
Fully Homomorphic Encryption

Boaz Barak

February 9, 2011

Achieving fully homomorphic encryption, under any kind of reasonable computational assump-
tions (and under any reasonable definition of ”reasonable”..), was a holy grail of cryptography
for many years until finally achieved by Craig Gentry in 2009. In these lectures we’ll describe a
somewhat simplified variant of Gentry’s construction obtained by van Dijk, Gentry, Halevi and
Vaikuntanathan (with another slight simplification suggested by Sushant Sachdeva, and was also
independently observed by Ivan Damgard).

1 Definitions

We recall the definition of fully homomorphic encryption:

Definition 1. We say that a quadruple of p.p.t algorithms (Gen,Enc,Dec,Eval) is a strongly fully
homomorphic encryption scheme (FHE for short) if (Gen,Enc,Dec) is semantically secure and in
addition for every t = poly(n) and polynomial size circuit C taking t bits as input, every b1, . . . , bt ∈
{0, 1} and c1, . . . , ct output by Encpk(b1), . . . ,Encpk(bt), the distributions Evalpk(C, c1, . . . , ct) and
Encpk(C(b1, . . . , bt) are statistically indistinguishable.

It’s a relatively straightforward exercise to show that it is enough to have an evaluation algorithm
for AND and XOR, or equivalently multiplication and addition modulo 2. That is, the following is
an equivalent alternative definition of FHE:

Definition 2. We say that a quadruple of p.p.t algorithms (Gen,Enc,Dec,Add,Mult) is a strongly
fully homomorphic encryption scheme (FHE for short) if (Gen,Enc,Dec) is semantically secure and
in addition for every b, b� ∈ {0, 1} and c, c� output by Encpk(b) and Encpk(b�) respectively:

• The distributions Multpk(c, c�) and Encpk(b ∧ b�) are statistically indistinguishable.

• The distributions Addpk(c, c�) and Encpk(b⊕ b�) are statistically indistinguishable.

For this class, we define two distributions X,Y over {0, 1}n are statistically indistinguishable if

for every function f : {0, 1}n → {0, 1}, �E[f(X)]− E[f(Y)]� < 2−n1/1000
.

Recall that an encryption scheme is semantically secure if the two distributions (pk,Encpk(0))
and (pk,Encpk(1)) are computationally indistinguishable (e.g., any circuit of polynomial size will
succeed in distinguishing them with bias less than one over any polynomial; if you want, you can
replace “any polynomial” with some fixed super-polynomial function such 2−n1/1000

).
The definitions for private key encryption are analogous, but now Eval,Add,Mult don’t get the

key as input. As mentioned in class (and is in fact an easier variant of the homework exercise), one
can easily transform a private key FHE into a public key FHE, letting the public key be encryptions
of zero and one.

From now on, we’ll focus on constructing a scheme satisfying Definition 2.

1

2 Construction of a “noisy homomorphic” encryption scheme.

Our first step will be to construct a weaker notion than FHE that we’ll call a “noisy homomorphic
encryption scheme”. This will also be an encryption scheme with the Add and Mult algorithms,
but will satisfy a relaxed notion of homomorphism. It will be easier to first construct the scheme,
and then define precisely the notion of homomorphism it satisfies. We remark that our notion of
noisy homomorphism will imply weak homomorphism (i.e., compact encryption) with respect to
some subclass of circuits (specifically arithmetic circuits modulo 2 with depth up to n/100 where
n is our security parameter).

2.1 LDN Assumption

The encryption scheme will be based on the following computational problem. Let N = PQ be
equal to the product of two large primes, and suppose that you are given various random products
R1P (mod N), . . . , RtP (mod N) where the Ri’s are chosen randomly in [Q].

In this case, recovering P is easily done by computing the gcd of, say, R1P and R2P since
with good probability P will be the only common factor between them. But the gcs algorithm is
extremely sensitive to noise, and so it is not clear how to adapt this to the case when you are given
R1P + E1 (mod N), . . . , RtP + Et (mod N), where the Ei’s are noise factors that are chosen in
some interval [−E,+ − E] for a parameter E � N . This motivates us to making the following
assumption:

Learning divisor with noise (LDN) assumption. Let P a random n bit prime, Q a random
n4 bit prime, and let N = PQ and E ≥ 2n

0.1
. Then, for every t = poly(n) there is no polynomial

time algorithm that on input N and X1, . . . , Xt ∈ ZN can distinguish between case (I) the Xi’s are
chosen independently at random from ZN , and (II) Xi = PRi + 2Ei (mod N) where Ri is chosen
independently at random from ZQ and Ei is chosen independently at random from [−E,+E].

