
CS591 (Spring 2001)

The Linux Kernel:
Process

Management

CS591 (Spring 2001)

Process Descriptors

n The kernel maintains info about each process in a
process descriptor, of type task_struct.
n See include/linux/sched.h

n Each process descriptor contains info such as
run-state of process, address space, list of open
files, process priority etc…

CS591 (Spring 2001)

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long flags; /* per process flags */
mm_segment_t addr_limit; /* thread address space:

0-0xBFFFFFFF for user-thead
0-0xFFFFFFFF for kernel-thread */

struct exec_domain *exec_domain;
long need_resched;
long counter;
long priority;
/* SMP and runqueue state */

struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
...

/* task state */
/* limits */
/* file system info */
/* ipc stuff */
/* tss for this task */
/* filesystem information */
/* open file information */
/* memory management info */
/* signal handlers */

...
};

Contents of process
descriptor

CS591 (Spring 2001)

Process State
n Consists of an array of mutually exclusive flags*

n *at least true for 2.2.x kernels.
n *implies exactly one state flag is set at any time.

n state values:

n TASK_RUNNING (executing on CPU or runnable).

n TASK_INTERRUPTIBLE (waiting on a condition: interrupts,
signals and releasing resources may “wake” process).

n TASK_UNINTERRUPTIBLE (Sleeping process cannot be
woken by a signal).

n TASK_STOPPED (stopped process e.g., by a debugger).

n TASK_ZOMBIE (terminated before waiting for parent).

CS591 (Spring 2001)

Process Identification
n Each process, or independently scheduled execution context,

has its own process descriptor.
n Process descriptor addresses are used to identify processes.

n Process ids (or PIDs) are 32-bit numbers, also used to
identify processes.

n For compatibility with traditional UNIX systems, LINUX uses
PIDs in range 0..32767.

n Kernel maintains a task array of size NR_TASKS, with pointers
to process descriptors. (Removed in 2.4.x to increase limit on
number of processes in system).

CS591 (Spring 2001)

Process Descriptor Storage

n Processes are dynamic, so descriptors are kept in
dynamic memory.

n An 8KB memory area is allocated for each process,
to hold process descriptor and kernel mode process
stack.
n Advantage: Process descriptor pointer of
current (running) process can be accessed
quickly from stack pointer.

n 8KB memory area = 213 bytes.
n Process descriptor pointer = esp with lower 13

bits masked.

CS591 (Spring 2001)

Cached Memory Areas

n 8KB (EXTRA_TASK_STRUCT) memory areas are
cached to bypass the kernel memory allocator when
one process is destroyed and a new one is created.

n free_task_struct() and
alloc_task_struct() are used to release /
allocate 8KB memory areas to / from the cache.

CS591 (Spring 2001)

The Process List

n The process list (of all processes in system) is a
doubly-linked list.
n prev_task & next_task fields of process

descriptor are used to build list.
n init_task (i.e., swapper) descriptor is at head of

list.
n prev_task field of init_task points to

process descriptor inserted last in the list.
n for_each_task() macro scans whole list.

CS591 (Spring 2001)

The Run Queue
n Processes are scheduled for execution from a doubly-linked list

of TASK_RUNNING processes, called the runqueue.
n prev_run & next_run fields of process descriptor are

used to build runqueue.
n init_task heads the list.
n add_to_runqueue(), del_from_runqueue(),
move_first_runqueue(), move_last_runqueue()
functions manipulate list of process descriptors.

n NR_RUNNING macro stores number of runnable processes.
n wake_up_process() makes a process runnable.

n QUESTION: Is a doubly-linked list the best data structure for a
run queue?

CS591 (Spring 2001)

Chained Hashing of PIDs

n PIDs are converted to matching process descriptors
using a hash function.
n A pidhash table maps PID to descriptor.

n Collisions are resolved by chaining.
n find_task_by_pid()searches hash table and

returns a pointer to a matching process descriptor
or NULL.

CS591 (Spring 2001)

Managing the task Array

n The task array is updated every time a process is
created or destroyed.

n A separate list (headed by tarray_freelist)
keeps track of free elements in the task array.
n When a process is destroyed its entry in the task

array is added to the head of the freelist.

CS591 (Spring 2001)

Wait Queues

n TASK_(UN)INTERRUPTIBLE processes are grouped
into classes that correspond to specific events.
n e.g., timer expiration, resource now available.
n There is a separate wait queue for each class /

event.
n Processes are “woken up” when the specific event

occurs.

