The Linux Kernel:
Process
Management

L]
.
L
. -
y a
-
I
;.

ORI CS591 (Spring 2001) BEETEH N

Process Descriptors

m The kernel maintains info about each process in a
process descriptor, of type t ask_struct.

m See i nclude/l i nux/sched. h

m Each process descriptor contains info such as
run-state of process, address space, list of open
files, process priority etc...

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

struct task_struct {
volatile long state; /* -1 unrunnable, O runnable, >0 stopped */
unsigned long flags; /* per process flags */
mm_segment_t addr_limit; /* thread address space:
0-OxBFFFFFFF for user-thead
0-OxFFFFFFFF for kernel-thread */
struct exec_domain *exec_domain;
long need_resched,;
long counter;
long priority;
[* SMP and runqueue state */
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;

I* .t.ésk state */

* limits */

[* file system info */
7 ipe stuff */ Contents of process

/* tss for this task */ descriptor
[* filesystem information */

[* open file information */
[* memory management info */
[* signal handlers */

1
SOSON Cs591 (Spring 2001) HEaEaEa

UNIVERSITY

FdL_L OO FEN

L

Process State

m Consists of an array of mutually exclusive flags*

m *at least true for 2.2.x kernels.

m *implies exactly one st at e flag is set at any time.
m st at e values:

B TASK RUNNI NG (executing on CPU or runnable).

B TASK | NTERRUPTI BLE (waiting on a condition: interrupts,
signals and releasing resources may “wake” process).

B TASK UNI NTERRUPTI BLE (Sleeping process cannot be

(]

;|

woken by a signal).]

m TASK STOPPED (stopped process e.g., by a debugger). |
m TASK ZOMBI E (terminated before waiting for parent). .
-
A
M

CS591 (Spring 2001) HER OO 00

Process ldentification

m Each process, or independently scheduled execution context,
has its own process descriptor.

m Process descriptor addresses are used to identify processes.

m Process ids (or PIDs) are 32-bit numbers, also used to
identify processes.

m For compatibility with traditional UNIX systems, LINUX uses
PIDs in range 0..32767.
m Kernel maintains a t ask array of size NR_TASKS, with pointers

to process descriptors. (Removed in 2.4.x to increase limit on
number of processes in system).

L]
.
L
-
I
-
I
;.

CS591 (Spring 2001) HER OO 00

Process Descriptor Storage

Processes are dynamic, so descriptors are kept in
dynamic memory.

An 8KB memory area is allocated for each process,
to hold process descriptor and kernel mode process
stack.

m Advantage: Process descriptor pointer of
current (running) process can be accessed

quickly from stack pointer.

m 8KB memory area = 213 bytes.

m Process descriptor pointer = esp with lower 13
bits masked.

BRI CS501 (Spring 2001) HER OO 00

Cached Memory Areas

m 8KB (EXTRA TASK STRUCT) memory areas are

cached to bypass the kernel memory allocator when
one process is destroyed and a new one is created.

m free task struct() and
al l oc_task struct () are usedto release/

allocate 8KB memory areas to / from the cache.

(]
-
m
_|
.
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

The Process List

m The process list (of all processes in system) is a
doubly-linked list.

mprev_task &next task fields of process
descriptor are used to build list.

minit task (i.e., swapper) descriptor is at head of
list.

mprev_taskfieldofi nit _task points to
process descriptor inserted last in the list.

(]
I
|
mfor each task() macro scans whole list. il
_|
I
]

BRI CS501 (Spring 2001) HER OO 00

The Run Queue

m Processes are scheduled for execution from a doubly-linked list
of TASK RUNNI NG processes, called the r unqueue.

B prev_run &next run fields of process descriptor are
used to build r unqueue.

minit _task heads the list.

m add to runqueue(),del fromrunqueue(),
move_first_runqueue(), nove_l ast _runqueue()
functions manipulate list of process descriptors.

B NR_RUNNI NG macro stores number of runnable processes.
B wake up_process() makes a process runnable.

(]
;|
L]
-
m QUESTION: Is a doubly-linked list the best data structure for a n
run queue? N

A

M

CS591 (Spring 2001) HER OO 00

Chained Hashing of PIDs

m PIDs are converted to matching process descriptors
using a hash function.

m A pi dhash table maps PID to descriptor.

m Collisions are resolved by chaining.

mfind task by pid()searches hash table and

returns a pointer to a matching process descriptor
or NULL.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Managing the t ask Array

m Thet ask array is updated every time a process is
created or destroyed.

m A separate list (headed bytarray freeli st)
keeps track of free elements in the t ask array.

m When a process is destroyed its entry in the t ask
array is added to the head of the freelist.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Walit Queues

m TASK (UN) I NTERRUPTI BLE processes are grouped
Into classes that correspond to specific events.

m e.g., timer expiration, resource now available.

m There Is a separate wait gueue for each class /
event.

m Processes are “woken up” when the specific event
OCCuUrs.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Walit Queue Example

voi d sl eep on(struct wait _queue **wgptr) {
struct wait_queue wait;
current - >st at e=TASK _UNI NTERRUPTI BLE;
wai t . task=current;
add wait _queue(wgptr, &wai t);
schedul e();
renove_wait _queue(wgptr, &wait) ;

}

* sl eep_on() inserts the current process, P, into the
specified wait gueue and invokes the scheduler.

