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1 Recap

De�nition 1 If X and Y are two random variables with range U , then the statistical distance
between X and Y is

∆(X, Y ) ≡ 1
2

∑
u∈U

|Pr[X = u]− Pr[Y = u]|.

X ≈ε Y is also used to denote ∆(X, Y ) ≤ ε.

Last time we proved the following lemma:

Lemma 2 For all randomized functions f , if x ≈ε y, then f(x) ≈ε f(y).

De�nition 3 A (k, ε)-extractor takes a seed Ud that is uniformly distributed on {0, 1}d, and a
random variable X with H∞(X) ≥ k which is independent of Ud. Then

(Ext(X, Ud), Ud) ≈ε (Ul, Ud),

where Ul is uniformly distributed on {0, 1}l, and is independent of X and Ud.

De�nition 4 The min-entropy of a discrete random variable X, denoted H∞(X), is equal to
− log(max(P (X = x)).

Last time we proved the Leftover Hash Lemma, which states that if X is a random variable with
universe U and H∞(X) ≥ k, ε > 0, and H is a universal hash family of size 2d with output length
l = k − 2 log(1/ε), then

Ext(x, h) = h(x)

is a (k, ε/2) extractor with seed length d and output length m. In other words, Ext(x, h) extracts l

bits from x that are ε-close to uniform, with ε = 1
2

√
2−l. For a �xed ε, the amount of extracted bits

l is optimal up to an additive constant, as shown in [5]. (In other words, the loss 2 log(1/ε) bits is
necessary.) The only drawback of this extractor is that d (seed length) is high. We need extractors
with shorter seeds for the Alternating Extraction game presented in the next section; we will not
show how to build them, but they do exist, with seeds as short as Θ(log 1/ε + log n), where n is the
number of bits in elements of X.
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2 The Alternating Extraction Theorem

The result in this section is from [2], although the presentation is closer to that of [1]. Let's say we
have two players, PQ and PW . Player PQ holds string Q, and player PW holds string W . Q and W
are long, high-entropy, and independent of one-another. PQ begins the game by sending s1, which
he picks uniformly at random, to PW . PW then sends Ext(W, s1) back to PQ. The two players then
continue to use extractors on the string they receive, and send the result back, in a game much
resembling extractor ping-pong. This looks as follows:

Q s1−−−−−−−−−−−−−−−−−−→ W

r1 = Ext(W ; s1)←−−−−−−−−−−−−−−−−−−−

s2 = Ext(Q; r1)−−−−−−−−−−−−−−−−−−→

r2 = Ext(W ; s2)←−−−−−−−−−−−−−−−−−−−

. . .

Note that ris and sis can be very short, since they are used only as extractor seeds (and hence
can be logarithmic in the length of Q and W ). We want to prove that this protocol has a �no
peeking ahead feature�: that in order to learn si and ri, the players must communicate for i round
trips or else essentially send the entire Q or W to the other side. In other words, interaction can
logarithmically decrease the amount of communication necessary to learn a certain value; reducing
interaction even by a single round will lead to an exponential increase in the number of bits that
need to be communicated.

More formally, PQ and PW may or may not follow the protocol. Let msgQ
j be the jth message

sent by PQ. It will contain rj , as well as any extra information PQ chose to transmit along with
it. msgW

j is de�ned symmetrically for PW . Let V W
i be the view of PW up to i; that is, V W

i is W

itself, combined with (msgQ
1 , . . . ,msgQ

i ). (V W
i also contains any random coins PW tosses internally,

if any.) V Q
i is de�ned symmetrically for PQ; however, keep in mind that PQ is the �rst player to

send a message, so V Q
i only includes (msgW

1 , . . . ,msgW
i−1). The theorem is as follows:

Theorem 5 Assume the extractor Ext used in the protocol is a (k, ε) average-case extractor (i.e.,
it produces outputs that are ε-close to uniform as long as the input has average minentropy k). If

i∑
j=1

|msgQ
j | < H∞(Q)− k and

i∑
j=1

|msgW
j | < H∞(W )− k ,

then
(V W

i , si+1) ≈2iε (V W
i , U) and (V Q

i , ri) ≈2iε (V Q
i , U).