CS591 (Spring 2001)

Wait Queue Example
void sleep_on(struct wait_queue **wqptr) {

struct wait_queue wait;

current->state=TASK_UNINTERRUPTIBLE;

wait.task=current;

add_wait_queue(wqptr,&wait);

schedule();

remove_wait_queue(wqptr,&wait);

}

•sleep_on() inserts the current process, P, into the
specified wait queue and invokes the scheduler.

•When P is awakened it is removed from the wait queue.

CS591 (Spring 2001)

Process Switching
n Part of a process’s execution context is its hardware context i.e.,

register contents.
n The task state segment (tss) and kernel mode stack save

hardware context.
n tss holds hardware context not automatically saved by

hardware (i.e., CPU).
n Process switching involves saving hardware context of prev

process (descriptor) and replacing it with hardware context of
next process (descriptor).

n Needs to be fast!
n Recent Linux versions override hardware context switching

using software (sequence of mov instructions), to be able to
validate saved data and for potential future optimizations.

CS591 (Spring 2001)

The switch_to Macro

n switch_to() performs a process switch from the
prev process (descriptor) to the next process
(descriptor).

n switch_to is invoked by schedule() & is one of
the most hardware-dependent kernel routines.
n See kernel/sched.c and include/asm-
*/system.h for more details.

CS591 (Spring 2001)

Creating Processes
n Traditionally, resources owned by a parent process are

duplicated when a child process is created.
n It is slow to copy whole address space of parent.

n It is unnecessary, if child (typically) immediately calls
execve(), thereby replacing contents of duplicate
address space.

n Cost savers:

n Copy on write – parent and child share pages that are read;
when either writes to a page, a new copy is made for the
writing process.

n Lightweight processes – parent & child share page tables
(user-level address spaces), and open file descriptors.

CS591 (Spring 2001)

Creating Lightweight Processes
n LWPs are created using __clone(), having 4 args:

n fn – function to be executed by new LWP.
n arg – pointer to data passed to fn.
n flags – low byte=sig number sent to parent when child

terminates; other 3 bytes=flags for resource sharing between
parent & child.

n CLONE_VM=share page tables (virtual memory).
n CLONE_FILES, CLONE_SIGHAND, CLONE_VFORK

etc…
n child_stack – user mode stack pointer for child process.

n __clone() is a library routine to the clone() syscall.
n clone()takes flags and child_stack args and

determines, on return, the id of the child which executes the
fn function, with the corresponding arg argument.

CS591 (Spring 2001)

fork() and vfork()

n fork() is implemented as a clone() syscall with
SIGCHLD sighandler set, all clone flags are cleared
(no sharing) and child_stack is 0 (let kernel create
stack for child on copy-on-write).

n vfork() is like fork() with CLONE_VM &
CLONE_VFORK flags set.
n With vfork() child & parent share address

space; parent is blocked until child exits or
executes a new program.

CS591 (Spring 2001)

do_fork()

n do_fork()is called from clone():
n alloc_task_struct() is called to setup 8KB memory

area for process descriptor & kernel mode stack.
n Checks performed to see if user has resources to start a new

process.
n find_empty_process() calls get_free_taskslot()

to find a slot in the task array for new process descriptor
pointer.

n copy_files/fs/sighand/mm() are called to create
resource copies for child, depending on flags value
specified to clone().

n copy_thread()initializes kernel stack of child process.
n A new PID is obtained for child and returned to parent when
do_fork() completes.

CS591 (Spring 2001)

Kernel Threads
n Some (background) system processes run only in kernel mode.

n e.g., flushing disk caches, swapping out unused page
frames.

n Can use kernel threads for these tasks.

n Kernel threads only execute kernel functions – normal
processes execute these fns via syscalls.

n Kernel threads only execute in kernel mode as opposed to
normal processes that switch between kernel and user modes.

n Kernel threads use linear addresses greater than
PAGE_OFFSET – normal processes can access 4GB range of
linear addresses.

CS591 (Spring 2001)

Kernel Thread Creation

n Kernel threads created using:
n int kernel_thread(int (*fn)(void *),
void *arg, unsigned long flags);

n flags=CLONE_SIGHAND, CLONE_FILES etc.

CS591 (Spring 2001)

Process Termination
n Usually occurs when a process calls exit().

n Kernel can determine when to release resources owned by
terminating process.

n e.g., memory, open files etc.
n do_exit() called on termination, which in turn calls

__exit_mm/files/fs/sighand() to free appropriate
resources.

n Exit code is set for terminating process.
n exit_notify() updates parent/child relationships: all children

of terminating processes become children of init process.
n schedule() is invoked to execute a new process.

