,Dec,Add,Mult). The con-
struction will yield a private key scheme (but that is not a problem, because it will be easy to
convert it to the public key case). We will also assume some public parameters, which are values
that are output by the key generation algorithm Gen and are made public. (Formally, such public
parameters are never needed since we can always append them to the secret key and all ciphertexts,
but it makes for cleaner notation to assume them.)

Key Generation: Draw a random n-bit prime P and a random n4-bit prime Q. Set N = PQ,
keep P as the secret key, and publish N as a public parameter.

Encryption: For b ∈ {0, 1}, we let EncN,P (b) = Enc2
√

n

N,P (b), where EncEN,P (b) is the distribution
defined as follows: choose R ←R ZQ and E ←R [−E,+E], and output X = RP + 2E + b
(mod N).

Decryption: To decrypt X, output X−�X/P �P (mod 2). (Where �x� denotes the integer closest
to x, breaking ties, say, downwards.) In other words, find the nearest multiple of P to X,
subtract it away to get the noise, and then the parity of the noise is the decrypted bit.

Security and correctness of scheme. The choice 2
√
n for the parameter E makes the scheme

both correct and secure. More concretely, the security follows through a simple hybrid argument:
the LDN assumption implies that the following two distributions are computationally indistinguish-
able:

�
(N,P) ← Gen(1n) ; X ←R ZN : (N,X)

�
and

�
(N,P) ← Gen(1n) ; R ←R ZQ ; E ← [−E,+E] : (N,RP + 2E (mod N))

�
.

2-4

Hence, for b ∈ {0, 1},
�
(N,P) ← Gen(1n) ; X ←R ZN : (N,X)

�

=
�
(N,P) ← Gen(1n) ; X ←R ZN : (N,X + b)

�

≈c
�
(N,P) ← Gen(1n) ; R ←R ZQ ; E ← [−E,+E] : (N,RP + 2E + b (mod N))

�
,

as desired. More generally, as long as E � P (say E < 20.9n) then decryption will succeed, since
X − �X/P �P will equal 2E + b. As long as E > 2n

0.1
then under the LDN assumption the scheme

will be secure.

Noisy/weak homomorphism. We simply define the two operations Add and Mult as follows:

AddN (X,X �) = X +X � (mod N) and

MultN (X,X �) = X ·X � (mod N) .

Let EE
N,P (b) denote the set of possible encryptions of b with parameter E, public parameter N , and

secret key P ,

EE
N,P (b) =

�
X : X = RP + 2E + b (mod N) , R ∈ ZQ , E ∈ [−E,+E]

�
.

Note that if E� ≥ E then EE
N,P (b) ⊆ EE�

N,P (b). Also, as long as E is not to close to P (say less than

P/10) then the two sets EE
N,P (0) and EE

N,P (1) are disjoint.

If the scheme was fully homomorphic then we would have the following condition for E = 2
√
n:

if X ∈ EE
N,P (b) and X � ∈ EE

N,P (b
�), then AddN (X,X �) is in EE

N,P (b⊕b�) (and moreover it is uniformly

distributed in that set); similarly MultN (X,X �) would be uniform in EE
N,P (b ∧ b�). However, those

conditions simply do not hold for our scheme.
To begin with, Add and Mult are not even randomized! Still, we can show that both Add and

Mult do not add too much noise to the ciphertext:

Lemma 3. For every E and E
�
, if X ∈ EE

N,P (b) and X � ∈ EE�
N,P (b

�), then:

• AddN (X,X �) ∈ EE+E�

N,P (b⊕ b�), and

• MultN (X,X �) ∈ E3EE�
N,P (b ∧ b�).

Proof. Recall that X = RP +2E+ b and X � = R�P +2E�+ b�. First, let us consider AddN (X,X �):

X +X � = (R+R�)P + 2(E + E�) + (b+ b�) (mod N) ,

and thus X +X � (mod N) ∈ EE+E�

N,P . Next, let us consider MultN (X,X �):

X ·X � = KP + 2(2EE� + E + E�) + b · b� (mod N) ,

for some integer K and thus X ·X � (mod N) ∈ E3EE�
N,P .