Some notes are in order:

1. We use small letters such as n, t for values that are polynomial in the security parameter
(which we often denote by n), and capital letters such as N,P,Q,R for large numbers that
have poly(n) digits (and hence are exponential in n).

2. We denote by ZN the set {0, . . . , N − 1} and by Z∗N the set {X ∈ ZN : gcd(X,N) = 1}. If
N is prime then Z∗

N = {1, . . . , N − 1}. When speaking about a random X, it usually won’t
matter if we take it from ZN or Z∗

N since |Z ∗N |/|ZN | � |ZN |.

3. The assumption can be seen to be monotone in E. That is, increasing E only makes the prob-
lem of distinguishing between the two cases harder. (The intuition is that the distinguisher
can always add more noise to the inputs on its own.)

4. We made the noise even (i.e. 2Ei instead of 2Ei) for convenience, but the two choices are
equivalent - exercise!. See footnote for hint1

5. Obviously the LDN assumption is stronger than the assumption that factoring N is hard.
There is a variant of the LDN assumption that is still useful for FHE but is not known to
imply that factoring is hard.

1
Hint: Given a number of the form RP + E if you multiply it by two you get 2RP + 2E but since Q is odd, if R is uniform over ZQ then

2R is uniform over ZQ as well.

2

2.2 The noisy homomorphic encryption scheme

We now describe the noisy homomorphic encryption scheme (Gen,Enc,Dec,Add,Mult). It will
be a private key scheme (since it will be easy to convert it eventually to public key). We will
assume however that it has public parameters— which are values that are generated by the key
generation algorithm Gen and made public and can be used by all algorithms. Formally, such public
parameters are never needed since we can always append them to the encryption, but it makes for
cleaner notation to assume them.

Key We choose P to be a random n bit prime, and Q to be a random n4 bit prime, N = PR. We
keep P secret, and can publish N as a public parameter.

Encryption For b ∈ {0, 1} we let EncP (b) = Enc2
√
n

P (b), where EncEP (b) is defined as follows: choose
R ←R ZQ and E ←R [−E,+E], and output X = RP + 2E + b (mod N).

Decryption To decrypt X, output X − �X/P �P (mod 2). (�x� denotes the integer closest to x,
breaking ties, say, downwards.)

Security and correctness of scheme. The choice 2
√
n for the parameter E makes the scheme

both correct and secure. More generally, as long as E � P (say E < 20.9n) then decryption will
succeed, since X−�X/P �P will equal 2E+b. As long as E > 2n

0.1
then under the LDN assumption

the scheme will be secure.

Noisy/weak homomorphism. We have the operations Add andMult defined simply as Add(X,X �) =
X +X � (mod N) and Mult(X,X �) = X ·X � (mod N).

Let EE(b) denote the set of possible encryptions of b with parameter E. That is EE(b) = {X :
X = RP + 2E + b (mod N), R ∈ ZQ, E ∈ [−E,+E]}. Note that if E� ≥ E then EE(b) ⊆ EE�

(b).
Intuitively, we think of the set EE(b) as the set of ciphertexts with noise parameter E.

If the scheme was fully homomorphic then we’d have the following condition for E = 2
√
n:

if X ∈ EE(b) and X � ∈ EE(b�), then Add(X,X �) is in EE(b ⊕ b�) (and moreover it’s uniformly
distributed in that set), and similarly Mult(X,X �) is uniform in EE(b ∧ b�). This is not necessarily
true, but we can show that the results of Add and Mult are in the corresponding set but with a
somewhat larger noise parameters. That is, we can prove that for every E,E�

If X ∈ EE(b) and X � ∈ EE�
(b�) then

(i) Add(X,X �) ∈ E2(E+E�)(b⊕ b�) and
(ii) Mult(X,X �) ∈ E5EE�

(bb�).
As a result, if we start with m ciphertexts with noise parameter 2

√
n then we can add and

multiply them and as long as we don’t take a product of more than say n1/10 of them then we’ll
still get ciphertexts of noise � 2n (and hence we can decrypt them). This implies the following
consequence, that would be useful below:

Define an arithmetic circuit to be a circuit C taking m inputs and having one output that
consists of only multiplication gates, addition gates, and the constants 1 and 0. We define P(C)
to be the polynomial mapping Zm to Z that C computes. Note that if we think of C as a Boolean
circuit with multiplication gates as ∧ and addition gates as ⊕ then

C(b1, . . . , bm) = P(C)(b1, . . . , bm) (mod 2)

For a polynomial f : Zm → Z and M ≥ 0 we define |f |M to be the maximum over all x1, . . . , xm
satisfying |xi| ≤ M of |f(x1, . . . , xm)|.

3

Lemma 3. Let P,E be the parameters of our encryption scheme, and let C be an arithmetic circuit
such that |P(C)|2E+1 < P/10. Then, for every b1, . . . , bm ∈ {0, 1}, if we let Xi = EncP (bi) and
evaluate the circuit C on X1, . . . , Xm, using Add and Mult for the gates to obtain a result X∗, then
we’ll have that

DecP (X
∗) = C(b1, . . . , bm) (= P(C)(b1, . . . , bm) (mod 2))

Proof. We know that for every i = 1..m, Xi = RiP +2Ei+ bi where |Ei| ≤ E. Let P = P(C), then
because taking products and sums of multiples of P still results in a multiple of P , we know that

P(X1, . . . , Xm) = KP + P(2E1 + b1, . . . , 2Em + bm)

for some integer K. Moreover, since N is a multiple of P this is still true if we reduce modulo N ,
which means that

X∗ = P(X1, . . . , Xm) (mod N) = K �P + P(2E1 + b1, . . . , 2Em + bm)

for some integer K �. Under our condition we know that |P(2E1 + b1, . . . , 2Em + bm)| < P/10 and
hence

X∗ − �X∗/P �P = X∗ −K �P = P(2E1 + b1, . . . , 2Em + bm)

Now by the same reasoning as above

P(2E1 + b1, . . . , 2Em + bm) = 2K �� + P(b1, . . . , bm)

for some integer K �� and hence

X∗ − �X∗/P �P (mod 2) = P(b1, . . . , bm) (mod 2)

This lemma may seem hard to use, since it requires bounding |P(C)|2E+1, but we’ll only use
the following very simple observation:

If f(x1, . . . , xm) is an integer polynomial of degree d where all its monomials have coefficients
of magnitude at most C, then |f |M ≤ C ·md ·Md.

3 Making it fully homomorphic

Clean and ReRand To make the scheme above fully homomorphic we’ll add two operations to it:

• Clean(X) will take as input a ciphertext in E2n
0.9

(b) and output a ciphertext in E2n
0.3

(b).
That is, it reduces the noise of the ciphertext.

• ReRand(X) will take as input a ciphertext in E2n
0.4

(b) and output a ciphertext that dis-

tributed statistically close to the uniform distribution over E2
√
n
(b), that is, ReRand(X) ≈

Enc(b).

Fully homomorphic encryption Together Clean and ReRand imply a fully homomorphic en-
cryption scheme: we just change the definition of Mult and Add to apply Clean and ReRand
as follows:

• Mult(X,X �) = ReRand(Clean(X ·X � (mod N))).

4

• Add(X,X �) = ReRand(Clean(X +X � (mod N))).

Now, given two ciphertexts X,X � in the range of the encryption algorithm encrypting b and b�

respectively (i.e., X ∈ E2
√
n
(b) and X � ∈ E2

√
n
(b�)), the value Y = X ·X � (mod N) will be in

E5·22
√
n
(b∧ b�) ⊆ E2n

0.9

(b∧ b�), and hence Z = Clean(Y) will be in E2n
0.3

(b∧ b�) ⊆ E2n
0.4

(b∧ b�),
meaning that ReRand(Z) will be statistically indistinguishable from an encryption of b ∧ b�.

Same analysis applies to Add.

Note: As you can see, we have considerable “slackness” in the parameters of ReRand and
Clean, I chose these values to demonstrate that the parameter choice here needs to be done
somewhat carefully, but it’s not extremely fragile.

