
6.889 New Developments in Cryptography May 6, 2011

Answering Many Queries with Differential Privacy
Instructors: Shafi Goldwasser, Yael Kalai, Leo Reyzin, Boaz Barak, and Salil Vadhan

Lecturer: Jonathan Ullman Scribe: Jonathan Ullman

Last week we introduced the notion of differential privacy and discussed both the definitional aspects
and basic techniques for privately querying a database. In this lecture we’ll study more sophisticated
mechanisms that allow us to ask exponentially more queries while preserving the accuracy of the
answers and the privacy of the database.

1 Recap

First we’ll review some basic definitions. We model the database as a collection of entries (“rows”)
from n individuals, who each specify a their type from an arbitrary data universe. Specifically, we
use X to denote the universe of types and denote an n-row database D = (x1, x2, . . . , xn) ∈ Xn. We
say two databases D,D′ are neighbors (denoted D ∼ D′) if they differ on only one row. That is,
D ∼ D′ if D = (x1, . . . , xi, . . . , xn) and D′ = (x1, . . . , x

′
i, . . . , xn) for some i ∈ [n]. Let M : X ∗ → R

be a function from databases to any output range, often referred to as a mechanism.

Definition 1 ((ε, δ)-differential privacy) A mechanism M : X ∗ → R is (ε, δ)-differentially pri-
vate if for every pair of neighboring databases D ∼ D′ and every set of outputs T ⊆ R,

Pr [M(D) ∈ T] ≤ eε · Pr [M(D′) ∈ T] + δ.

where the probability is taken only over the coins of M.

In this lecture we’re interested in sanitizers that evaluate counting queries on the database. Intu-
itively, a counting query asks “What fraction of the database satisfies a property q?”. Formally, a
counting query is specified by a boolean predicate q : X → {0, 1}. Abusing notation, we use

q(D) =
1

n

n∑
i=1

q(xi)

to denote the evaluation of a counting query on a database. We will use Q = {q1, q2, . . . , qk} to
denote a set of queries and frequently write k = |Q|.

Previous we saw the simplest way of answering counting queries with differential privacy, the Laplace
mechanism. The mechanism MQ,Lap : X ∗ → Rk is defined as

MQ,Lap(D) = (q1(D) + Lap(k/nε), . . . , qk(D) + Lap(k/nε))

where each Lap(k/nε) denotes an independent sample from the Laplace distribution with standard
deviation O(k/nε). See the previous lecture for the exact specification of the Laplace distribution
and analysis. This mechanism turns out to give accurate answers for relatively small sets of queries.

Theorem 2 The mechanismMQ,Lap(D) is (ε, 0)-differentially private. Moreover, letMQ,Lap(D) =
(a1, . . . , ak). Then with probability 1− β over the coins of MQ,Lap, we have

max
qi∈Q

|qi(D)− ai| ≤
k log(k/β)

nε
.

13-1

Recall that the way we defined a counting query, the true answer lies in [0, 1]. So the bound on the
error is only non-trivial if k � n. In the next section we will see how to accurately answer counting
queries when k � n, while still satisfying differential privacy. In what follows, we will refer to the
quantity

max
qi∈Q

|qi(D)− ai| ≤
k log(k/β)

nε

as the error and when speaking informally or qualitatively we will often refer to mechanisms with
non-trivial error as accurate (or as being more or less accurate than another mechanism).

2 The BLR Mechanism

In this section we will present a very elegant mechanism for answering counting queries with dif-
ferential privacy due to Blum, Ligett, and Roth [?] that will be accurate even when k � n. The
idea is to carefully correlate the noise we use in order to introduce less error, while still achieving
privacy. Notice that in the Laplace mechanism, we use a different component of the output vector
to answer each query, and add independent noise to each dimension of the output vector. Thus our
error degrades linearly in the number of queries, since we are requiring that each query be accurate
and private independently. One way to correlate the noise is to embed the answers to the queries
in a space of lower dimension. BLR showed how to achieve this using a synthetic database, that is
a new database that approximately preserves the answers to all the queries.

We start with the observation that for every D and Q, there exists a synthetic database with a small
number of rows that preserves the answers to every query in Q.