(]
-
m
*When P is awakened it is removed from the wait queue. -
.
-
.
L

M CS591 (Spring 2001) mEE . a8

Process Switching

m Part of a process’s execution context is its hardware context i.e.,

register contents.
B The task state segment (t ss) and kernel mode stack save
hardware context.
= t ss holds hardware context not automatically saved by
hardware (i.e., CPU).

m Process switching involves saving hardware context of pr ev
process (descriptor) and replacing it with hardware context of
next process (descriptor).

m Needs to be fast!

(]
-
B Recent Linux versions override hardware context switching -
using software (sequence of nov instructions), to be ableto 4
.
_|
.
L

validate saved data and for potential future optimizations.

CS591 (Spring 2001) HER OO 00

Thesw tch to Macro

m swtch to() performs a process switch from the
pr ev process (descriptor) to the next process

(descriptor).

m swtch toisinvoked by schedul e() & is one of
the most hardware-dependent kernel routines.

m See kernel / sched. c and i ncl ude/ asm
*/ syst em h for more details.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Creating Processes

m Traditionally, resources owned by a parent process are
duplicated when a child process is created.

m Itis slow to copy whole address space of parent.

= It is unnecessary, if child (typically) immediately calls
execve(), thereby replacing contents of duplicate

address space.
m Cost savers:

m Copy on write — parent and child share pages that are read,;
when either writes to a page, a new copy is made for the
writing process.

m Lightweight processes — parent & child share page tables

(]
-
m
-
. . .
(user-level address spaces), and open file descriptors. F
.
L

CS591 (Spring 2001) REEROD N

Creating Lightweight Processes

LWPs are created using __cl one(), having 4 args:
m f n —function to be executed by new LWP.
m ar g — pointer to data passedto f n.

m fl ags — low byte=sig number sent to parent when child
terminates; other 3 bytes=flags for resource sharing between
parent & child.

CLONE_VMe=share page tables (virtual memory).
CLONE _FI LES, CLONE_SI GHAND, CLONE VFORK n
etc... -
m chil d_stack —user mode stack pointer for child process. g
__cl one() isalibrary routine to the cl one() syscall. N
-
-
-
L

m clone()takesfl ags andchi | d_st ack args and

determines, on return, the id of the child which executes the
f n function, with the corresponding ar g argument.

CS591 (Spring 2001) REEROD N

fork() and vfork()

m fork() isimplemented as a cl one() syscall with
SI GCHLD sighandler set, all clone flags are cleared
(no sharing) and chi | d_st ack is O (let kernel create
stack for child on copy-on-write).

m vfiork() islikefork() with CLONE_ VM&
CLONE_VFORK flags set.

m With vf or k() child & parent share address

space; parent is blocked until child exits or

L]
.
L
executes a new program. N
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

do fork()

m do _fork()iscalledfromcl one():
m alloc task struct () is called to setup 8KB memory
area for process descriptor & kernel mode stack.

m Checks performed to see if user has resources to start a new
process.

mfind enpty process() callsget free tasksl ot ()
to find a slot in the t ask array for new process descriptor

pointer.

m copy files/fs/sighand/ () are called to create
resource copies for child, depending on f | ags value
specified to cl one().

(]
-
m
m copy_t hread() initializes kernel stack of child process. i'
-
.
L

m A new PID is obtained for child and returned to parent when
do_fork() completes.

CS591 (Spring 2001) REEROD N

Kernel Threads

m Some (background) system processes run only in kernel mode.

m e.g., flushing disk caches, swapping out unused page
frames.

m Can use kernel threads for these tasks.

m Kernel threads only execute kernel functions — normal
processes execute these fns via syscalls.

m Kernel threads only execute in kernel mode as opposed to
normal processes that switch between kernel and user modes.

(]
. -
m Kernel threads use linear addresses greater than m
PAGE_OFFSET — normal processes can access 4GB range of F
linear addresses. N

-

.

L

CS591 (Spring 2001) HER OO 00

Kernel Thread Creation

m Kernel threads created using:

mint kernel _thread(int (*fn)(void *),
void *arg, unsigned |ong flags);

mflags=CLONE_SI GHAND, CLONE_FI LES etc.

L]
.
L
-
I
-
I
;.

ORI CS591 (Spring 2001) BEETEH N

Process Termination

m Usually occurs when a process calls exi t ().

m Kernel can determine when to release resources owned by
terminating process.
= e.g., memory, open files etc.

m do_exit () called on termination, which in turn calls
_exit_mmfiles/fs/sighand() tofree appropriate
resources.

m EXxit code is set for terminating process.

m exit _notify() updates parent/child relationships: all children
of terminating processes become children of i ni t process.

(]
-
m
-
m schedul e() is invoked to execute a new process. N
_|
.
L

CS591 (Spring 2001) HER OO 00