As a result, if we start with m ciphertexts with noise parameter 2
√
n, then we can add and

multiply them and as long as we do not take a product of more than say n1/10 of them then we
will still get ciphertexts of noise much less than 2n (and hence we can decrypt them). But how do
we “keep track” of how noise grows in a possibly more complicated sequence of operations?

2-5

At high level, we relate the operations performed on the ciphertext to polynomials, and if the
operations performed on the ciphertext have “low-degree”, then we have some control on the noise
of the ciphertext. Details follow.

Define an m-input arithmetic circuit to be a circuit C, taking m integers as input and producing
one integer as output, that consists of only integer multiplication gates, integer addition gates, and
the constants 0 and 1. Define P(C) to be the polynomial mapping from Zm to Z that C computes.
If we also think of C as a Boolean circuit (with integer multiplication gates as AND and integer
addition gates as XOR) we get, for every b1, . . . , bm ∈ {0, 1},

C(b1, . . . , bm) = P(C)(b1, . . . , bm) (mod 2) .

For a polynomial f : Zm → Z and M ≥ 0 we then define |f |M to be the maximum over all
x1, . . . , xm satisfying |xi| ≤ M of |f(x1, . . . , xm)|. Then, if f is of degree d and all its monomials
have coefficients of magnitude at most C, then |f |M ≤ C · md · Md. (As can easily be seen by
writing f as

�
i1+···+im≤d αi1,...,imx

i1 · · ·xim .)
We are now ready to formally characterize the extent to which our noisy homomorphic encryp-

tion scheme is indeed homomorphic:

Lemma 4. Let C be an arithmetic circuit such that |P(C)|2E+1 < P/10. Then, for every b1, . . . , bm ∈
{0, 1}, if we let Xi = EncN,P (bi) and evaluate the circuit C on X1, . . . , Xm, using Add and Mult
for the gates to obtain a result X∗

, then we will have that

DecN,P (X
∗) = C(b1, . . . , bm) .

Proof. We know that, for every i = 1, . . . ,m, Xi = RiP +2Ei + bi where |Ei| ≤ E. Let P = P(C).
Then, because taking products and sums of multiples of P still results in a multiple of P , we know
that

P(X1, . . . , Xm) = KP + P(2E1 + b1, . . . , 2Em + bm)

for some integer K. Moreover, since N is a multiple of P this is still true even if we reduce modulo
N , which means that

X∗ = P(X1, . . . , Xm) (mod N) = K �P + P(2E1 + b1, . . . , 2Em + bm)

for some integer K �. Under our condition we know that |P(2E1 + b1, . . . , 2Em + bm)| < P/10 and
hence

X∗ − �X∗/P �P = X∗ −K �P = P(2E1 + b1, . . . , 2Em + bm) .

Now, by the same reasoning as above

P(2E1 + b1, . . . , 2Em + bm) = 2K �� + P(b1, . . . , bm)

for some integer K �� and hence

X∗ − �X∗/P �P (mod 2) = P(b1, . . . , bm) (mod 2) ,

as desired.

2-6

3 Achieving full homomorphism

To convert a noisy homomorphic encryption scheme into a fully homomorphic one, we consider the
solution approach of constructing the following two (additional) operations:

• Clean: takes as input the public parameter N and a ciphertext in E2n
0.9

N,P (b), and outputs a

ciphertext in E2n
0.3

N,P (b). (I.e., it reduces the noise of the ciphertext.)

• ReRand: takes as input the public parameter N and a ciphertext in E2n
0.4

N,P (b), and outputs a

ciphertext that is distributed statistically close to the right distribution over E2
√
n

N,P (b),
3 i.e.,

for every two sequences {(Nn, Pn) ∈ Gen(1n)}n∈N and {Xn ∈ EncNn,Pn(b)}n∈N,
�
X � ← EncNn,Pn(b) : X ��

n∈N ≈s
�
X � ← ReRandNn(Xn) : X ��

n∈N .