In other words, as long as not too much information is sent, si+1 looks uniform to PW after PW

receives s1, . . . , si and whatever extra information PQ chose to send along with it. Symmetrically,
ri looks uniform to PQ after PQ receives r1, . . . , ri−1, and whatever extra information PW chose to
send along with it.
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Note that an even stronger statement follows from this theorem; namely, that all future messages
r and s values should look uniform to both PQ and PW . This corresponds to [1, Theorem 9],
whereas what we stated above as Theorem 5, and will proceed to prove, corresponds to [1, Lemma
41]. However, [1, Theorem 9] follows easily from [1, Lemma 41] (our Theorem 5) by the hybrid
argument.

Our proof will use the following important fact. Let msgs be the collection of messages sent by
both parties from the beginning of the protocol up to some point. We claim that Q and W are
independent given msgs; equivalently, that Q → msgs → W form a Markov chain. In other words,
if msgs contain information about the joint properties for Q and W (e.g., the exlusive-or of their
�rst bits), the information can be transformed into the piece about Q and a separate piece about
W (e.g., the �rst bit of Q and the �rst bit of W ).

This fact is crucial because the seeds that are used to extract from Q are made out of W , and vice
versa, and seeds need to be independent of the source in an extractor.

This fact can be proved by induction. It is easier to think of the following equivalent formulation:
it is possible to sample the joint distribution (Q,msgs,W ) by sampling msgs → Q and msgs → W .
Indeed, the base step is easy: initially Q and W are independent. The inductive step is shown as
follows (we'll show it for the message sent by PW ; the other case is symmetric). The message sent by
PW depends only on information available to PW , i.e., msgs so far and W . Thus, once that message
is �xed, the marginal distribution of W changes, but the marginal distribution of Q does not. So
sampling msgs → W changes in accordance with the newly sent message, but sampling msgs → Q
remains the same.

Proof: (of Theorem 5) We will prove this by induction; our proof a is summary of the proof in [1],
with one correction as pointed out below.

The base case is i = 0. s1 is by de�nition uniformly random, so it is clear that

(V W
0 , s1) ≈0 (V W

0 , U).

The inductive hypothesis is that

(V W
i−1, si) ≈(2i−2)ε (V W

i−1, U).

From here we will only do half an iteration - that is, we will show that if the inductive hypothesis
holds, then it must be true that

(V Q
i , ri) ≈(2i−1)ε (V Q

i , U).

Because of the symmetry of this interaction, half an iteration is su�cient.

The inductive hypothesis gives us that

(V W
i−1, si) ≈(2i−2)ε (V W

i−1, U).

This implies
(V W

i−1, si, ExtW (W, si)) ≈2(i−1)ε (V W
i−1, U, ExtW (W,U)).

This is true by Lemma 2, because the extractor is a function, and we only applied it to things already
present on either side (since W is necessarily contained in V W

i−1).
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Let msgs = ((msgQ
1 , . . . ,msgQ

i−1), (msgW
1 , . . . ,msgW

i−1)). Because V W
i−1 necessarily contains (msgQ

1 , . . . ,msgQ
i−1),

and (msgW
1 , . . . ,msgW

i−1) can trivially be computed from it, it follows by Lemma 2 that

(msgs, si, ExtW (W, si)) (1)

≈(2i−2)ε (msgs, U, ExtW (W,U)) .

Because W has average min-entropy at least k even conditioned on msgs (a rigorous proof of this
fact is needed, but intuitively it is guaranteed by the theorem statement's condition on message
lengths and by the fact that only messages from PW can reduce the entropy of W ), the extractor
should work as expected, and thus by de�nition of extractor,

(msgs, U, ExtW (W,U)) (2)

≈ε (msgs, U, U ′) ,

where U ′ is a fresh uniform sample.

Applying the triangle inequality (which holds for statistical distance) to the two statements above,
we get

(msgs, si, ExtW (W, si)) (3)

≈(2i−1)ε (msgs, U, U ′) .

We now need to replace U with si on the right-hand side, because the view V Q
i contains si rather

than U . There are two methods to do it. We suggest that a �rst-time reader simply accept this on
faith and skip to the result of this replacement, which is Equation 5.