Our goal is now to get both Clean and ReRand. Clean is really the important one among
those— the rerandomization property can often be achieved for many encryption schemes.

Getting ReRand We’ll briefly mention how one can get ReRand, leaving verifying the details to the
homework exercise. Our input is a ciphertext of the form X = RP +2E+b where |E| ≤ 2n

0.4
.

We want to transform it into X � = R�P +2E� + b where R� is uniform in [Q] = [N/P] and E�

is uniform in [−2
√
n,+2

√
n].

• Rerandomizing noise: if we just wanted to rerandomize the noise we could just choose
E�� uniformly in [−2

√
n,+2

√
n], and add 2E�� to X. If we look at E� = E +E�� then this

is distributed uniformly in the interval [−2
√
n,+2

√
n] + E which is within 2n

0.4
/2

√
n =

negl(n) statistical distance to the uniform distribution over [−2
√
n,+2

√
n].

• Rerandomizing multiple: rerandomizing R is a bit more tricky. The idea is the following:
suppose we have at our disposal many, say X1, . . . , Xm for m = n6, random encryptions
of 0 with small noise (less than 2n

0.4
). Then we will choose at random a subset S ⊆ [m]

and will look at the ciphertext X �� = X +
�

i∈S Xi. This is still an encryption of 0 with

at most m2n
0.4

noise, and the corresponding multiple is just

R+
�

i∈S
Ri (mod Q)

where Xi = PRi + 2Ei. We then use the following lemma (variant of what’s known as
“leftover hash lemma”):

Lemma 4. Let Q be a k bit prime and suppose that R1, . . . , Rm are chosen at random
in ZQ where m > 10k. Then with probability at least 1 − 2−k/10 over the choice of
R1, ..., Rm, if we fix them and consider the random variable R =

�
i∈S Ri (mod Q),

where S is a random subset of [m], then R is within 2−k/10 statistical distance to the
uniform distribution over ZQ.

You can prove it like the homework exercise as follows. Fix some value α ∈ ZQ: we want
to argue that with very high probability (enough to take union bound over all of ZQ), if
we choose the random R1, . . . , Rm randomly and fix them, the random variable R will
satisfy |Pr[R = α]− 1/Q| < 2−2k (or some similar bound) where this probability is over
the choice of the set S ⊆ [m] that determines R. We can do so by defining for every
nonempty subset S of [m] a random variable XS over the choice of R1, . . . , Rm that is 1
if
�

i∈S Ri (mod Q) = α, and then showing E[XS] = 1/Q,E[XSXT] = 1/Q2 and using
the Chebychev inequality (using the fact that 2m � 2k).

5

• Putting it all together: We combine these to get ReRand as follows: as part of the public
parameters (or concatenated to any encryption) we add ciphertexts X1, . . . , Xm where
Xi = RiP + 2Ei with Ri ←R [Q] and Ei ←R [−2n

0.4
,+2n

0.4
]. Then to rerandomize X

we choose a random subset S of [m], and E�� at random from [−2
√
n,+2

√
n] and output

X � = X +
�

i∈S
Xi + 2E�

Getting Clean using “wishful thinking” We now tackle the bigger problem - how to get the
cleanup procedure Clean. This is very challenging, since up until this point it seems that any
operation we do on ciphertexts, adding/multiplying/rerandomizing etc..., only increases the
noise. In fact, it seems somewhat counterintuitive that you could decrease the noise without
knowing the secret key, since if you could decrease it too much then you would be able to
find out the plaintext!

Nevertheless, we’ll show it may be possible to clean up the ciphertext, at least if we happened
to be very lucky and the encryption scheme satisfies a certain property.

Let us consider the decryption algorithm Dec. The algorithm takes as input the secret key
P and a ciphertext X and outputs the corresponding bit b. Since P and X are in the end
represented by bits, Dec is just a function mapping {0, 1}m to {0, 1} (where m = n+n5 is the
length of this description; this is not the same number m we used in the ReRand operation).