Lemma 3 For every D ∈ Xn and every set of counting queries Q, there exists a synthetic database
D̂ ∈ Xm, for m = 8 log k

α2 , such that

max
i∈[k]

∣∣∣qi(D)− qi(D̂)
∣∣∣ ≤ α.

Proof: Consider a database D̂ ∈ Xm formed by taking a random sample of m rows from D, chosen
with replacement. Then by a union bound and a Chernoff bound

Pr

[
max
qi∈Q

∣∣∣qi(D)− qi(D̂)
∣∣∣ > α

]
≤ k · Pr

[∣∣∣q1(D)− q1(D̂)
∣∣∣ > α

]
≤ k · exp

(
−α2m

4

)
= k · exp(−2 log k)

< 1

There there exists some D̂ ∈ Xm that preserves the answer to every query q ∈ Q up to an additive
error term of α. �

Notice that the dimension of D̂ in the previous lemma is roughly log |Xm| = 8·log k·log |X |
α2 , which is

much smaller than k when the number of queries is large (and the other parameters |X | and 1/α are
not too large). However, in order to use this fact to our advantage, we need to know how to output
an accurate synthetic database while satisfying differential privacy.

13-2

2.1 The Exponential Mechanism

McSherry and Talwar gave an elegant mechanism for producing useful, differentially private output
from an arbitrary range [?]. More precisely, they give a generic specification of a distribution over
any support that is simultaneously private and concentrated around elements of the range that
maximize an arbitrary “score function” that depends on the input database.

Specifically:

• Let R be an arbitrary range of outputs.

• Let s : X ∗ ×R → R be an arbitrary score function.

• Let
GSs = max

D∼D′,r∈R
|s(D, r)− s(D′, r)|

be the global sensitivity of s.

Then we define the exponential mechanism Ms(D) : X ∗ → R so that

Pr [Ms(D) = r] ∝ exp

(
ε · s(D, r)

2 ·GSs

)
.

Before we see how the BLR Mechanism makes use of the exponential mechanism, we will verify that
the exponential mechanism is always (ε, 0)-differentially private, regardless of the choice of range
and score function.

Theorem 4 ([?]) The mechanism Ms satisfies (ε, 0)-differential privacy.

Proof: Consider any pair of neighboring databases D ∼ D′ and any output r ∈ R. Let

ND =
∑
r∈R

exp

(
ε · s(D, r)

2 ·GSs

)
be the normalizing constant for the database D. Then we have

Pr [Ms(D) = r]

Pr [Ms(D′) = r]
=
ND′

ND
· exp

(
ε · s(D, r)

2 ·GSs

)
· exp

(
−ε · s(D, r)

2 ·GSs

)
=
ND′

ND
· exp

(
ε · (s(D, r)− s(D′, r))

2 ·GSs

)
≤ ND′

ND
· exp (ε/2)

where the last inequality follows from the definition of global sensitivity. Now we consider the ratio
of the normalizing constants.

ND′

ND
=

∑
r∈R exp

(
ε·s(D′,r)
2·GSs

)
∑
r∈R exp

(
ε·s(D,r)
2·GSs

) ≤ ∑r∈R exp (ε/2) · exp
(
ε·s(D,r)
2·GSs

)
∑
r∈R exp

(
ε·s(D,r)
2·GSs

) = exp (ε/2)

So we conclude that
Pr [Ms(D) = r]

Pr [Ms(D′) = r]
≤ exp(ε)

13-3

where the inequality follows from the definition of global sensitivity. A similar argument would show
that this ratio is also at least exp(−ε). So the exponential mechanism is indeed (ε, 0)-differentially
private. �

Notice that the exponential mechanism is actually a generalization of the Laplace mechanism. If
we set R = Rk and s(D, r) =

∑
qi∈Q |qi(D)− ri| then we’d recover the Laplace mechanism exactly.

However, we will now see how BLR instantiate the exponential mechanism to output a private and
accurate synthetic database.

2.1.1 BLR Mechanism and its Analysis

The BLR mechanism uses the exponential mechanism to sample a synthetic database privately. We
have already seen that the set of m-row databases contains at least one “good’ synthetic database
that will preserve the answers to all of the queries in Q. The analysis of the BLR mechanism
will show that the output of the exponential mechanism is strongly concentrated around the set of
“good” synthetic databases.