The �rst method is relatively simple: we observe that Equation 1 implies (by Lemma 2, where f
is the function that simply removes the rightmost term and replaces it with a uniformly random
string)

(msgs, U, U ′) (4)

≈2(i−1)ε (msgs, si, U
′) ,

and so we can apply the triangle inequality again, this time to equations 3 and 4. Unfortunately, the
two applications of the triangle inequality will double the statistical distance, and the end result will
be that statistical distance will grow exponentially, rather than linearly, with i. That's not going to
change the result dramatically (we can simply set k high enough and use good enough Ext that ε
is small to begin with), but it's better not to have to do this. So we will have to use di�erent, more
complicated method.

The more complicated method was described (with mistakes) in [2, Lemma 1] and [1, Lemma 31]; this
description �xes those mistakes, and is based on private communication with Stefan Dziembowski.

Lemma 6 Suppose A,B, C, D, and F are random variables such that C and D vary over the same
domain, and

• C is independent of F given A

• C is independent of B given A

• D is independend of F given A
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• D is independend of B given A

(in other words, C → A→ F , C → A→ B, D → A→ F , and D → A→ B form Markov chains).
Suppose f is a function such that (A,C, f(B,C)) ≈δ1 (A,C, F ) and (A,C) ≈δ2 (A,D). Then

(A,D, f(B,D)) ≈δ1+δ2 (A,D, F ) .

Proof: First, to simplify notation, �x a paricular value of A and drop A from all formulas; at the
end, simply average over all values A. By independence of D from B and F ,

∆((D, f(B,D)), (D,F )) =
∑

x

∆(f(B, x), F ) Pr[D = x] .

This, in turn, is equal to∑
x

∆(f(B, x), F )(Pr[D = x]− Pr[C = x]) +
∑

x

∆(f(B, x), F ) Pr[C = x]) .

The second term is simply δ1 (by independence of C from B and F ). The �rst term is at most δ2,
by de�nition of statistical distance. �

To apply the above lemma, let

• f be the extractor function,

• A = msgs,

• B = W ,

• C = U ,

• D = si,

• F = U ′.

Since F and C are uniform and independent, the �rst three Markov chain conditions are trivially
satis�ed. The fourth Markov chain condition follows from the fact that Q, msgs, and W form a
Markov chain and D = si is a just a function of Q and msgs. The remaining conditions of the
lemma are satis�ed by equations 2 and 1. It follows that

(msgs, si, ExtW (W, si)) (5)

≈(2i−1)ε (msgs, si, U
′) .

There is one step left to get to our desired result.

As a consequence of Q→ msgs→ Q being a Markov chain, we claim that there exists a randomized
function f such that the joint distribution (Q,msgs, si,W ) is identical to the joint distribution of
(f(msgs, si),msgs, si,W ). (In other words, Q can be obtained by a random function of (msgs, si)
and will be distributed correctly even in the presence of W .) By Lemma 2, we get

(Q,msgs, si, ExtW (W, si))
≈(2i−1)ε (Q,msgs, si, U

′) .
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Note that it is crucial here that W is not needed to sample Q, since W is present in the left-hand
side of the equation, but not in the right-hand side. Note also that it is crucial that we managed to
get si into both sides of the equations (in other words, Equation 3 is insu�cient), since otherwise
on the left-hand side we would have to sample to Q in the presence of si and on the right-hand side
we would have to sample Q in the absence of si, which would mean that we are applying di�erent
functions f to the two sides.

Since V Q
i is just Q and (msgW

1 , . . . ,msgW
i−1), and ri = ExtW (W, si), it follows that

⇒ (V Q
i , ri) ≈(2i−1)ε (V Q

i , U ′)

Which is what we wanted to show. �

3 Applications

In this section we'll discuss one application of what we just learned, to leakage-resilient cryptography.