It is in fact easy to see how (Gen,Enc,Dec,Add,Mult), together with Clean and ReRand, implies a
fully homomorphic encryption scheme: we simply modify the definition of Mult and Add to apply
Clean and ReRand

• MultN (X,X �) = ReRandN
�
CleanN (X ·X � (mod N))

�
, and

• AddN (X,X �) = ReRandN
�
CleanN (X +X � (mod N))

�
.

Now, given two ciphertexts X and X � encrypting b and b� respectively (i.e., X ∈ E2
√
n

N,P (b) and

X � ∈ E2
√
n

N,P (b
�)), the value Y = X ·X � (mod N) will be in E3·22

√
n

N,P (b ∧ b�) ⊆ E2n
0.9

N,P (b ∧ b�), and hence

Z = Clean(Y) will be in E2n
0.3

N,P (b∧ b�) ⊆ E2n
0.4

N,P (b∧ b�), meaning that ReRand(Z) will be statistically
indistinguishable from an encryption of b ∧ b�. A similar argument can be applied to Add.

(Note: As you can see, we have considerable “slackness” in the parameters of ReRand and
Clean. We chose these values to demonstrate that the parameter choice here needs to be done
somewhat carefully, but it is not extremely fragile.)

Our goal is now to construct both Clean and ReRand, and Clean is really the important one
among those (as the re-randomization property can usually be achieved for many encryption
schemes).

Constructing ReRand. We briefly discuss how to obtain ReRand. (Exercise: work out and

verify the details!) Recall that the input to ReRand is a ciphertext of the form X = RP +2E+ b
with |E| ≤ 2n

0.4
; the goal is to transform X into X � = R�P + 2E� + b where R� is uniform in

[Q] = [N/P] and E� is uniform in [−2
√
n,+2

√
n]. We distinguish between the two types of re-

randomizations that we have to perform:

• Re-randomizing the noise. If we just wanted to re-randomize the noise E in X, we could
simply draw E�� uniformly in [−2

√
n,+2

√
n], and add 2E�� to X. Then E� = E+E�� would be

distributed uniformly in the interval [−2
√
n,+2

√
n] + E which is within 2n

0.4
/2

√
n = negl(n)

statistical distance to the uniform distribution over [−2
√
n,+2

√
n].

3Similarly to the property for Eval, this property for ReRand implies a weaker one that suffices for most applications,
namely, that re-randomization is allowed to fail on “bad” keys or “bad” ciphertexts:

�
(N,P) ← Gen(1n) ; X ← EncN,P (b) ; X

� ← EncN,P (b) : (N,X,X �)
�
n∈N

≈s

�
(N,P) ← Gen(1n) ; X ← EncN,P (b) , X

� ← ReRandN (X) : (N,X,X �)
�
n∈N .

2-7

• Re-randomizing the multiple. Re-randomizing the multiple R in X is a bit more tricky. The
high-level idea is as follows. Suppose that we have at our disposal many, say X1, . . . , Xm for
m = n6, random encryptions of 0 with small noise (e.g., less than 2n

0.4
). Then we will choose

a random subset S ⊆ [m] and consider the ciphertext X �� = X +
�

i∈S Xi; this is still an

encryption of 0, with at most (m+ 1)2n
0.4

noise, and the corresponding multiple is just

R+
�

i∈S
Ri (mod Q) ,

where Xi = PRi + 2Ei. The goal is to show that the above expression is close in statistical
distance to the uniform distribution over ZQ. We use the following lemma, which is a variant
of what is known as the “leftover hash lemma”:

Lemma 5. Let Q be a k bit prime and suppose that R1, . . . , Rm are chosen at random in ZQ

where m > 10k. Then with probability at least 1 − 2−k/10
over the choice of R1, . . . , Rm, if

we fix them and consider the random variable R =
�

i∈S Ri (mod Q), where S is a random

subset of [m], then R is within 2−k/10
statistical distance to the uniform distribution over ZQ.