The BLR Mechanism, MQ,BLR, instantiates the exponential mechanism as follows:

• Let R = Xm for m = 32 log k
α2 .

• Let s(D, D̂) = −maxq∈Q

∣∣∣q(D)− q(D̂)
∣∣∣ for every D ∈ Xn, D̂ ∈ Xm. Note that we make the

score function inversely related to the error so that better accuracy implies higher score.

• Note that GSs ≤ 1/n, since the score function is simply the maximum error over a set of
counting queries, and a counting query has global sensitivity 1/n.

Now we show that the BLR mechanism is also accurate with high probability

Theorem 5 ([?]) Let D̂ =MQ,BLR(D). With probability 1− β

max
q∈Q

∣∣∣q(D)− q(D̂)
∣∣∣ ≤ α =

(
256 · log k · log |X |

εn

)1/3

+

(
8 log(1/β)

εn

)

Proof: We want to analyze the ratio

Pr
[
s(D, D̂) ≥ −α/2

]
Pr
[
s(D, D̂) < −α

]
Note that D̂ is accurate if the event in the numerator occurs, and fails to be accurate only when the
event in the denominator occurs. So we can establish the theorem by showing this ratio is lower-
bounded by 1/β. Lemma 3, and our choice of m, ensures that there is at least one D̂ ∈ Xm with

s(D, D̂) ≥ −α/2. To bound the denominator we will simply use a union bound over all D̂ ∈ Xm.
Thus we have

Pr
[
s(D, D̂) ≥ −α/2

]
Pr
[
s(D, D̂) < −α

] ≥ exp (−εnα/4)

|X |m exp (−εnα/2)
=

exp(εnα/4)

|X |m

13-4

and we wish to choose α such that
exp(εnα/4)

|X |m
≥ 1

β
.

This condition is satisfied when

n ≥ 128 log k · log |X |
εα3

+
4 log(1/β)

εα

Thus we can choose

α =

(
256 · log k · log |X |

εn

)1/3

+

(
8 log(1/β)

εn

)
,

as desired1. �

2.2 Remarks about the BLR Mechanism

The first thing to note about the BLR Mechanism is that it is considerably more accurate when
k � n. For a concrete example, we will consider the case of monotone conjunction queries. Let
X = {0, 1}d. For every S ⊆ [d] we define qS(x) =

∧
j∈S xj . Think of each individual as giving

answers to a set of d yes/no questions and the queries will ask what fraction of individuals answers
yes to some subset of the questions.

For this set of queries, the Laplace mechanism would have error

O

(
2d · d
εn

)
,

which is only non trivial if n� 2d. However, the BLR mechanism would have error

O

((
d2

εn

)1/3
)
,

which is non-trivial if n� d2! This is an extremely remarkable fact—we can give accurate answers
to a very large and rich set of counting queries while satisfying a very strong notion of individual
privacy, even with a database of size d2!

However, the BLR mechanism is highly inefficient. A naive implementation of the mechanism would
require enumerating all datasets in ({0, 1}d)m, of which there are at least 2d·log k = 2d

2

. In general,
the running time will be at least polynomial in |X |, and, as this example shows, it is natural to
think of X as being exponentially large. It is a significant open question to understand whether or
not we can achieve accuracy and differential privacy in time polylog |X | for various classes of queries
(cf. [?, ?, ?]).

Finally, a remark about the proof of Theorem 5. Notice that the proof basically only requires the
following facts about BLR’s instantiation of the exponential mechanism:

1. For our choice of parameters, there always exists at least one “good” output r ∈ R for the
appropriate definition of “good.”

2. The size of R is relatively small, so that we can take a union bound of all the “bad” outputs
r ∈ R.

1We’ve made no attempt to optimize constants. See [?] for a slightly more careful analysis.

13-5

In general this is a powerful paradigm for achieving differential privacy, at least showing that differ-
ential privacy and accuracy are consistent for a particular task: Find a small set of outputs that will
always contain at least one “good” output and use the exponential mechanism to select an element
from that set.

3 The Private Multiplicative Weights (PMW) Mechanism

In this section we will see a different mechanism for answering many counting queries with differential
privacy, due to Hardt and Rothblum [?]. Their mechanism is based on the multiplicative weights
algorithm [?, ?] for online learning, and has some advantages over the BLR Mechanism:

• The PMW Mechanism is interactive. While the BLR Mechanism needs to know all the queries
up front, the PMW Mechanism can take the queries one at a time, even if they are adaptively
and adversarially chosen.