3.1 Constructing a Leakage-Resilient Pseudorandom Generator

First, a note about leakage! It's all well and good to prove theorems about cryptographic schemes,
but the traditional ones don't consider the innards of the device that uses the secret key. It's �ashing
and blinking and whirring and sending all kinds of signals � can these tell the adversary something we
don't want him to know? Yes! They convey all the information an expert listener needs. If you listen
closely to, for example, an RSA private key operation, you can hear squaring and multiplication as
they happen (and they sound di�erent), so you can actually read o� the secret key just from the
noises the decryption algorithm makes [6]. In fact, power consumption,timing, EM radiation, etc.,
can all leak information about the secret key.

So we need some assumptions: �rst, let us assume that there is in fact some secure memory (unfor-
tunate adage: "only computation leaks information"). So you can move and erase things, and you
can leave them places (pouring the sand into the bottle is leaky, but once it's in and corked, it is
secure). In our model, then, the adversary can get information out of whatever you are working on
right now.

We will now present a stream cipher (psuedorandom generator) that is leakage resilient. The result
is from [3] These are our assumptions:

1. There is a way store (put away) bits so that they don't leak. However, they cannot be operated
upon when so stored.

2. Leakage per unit time is bounded.

3. We have secure erasure: working memory forgets its previous states.

Our goal is to produce a pseudorandom generator (PRG) that outputs blocks such that blocki ≈ U
even to an adversary who knows all of block1 . . . blocki−1 and was allowed to observe their compu-
tation.

We have already almost done this. Recall the extractor ping-pong game we de�ned in the �rst
section, and this picture:
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Q s1−−−−−−−−−−−−−−−−−−→ W

r1 = Ext(W ; s1)←−−−−−−−−−−−−−−−−−−−

s2 = Ext(Q; r1)−−−−−−−−−−−−−−−−−−→

r2 = Ext(W ; s2)←−−−−−−−−−−−−−−−−−−−

. . .

During each computation, we engage the middle (i.e., the ri or si) and one of the left or the right
side (i.e., Q or W ), but never both sides at once. So, we can put the part we are not working on
into nonleaky memory, and, under our assumption, the leakage will depend on (Q, ri) or on (W, si).
In this case, to say that the adversary gets a bounded amount of leakage is the same as to saying
that PW or PQ sends a bounded amount of extra information; and we know by Theorem 5 that the
next message looks uniformly random even with that extra information. So this construction, now
computed by a single computer instead of two players (but with memory separated into components
that never leak together), works as a leakage-resilient PRG: the messages exchanged�the ris and
the sis�will simply be the outputs.

This works until we leak/exchange enough information to run out of entropy in Q and W . But that's,
of course, not very interesting, because the whole point of a PRG is to output more randomness
that its input. So we need to apply a psuedorandom generator to Q or W at each round, in order
to add to computational entropy. Note that pseudorandom generators should be applied to uniform
seeds, so we will �rst apply an extractor to condense the entropy of what's remaining.

Q s1−−−−−−−−−−−−−−−−−−−−−−→ W

(r1, X1) = Ext(W ; s1)
W2 = PRG(X1)

r1←−−−−−−−−−−−−−−−−−−−−−−
(s2, Y2) = Ext(Q; r1)
Q2 = PRG(Y2)

s2−−−−−−−−−−−−−−−−−−−−−−→
(r2, X2) = Ext(W2; s2)
W3 = PRG(X2)

r2←−−−−−−−−−−−−−−−−−−−−−−
(s3, Y3) = Ext(Q2; r2)
Q3 = PRG(Y3)

. . .

The result of the previous section worked (i.e., produced uniform outputs) as long as Q and W
had enough min-entropy: the Qi and Wi eventually won't (because we will be running the PRG for
longer than the amount of entropy we have). We need to show that they are indistinguishable from
something that does, so nobody can tell the di�erence (indistinguishable!), and thus the result from
the previous section can still be used to get pseudorandom, rather than uniform, outputs.

Note that Qis andWis are the result of applying a PRG to a uniform string, so it should all work. The
only problem is that the PRG and the extractor used to get Qi and Wi leak during their operation,
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so Qi and Wi are not pseudorandom any more. Our only hope is that they have something analogous
to min-entropy�i.e., are indistinguishable from something that has min-entropy from the point of
view of a computationally bounded adversary.