In other words, the randomness comes from the choice of S; intuitively, the lemma is reason-
able because 2m = 2n

6 � Q ≈ 2n
4
.

You can prove the lemma in a way similar to the homework exercise as follows. Fix some
value α ∈ ZQ: we want to argue that with very high probability (enough to take union bound
over all of ZQ), if we choose at random the R1, . . . , Rm and fix them, the random variable
R will satisfy |Pr[R = α] − 1/Q| < 2−2k (or some similar bound) where this probability is
over the choice of the set S ⊆ [m] that determines R. We can do so by defining for every
nonempty subset S of [m] a random variable XS over the choice of R1, . . . , Rm that is 1 if�

i∈S Ri (mod Q) = α, and then showing E[XS] = 1/Q, E[XSXT] = 1/Q2, and then using
the Chebychev inequality (using the fact that 2m � 2k).

• Putting it all together: We combine these to get ReRand as follows: as part of the public
parameters (or concatenated to any encryption) we add ciphertexts X1, . . . , Xm where Xi =
RiP + 2Ei with Ri ←R [Q] and Ei ←R [−2n

0.4
,+2n

0.4
]. Then to re-randomize X we choose a

random subset S of [m], and E�� at random from [−2
√
n,+2

√
n] and output

X � = X +
�

i∈S
Xi + 2E� .

Constructing Clean with “wishful thinking”. We now tackle the bigger problem: how to
obtain the clean-up procedure Clean? Obtaining Clean appears to be very challenging, because,
up until this point, any operation that we performed on ciphertexts (such as adding, multiplying,
or re-randomizing) only increased the noise. In fact, it seems somewhat counterintuitive that you
could decrease the noise of a ciphertext without knowing the secret key, since if you could decrease
it too much then you would be able to figure out the corresponding plaintext!

Nevertheless, we will show that it may be possible to clean up the ciphertext, at least if we
happened to be lucky and the encryption scheme satisfies a certain property.

Specifically, consider the decryption algorithm Dec: it takes as input the secret key P and a
ciphertext X, and outputs the corresponding bit b. Since P and X are themselves just strings of
bits, Dec is a function mapping {0, 1}m to {0, 1}, where m = |P |+ |X| = n+n5 is the length of this
description. (Note that this m is not the same number m that we used in the ReRand operation.)

2-8

More than that, the decryption algorithm Dec is an efficient function, and so it can be computed
by a polynomial-size Boolean circuit C, and we can assume (without loss of generality) that the
gates of this circuit only consist of AND and XOR gates (as well as the constants 0 and 1) since
the two gates form a universal set.

Now suppose that we are lucky: it is the case that |P(C)|2n0.1 < 2n
0.3
. For example, this could

happen if P happens to be a polynomial with {0, 1} coefficients and degree at most n0.1. We claim
that in this case we can perform the Clean operation. Details follow.

Recall that Clean is given as input X = RP + 2E + b where |E| ≤ 2n
0.9

and it should output
X � = R�P +2E� + b such that |E�| ≤ 2n

0.3
. We first modify the scheme to include Y1, . . . , Yn in the

public parameters where Yi = Enc2
n0.1

N,P (Pi) and Pi is the i-th bit of the secret key P ; i.e., we include

an encryption of P in the public parameters, using a noise value 2n
0.1

which is smaller than the
standard parameter, but still big enough to ensure security. The procedure Clean is then defined
as follows:

1. We take Y1, . . . , Yn from the public parameters; then define Yn+1, . . . , Ym (where m = n+n5)
according to the bits of the ciphertext X. (That is, Yn+1 is 1 if the first bit of X is 1 and
0 otherwise, and so on.) Note that we can think of the number 1 also as an encryption of 1
(after all 1 = 0 ·P +2 ·0+1) and similarly we can think of the number 0 also as an encryption
of 0.