• The PMW Mechanism achieves better quantitative parameters in some settings. In particular
the PMW Mechanism has O(1/

√
n) error (holding all other parameters fixed), which is optimal

for answering ω(n) queries [?].

• The PMW Mechanism runs in nearly-linear time as a function of |X |, as opposed the BLR
Mechanism, which may run in quasi-polynomial time as a function of |X |.

• Less formally, the PMW Mechanism feels “more direct,” in that it specifies a concrete procedure
to perform when answering each query, compared to the BLR Mechanism which specifies a
distribution to sample from.

The exact specification and analysis of the PMW Mechanism is a bit delicate, so we refer the reader
to [?] for a complete presentation. In these notes we will attempt to communicate the intuition for
the privacy and accuracy guarantees of the mechanism. First we will consider a non-private version
of the algorithm to show how the multiplicative weights algorithm helps us in this setting.

The main idea is that we want to use the answers to previous queries in order to “guess” the answers
to new queries. While this may seem difficult, there are clearly some cases where we expect to do
well. For instance, if we see the same query multiple times we can give the same answers. For a
slightly harder instance, suppose we already answered the queries that asked “What fraction of the
database likes musicals?” and “What fraction of the database likes tragedies?” Then we are well-
prepared to answer the query “What fraction of the database likes musicals or tragedies?” Although
these are simplistic examples, the multiplicative weights algorithm shows how we can do a good job
of guessing the answers to most queries, for any sequence of queries.

Before we specify the non-private algorithm, we will make a small notation shift. Instead of thinking
of the database as a collection of n rows from X , we will think of the database as a continuous
distribution/function D : X → [0, 1] (normalized so that

∑
i∈X D(i) = 1). The notion of a counting

query q : X → {0, 1} can be adapted to this type of database as q(D) =
∑
i∈X :q(i)=1D(i).

3.1 Non-Private Multiplicative Weights

The idea of the multiplicative weights update step is to maintain a sequence of databasesD(0), D(1), . . . , D(k−1)

that we use to answer queries q(1), q(2), . . . , q(k), respectively. If D(t−1) fails to give a good answer

13-6

to q(t) (which we determine by checking the real answer q(t)(D)), then we will modify D(t) in a way
that brings it closer to the true database D. A potential argument will show that we cannot do too
many modifications. We are now ready to state the non-private algorithm.

Algorithm 1 Non-private multiplicative weights

Input: A database D
Parameters: An update parameter η and a threshold τ := 2η.
Let D(0)(i) = 1/|X | for every i ∈ X .
For t = 1, 2, . . . , k:

1. Receive query q(t) and compute q(t)(D(t−1)).

2. Compute q(t)(D).

3. If |q(t)(D(t−1)) − q(t)(D)| ≤ τ then set D(t)(i) = D(t−1)(i) for every i ∈ X and continue.
Otherwise do an update.

4. Update: if q(t)(D(t−1))− q(t)(D) < τ set

D(t)(i) ∝ exp
(
η · q(t)(i)

)
·D(t−1)(i)

and finally if q(t)(D(t−1))− q(t)(D) > τ set

D(t)(i) ∝ exp
(
−η · q(t)(i)

)
·D(t−1)(i).

In this algorithm, if we get a query q(t) and discover that the “guess”, q(t)(D(t−1)), is much smaller
than the “true answer”, q(t)(D) then we increase the probability mass of elements i ∈ X such that
q(t)(i) = 1. Similarly if the guess is much smaller than the true answer we decrease the probability
mass of such rows.

The goal is to show that we cannot do too many updates, and this is formalized in the following
way. Consider the potential function

Φ(t) = RE(D‖D(t)) =
∑
i∈X

D(i) log

(
D(i)

D(t)(i)

)
given by the relative entropy between the true database and the database D(t). Observe that
Φ(0) ≤ log |X | and Φ(t) ≥ 0 for every t = 1, 2, . . . , k. In addition, every update step must significantly
decrease the potential.