3.2 HILL entropy

De�nition 7 A distribution X has HILL entropy k if there exists a distribution Z such that:

1. H∞(Z) ≥ k and

2. For every distinguisher D, circuit of size ≤ S, E(D(X))− E(D(Z)) ≤ ε

Then we say that HHILL
ε,S (X) ≤ k.

Why do we need this? Because our hope is Qi and Wi have HILL entropy. And, from the point
of view of a computationally bounded adversary, HILL entropy is as good as real min-entropy, so if
our hope is right, we are done.

We know outputs of a PRG are indistinguishable from random, and thus have as much HILL entropy
as their length. But what about outputs of PRG that was leaky?

More generally, suppose (X, Y ) is a correlated pair and HHILL(X) ≥ k. What about HHILL(X|Y )?
(In our application, X is the PRG output and Y is the leakage.) Once we �gure that out, we'll be
done.

First let's make a pretty statement:

HMetric∗

ε|Y |,S (X|Y ) ≥ HMetric∗

ε,S (X)− log | supp(Y )| (6)

.

Unfortunately, this is known for Metric∗ but not for HILL entropy, and Metric∗ is ugly. However:

HMetric∗

δ,S (X|Y ) ≥ k =⇒ HHILL
2δ,Ω(δ2s/|X|)(X|Y ) ≥ k (7)

and conversely:
HHILL

δ,S (X|Y ) ≥ k =⇒ HMetric∗

δ,S (X|Y ) ≥ k (8)

So what is this Metric∗ entropy?

De�nition 8 X has Metric∗ entropy k if for every D there exists a Z such that:

1. H∞(Z) ≥ k and

2. For every distinguisher D, circuit of size ≤ S, E(D(X))− E(D(Z)) ≤ ε

as in the de�nition of HILL entropy, but with the further restriction that we consider only determin-
istic D outputting values in the range [0, 1]. Then we say that Hmetric∗

ε,S (X) ≤ k.

Now let's prove the pretty statement (6). Actually, we will prove:
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Theorem 9

Hmetric∗(X|Y = y) ≥ Hmetric∗
ε,S (X)− log

1
Pr[Y = y]

(9)

which implies (6).

Proof sketch (for full proof see [4]):

1. Suppose D distinguishes X|Y = y from any distribution Z of min-entropy ν−∆ with advantage
ε′. Show that either for all such Z, E[D(Z)] is lower than E[D(X|Y = y)] by at least ε′, or
for all such Z, E[D(Z)] − ε′ is higher than E[D(X|Y = y)] by at least ε′. Without loss of
generality, let us assume the former, which allows us to remove absolute values and to �nd a
high-entropy distribution Z+ on which E[D(Z)] is the highest.

2. Show that there exists a distinguisher D′ that also has advantage ε′ but outputs only 0 or
1. This can be done by setting a cuto�: if D's output is above the cuto�, it will output 1,
otherwise it will output 0.

3. Show that for every every z outside of Z+, D′ outputs 0, and that Z+ is essentially �at. Use
these two facts to show an upper bound on E[D′(W )] for any W of min-entropy ν.

4. Show a lower bound on E[D′(X)].

Suppose not, and HMetric∗

ε|Y |,S (X|Y ) < Hmetric∗
ε,S (X) − log | supp(Y )|. This means there is a single

distinguisher D that works for all distributions. Let β = E[D(X|Y = y)], ε′ = ε
Pr[Y =y] .

Suppose HMetric∗

ε|Y |,S (X) ≥ v for some v. Let ε′ := ε/Pr[Y = y] and χ be the outcome space of X.
Assume for contradiction that

HMetric∗

ε′,S (X|Y ) ≥ v − log
1

Pr[Y = y]
(10)

does not hold. Then by the de�nition of metric entropy, there exists a distinguisher D that works
for all distributions. So for all Z with H∞(Z) ≥ v − log 1

Pr[Y =y] ,

|E[Dy(X)|Y = y]| − E[Dy(Z)] > ε′ (11)

Let Z+ and Z− be distributions of min-entropy v − log(1/Pr[Y = y]) that maximize and minimize
the expectations β+ = E[Dy(Z+)] and β− = E[Dy(Z−)] respectively.
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