This is an efficient function, and so it can be computed by a polynomial size Boolean circuit
C, and we can assume that the gates of this circuit are only · and ⊕ (plus the constants 0, 1)
since they are universal. Now suppose that we are lucky |P(C)|2n0.1 < 2n

0.3
. For example,

this can happen if P happens to be a polynomial with 0/1 coefficients and degree at most
n0.1. We claim that in this case we can run the Clean operation as follows:

Recall that we’re given an input X = RP +2E + b where |E| ≤ 2n
0.9

and our goal is to come
up with X � = R�P + 2E� + b such that |E�| ≤ 2n

0.3
. We are going to do the following:

1. We change the scheme to include Y1, . . . , Yn in the public parameters where Yi =

Enc2
n0.1

P (Pi) with Pi being the ith bit of P . That is, we include an encryption of P
in the public parameters, using noise value 2n

0.1
which is smaller than the standard

parameter, but still big enough to ensure security.

2. The Clean operation will be defined as follows. Recall that we are given an encryption
X which is a number modulo the n5 bit number N . X encrypts some bit b with noise
parameter 2n

0.9
and we want to come up with an encryption X � encrypting the same b

with noise parameter 2n
0.3
.

We take Y1, . . . , Yn from the public parameters, and define Yn+1, . . . , Ym, (where m =
n+ n5) according to the bits of the ciphertext X. That is, Yn+1 is 1 if the first bit of X
is 1 and 0 otherwise, etc.. Note that we can think of the number 1 also as an encryption
of 1 (after all 1 = 0 · P + 2 · 0 + 1) and similarly we can think of the number 0 also as
an encryption of 0.

Therefore, we now have ciphertexts Y1, . . . , Ym that are encryptions of the string P ◦X
where ◦ denotes concatenation. Moreover, these ciphertexts Yi have very low noise!
That is, each one of them has noise at most 2n

0.1
. (Where our goal is at the end to get

a ciphertext of noise 2n
0.3
.)

6

Now we know that Dec(P ◦X) = b, and so if we run the circuit C on the encryptions
Y1, . . . , Ym we should get a ciphertext X � encrypting b which is exactly what we wanted!
(This argument is so beautiful it deserves all the exclamation marks it gets...

The only thing left to verify is that the noise of X � is not that large. The idea is that
because the circuit is simple, and we started from ciphertexts with small noise then we
will get a ciphertext with not too large noise. Specifically, the noise level we’ll get, by
the same argument as above will be at most |P(C)|2·2n0.1+1.

A relatively minor issue Unfortunately, it turns out that CPA security does not guarantee that
it is secure to encrypt the secret key with itself (exercise...). We overcome this issue by using
a common cryptographic technique— making an assumption: we’ll assume that even given
oracle access to the encryption oracle, one cannot distinguish an encryption of the secret key
and an encryption of the all zero string.

This notion is called circular security and it is a subclass of a more general notion of key
dependent message (KDM) security. While there are examples of CPA (and even CCA)
secure schemes that are not circular secure, there are no known attacks against natural
cryptosystems (e.g., El-Gamal etc..) and so it seems a reasonable assumption to assume
that they are circular secure. In recent years, a few encryption schemes were proven to be
circular secure (and satisfy some notions of KDM security as well) under relatively standard
assumptions. It is also easy to construct KDM secure schemes in the random oracle model,
and there are ways to try to combine this construction with the homomorphic scheme to make
it even more likely it is circular secure.

In any case, we will assume this scheme is circular secure. Hopefully at some point someone
will manage to prove that it is, and get rid of this assumption.2

As I already mentioned, the question of getting any plausible homomorphic encryption
scheme, even with only heuristic security such as the random oracle model, was open for 30
years, so we shouldn’t complain too much even if the solution uses somewhat non-standard
assumptions.

A major issue The major issue is that we had no reason to believe that our circuit have small
norm. Generally a circuit over {0, 1}m is expected to have polynomial degree about m ∼ n5,
and indeed I believe one can verify that the decryption circuit actually computes a polyno-
mial of degree at least n/100, and will actually satisfy |P(C)|1 > 2n/100. So we’re off by a
polynomial factor in the exponent.

We will tackle this issue by making an additional tweak to the encryption scheme, intended
to “squash” the decryption circuit and make it of smaller degree.

2Even without this assumption one can get a limited homomorphic encryption scheme, where the public key grows
with the depth of the circuit, see the papers and Gentry’s thesis.

7