Lemma 6 ([?]) In every update round

Φ(t−1) − Φ(t) ≥ η
∣∣∣q(t)(D(t−1))− q(t)(D)

∣∣∣− η2.
The proof of this lemma follows by a direct calculation of the potential. See [?] for details. By our
choice of τ = 2η, we have

Φ(t−1) − Φ(t) ≥ η2.
Since the potential is never larger than log |X | and is always positive, we have the following corollary:

Corollary 7 Algorithm 1 performs at most log |X |
η2 updates.

13-7

3.2 Private Multiplicative Weights

Now we will describe the main ideas required to make Algorithm 1 satisfy differential privacy. A
natural first idea would be to leave the algorithm unchanged in steps 1-4 and add a step 5 where
we either output q(t)(D(t−1)) if we don’t update, and output q(i)(D) + Lap(σ), for an appropriate

standard deviation σ if we do update. Since we only do log |X |
η2 updates, we should be able to choose

σ = log |X |
εnη2 to get privacy (see Theorem 2).

The problem with this approach is that it reveals whether or not we do an update, which itself may
not be private! For instance, consider the case where q(1)(D(0)) = 0 and q(1)(D) = τ . Then we
would not do an update and would output 0. However for a neighboring database D′ we may have
q(1)(D′) = τ + 1/n and would output τ + 1/n+ Lap(σ), which will reveal that the input was D′ and
not D.

The solution to this problem is to add noise to q(t)(D) in step 2 of the algorithm. However, in
light of the previous discussion, we might be worried that at every step just revealing whether or
not we do an update discloses as much as revealing q(t)(D) + Lap(σ). In which case we would
have to choose σ = k

εn (as if we were answering all k queries) and would get no improvement over
the Laplace mechanism. However, what Hardt and Rothblum show (roughly) is that very little
information about the database can leak just from the decision whether or not to do an update. See
their paper [?] for a full analysis. In the remainder of these notes we will give a specification of the
algorithm with slightly relaxed parameters and the intuition behind their analysis.

We will now state the main results about this algorithm

Theorem 8 ([?], modified parameters) Algorithm 2 satisfies (ε, δ)-differential privacy. More-
over, with probability at least 1− β, the outputs a(1), a(2), . . . , a(k) satisfy

max
t∈[k]
|a(t) − q(t)(D)| ≤ α = O

(
(log |X |)1/3 · log(1/δ) · log(k/β)

εn1/3

)
.

Theorem 9 ([?], actual parameters) Algorithm 2 (with properly adjusted parameters) satisfies
(ε, δ)-differential privacy. Moreover, with probability at least 1 − β, the outputs a(1), a(2), . . . , a(k)

satisfy

max
t∈[k]
|a(t) − q(t)(D)| ≤ α = O

(
(log |X |)1/4 · log(1/δ) · log(k/β)

εn1/2

)
.

Finally, we will sketch what needs to be shown to prove Theorem 8:

• First, we need to show that every time we perform an update, the potential does actually
decrease. Notice that if z(t) is very far from q(t)(D) then we may perform an update when our
guess was actually correct. Worse, we may even perform an update in the wrong direction.
However, we can show that our choice of τ, σ, η ensures that the noise we add in each iteration
of step 2 is never more than τ/2 (except with probability β). Thus whenever we do an update
we have

|q(t)(D(t−1))− q(t)(D)| > τ/2

and since τ ≥ 4η, we do get a potential decrease of η2 by Lemma 6.

• Second, we want to argue that we can ensure the privacy of all the rounds in which we output

z(t). However, the number of updates we do is at most log |X |
η2 = n2/3 · (log |X |)1/3. Thus by

13-8

Algorithm 2 Private multiplicative weights([?], modified parameters)

Input: A database D

Parameters: An update parameter η :=
(

log |X |
n

)1/3
, a standard deviation

σ := O

(
(log |X |)1/3 log(1/δ)

εn1/3

)
, and a threshold

τ := O

(
(log |X |)1/3 · log(1/δ) · log(k/β)

εn1/3

)
.
Let D(0)(i) = 1/|X | for every i ∈ X .
For t = 1, 2, . . . , k:

1. Receive query q(t) and compute q(t)(D(t−1)).

2. Compute z(t) = q(t)(D) + Lap(σ).

3. If |q(t)(D(t−1)) − z(t)| ≤ τ then set D(t)(i) = D(t−1)(i) for every i ∈ X and output a(t) =
q(t)(D(t−1)). Otherwise output a(t) = z(t) and do an update.