We now have ciphertexts Y1, . . . , Ym that are encryptions of the string P ◦X (where ◦ denotes
concatenation). Moreover, these ciphertexts Yi have very low noise! (Each one of them has
noise at most 2n

0.1
.)

2. Now we know that Dec(P ◦X) = b, and so if we run the circuit C on the encryptions Y1, . . . , Ym
we should get a ciphertext X � encrypting b which is exactly what we wanted!! (This argument
is so beautiful it deserves all the exclamation marks it gets...)

The last thing to check is that the noise ofX � is not too large. And this follows from the fact that the
circuit is simple and from the fact that we started from ciphertexts with small noise. Specifically,
the noise level we will get, by the same argument as above, will be at most |P(C)|2·2n0.1+1.

A relatively minor issue. Unfortunately, the definition of CPA security (i.e., semantic security)
does not guarantee that it is secure to encrypt the secret key. (Exercise: give a counterexam-

ple!) We overcome this issue by using a common cryptographic technique— making an assumption:
we will assume that, even given oracle access to the encryption algorithm, it is computationally
difficult to distinguish between an encryption of the secret key and an encryption of the all-zero
string.

The requirement captured by our assumption is called circular security, and it is a specific case
of the more general notion of key-dependent message (KDM) security. While there are examples
of CPA (and even CCA) secure schemes that are not circular secure, there are no known attacks
against natural cryptosystems (such as El-Gamal) and so it seems a reasonable assumption to
assume that they are circular secure.

In recent years, a few encryption schemes were proven to be circular secure (and to even satisfy
some notions of KDM security) under relatively standard assumptions. (E.g., see [BHHO08].) It
is also easy to construct KDM-secure schemes in the Random Oracle Model, and there are ways to
try to combine this construction with the homomorphic scheme to make it even more likely to be
circular secure.

2-9

In any case, we will assume that this scheme is circular secure. Hopefully at some point someone
will manage to prove that it is, and get rid of this assumption.4

Again, the problem of constructing any plausible homomorphic encryption scheme, even with
only heuristic security (such as in the Random Oracle Model), was open for 30 years, so we should
not complain too much even if the solution uses somewhat non-standard assumptions.

A major issue. The major issue, however, is that we have no reason to believe that the decryption
circuit has small norm! Generally, a circuit over {0, 1}m is expected to have polynomial degree in
m ≈ n5, and indeed it seems that one could verify that the decryption circuit actually computes a
polynomial of degree at least n/100, and will satisfy |P(C)|1 > 2n/100. So we are off by a polynomial
factor in the exponent.

Next time we will tackle this issue by making an additional tweak to the encryption scheme,
intended to “squash” the decryption circuit and make it of smaller degree.

References

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision Diffie-Hellman. In Proceedings of the 28th Annual Interna-

tional Cryptology Conference, CRYPTO ’08, pages 108–125, Berlin, Heidelberg, 2008.
Springer-Verlag. http://crypto.stanford.edu/~dabo/abstracts/circular.html.

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford Uni-
versity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of

the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 169–178,
New York, NY, USA, 2009. ACM.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Communications of

the ACM, 53:97–105, March 2010.

[GH10] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520, 2010. http://eprint.iacr.

org/2010/520.

[Rot10] Ron Rothblum. Homomorphic encryption: from private-key to public-key. Elec-
tronic Colloquium on Computational Complexity, TR-10-146, 2010. http://www.

eccc.uni-trier.de/report/2010/146/.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Proceedings of the 29th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT ’10, pages 24–43, Berlin, Heidelberg, 2010. Springer-Verlag.

4Even without this assumption one can get a limited homomorphic encryption scheme, where the public key grows
with the depth of the circuit one wishes to evaluate. See Gentry’s thesis [Gen09a].

2-10