4. Update: if q(t)(D(t−1))− z(t) < τ set

D(t)(i) ∝ exp
(
η · q(t)(i)

)
·D(t−1)(i)

and finally if q(t)(D(t−1))− z(t) > τ set

D(t)(i) ∝ exp
(
−η · q(t)(i)

)
·D(t−1)(i).

13-9

Theorem 2, it is sufficient to choose σ ≥ (log |X |)1/3
εn1/3 to ensure the privacy of these values, which

is what we have done.

• Finally, we need to argue that, in most rounds, revealing whether or not we have done an
update2 does not depend on whether we used a database D or a neighboring database D′.
Actually we will show that with high probability over the coins of the mechanism, such a
statement is true. The idea is to show that if we are sufficiently close to performing an update,
then we have a constant probability of actually doing an update. Thus there cannot be too
many more “almost updates” than actual updates.

In slightly more detail, we consider three possible cases for each round:

– Case 1: In this case we are so far from performing an update that we don’t reveal any
information. Specifically, suppose that |q(t)(D(t−1)) − z(t)| < τ − 2/n. In this case, we
will would not perform an update even if we had switched to a neighboring database D′,
since this could only affect the value z(t) by 1/n. Thus we don’t have to pay any privacy
cost in these rounds.

– Case 2: In this case we are always performing an update. Here we do pay a privacy cost,
but it’s the privacy cost we already accounted for when we bounded the number of update
rounds and chose σ appropriately. Specifically, suppose that |q(t)(D(t−1))−z(t)| > τ+2/n.
Here we would perform an update even if we had switched to a neighboring database D′

that changes the value z(t) by 1/n.

– Case 3: These are the rounds where we are “borderline”. Specifically, |q(t)(D(t−1) −
z(t)| = τ ± 2/n. In these rounds we may find that we would do an update if the database
were D but not if the database were D′, and thus we reveal information. In principle
every round where we do not perform and update could be such a borderline round, and
thus we may pay a privacy cost in every step. However, we can show that by our choice of
σ, conditioning on the event that we are in case 2 or case 3, we actually have a constant
probability of being in case 3. Thus, with probability 1 − δ, we are in case 2 or case

3 at most O
(

log |X |·log(1/δ)
η2

)
times3. Thus, by chosing σ to be larger than we need to

protect the update rounds by a factor of log(1/δ), we still ensure differential privacy with
probability 1− δ, which is equivalent to (ε, δ)-differential privacy.

References

[AHK] S. Arora, E. Hazan, S. Kale. The multiplicative weights update method: a meta algorithm
and applications. Technical report, Princeton University, 2005.

[BLR08] A. Blum, K. Ligett, A. Roth. A Learning Theory Approach to Non-Interactive Data Pri-
vacy. In STOC2008.

[DN03] I. Dinur, K. Nissim. Revealing Information While Preserving Privacy. In PODS2003.

[DNRRV09] C. Dwork, M. Naor, O. Reingold, G. Rothblum, S. Vadhan. On the Complexity of
Differentially-Private Data Release: Efficient Algorithms and Hardness Results. In STOC2009.

2Note that the algorithm does not actually output whether or not it decided to update. However, the analysis of
the mechanism shows that it would still be private even if we were to output this information.

3Notice that q(t)(D(t−1)) is fixed when conditioning on the previous rounds of the mechanism. Thus which case
we fall into in round t is determined only by the value of the random variable Lap(σ) in round t, which is independent
of the value of this random variable in all other rounds.

13-10

[GHRU11] A. Gupta, M. Hardt, A. Roth, J. Ullman. Privately Releasing Conjunctions and the
Statistical Queries Barrier. In STOC2011

[HR10] M. Hardt, G. Rothblum. A Multiplicative Weights Update Mechanism for Privacy-Preserving
Data Analysis. In FOCS2010.

[LW94] N. Littlestone, M.K. Warmuth. The Weighted Majority Algorithm. Information and Com-
putation 1994.

[UV11] J. Ullman, S. Vadhan. PCPs and the Hardness of Generating Private Synthetic Data. In
TCC2011

13-11

