
International Journal of Machine Consciousness

 World Scientific Publishing Company

1. EVALUATING THE POTENTIAL FOR USING AFFECT-INSPIRED

TECHNIQUES TO MANAGE REAL-TIME SYSTEMS

W. SCOTT NEAL REILLY, GERALD FRY, SEAN GUARINO, AND MICHAEL REPOSA

Charles River Analytics,

625 Mount Auburn St., Cambridge, MA 02140, USA
snealreilly@cra.com; gfry@cra.com; sguarino@cra.con; mreposa@cra.com

RICHARD WEST

Boston University, Computer Science Department

111 Cummington St., Boston, MA 02115, USA

richwest@cs.bu.edu

RALPH COSTANTINI AND JOSH JOHNSTON

SAIC
8209 Southpark Circle #100, Littleton, CO 80120, USA

Ralph.J.Costantini@saic.com; Joshua.M.Johnston@saic.com

We describe a novel affect-inspired mechanism to improve the performance of computational

systems operating in dynamic environments. In particular, we designed a mechanism that is

based on aspects of the fear response in humans to dynamically reallocate operating system-level

central processing unit (CPU) resources to processes as they are needed to deal with time-critical

events. We evaluated this system in the MINIX® and Linux® operating systems and in three dif-

ferent testing environments (two simulated, one live). We found the affect-based system was not

only able to react more rapidly to time-critical events as intended, but since the dynamic process-

es for handling these events did not need to use significant CPU when they were not in time-

critical situations, our simulated unmanned aerial vehicle (UAV) was able to perform even non-

emergency tasks at a higher level of efficiency and reactivity than was possible in the standard

implementation.

2. Introduction

Many modern computational systems, such as operating systems for real-time applica-

tions, need to operate effectively in complex, dynamic environments. Current systems

are limited in their ability to dynamically modify their behavior to suit the changing

environment and user needs. Humans and other biological creatures, while far from

perfect, are considerably better at adapting to dynamic environments than are compu-

tational systems. Therefore, we believe the study of human adaptation can provide in-

sights into mechanisms to improve the performance of computational systems.

2 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

While it might not be obvious at first why adaptation mechanisms that work for

humans should be suitable for computational systems, we believe there are enough ar-

chitectural similarities that such a transfer of effective adaptation mechanisms is plau-

sible. For instance, they both have multiple, concurrent threads/goals competing for

time/attention resources; both are limited in terms of resources, time to respond, and

ability to perceive the environment; both have limited short- and long-term memory;

and both act in a social/networked environment. We, therefore, believe that computa-

tional systems, such as modern operating systems being used for real-time applica-

tions, provide a useful application area for biologically inspired control architectures.

Self-Aware Computing provides a conceptual, metacognitive approach for generat-

ing dynamic capabilities for computational systems inspired by the adaptive, intro-

spective capabilities of biological systems [Agarwal & Harrod, 2006; Ganek & Corbi,

2003]. These metacognitive approaches are designed to observe and adapt their own

processing, as well as other processing within the self-aware system, in an effort to

achieve their specified goals even in dynamic environments. Agarwal and Harrod

[2006] identify a number of desirable properties for self-aware systems, each of which

is associated with the key goal of making the processing system adaptive.

Current metacognitive approaches (e.g., [Anderson & Perlis, 2005; Patterson et al.,

2002; Rhea et al., 2003] and IBM’s autonomic computing program) have shown prom-

ising results in this area, but none of these approaches make any effort to utilize the

rich conceptual resources available to humans through affective processes. While some

might think of emotions and moods as being irrational and counterproductive to effec-

tive behavior, psychologists and neuroscientists have largely come to believe that af-

fect is an evolutionarily adaptive aspect of human behavior that is useful for living in

dynamic, resource-bounded, dangerous, social environments (e.g., [Damasio, 1994]).

Computational scientists and philosophers have come to believe that computational

systems with multiple, competing motivations, operating with limited resources (in-

cluding time, memory, and computational power), and operating in complex, dynamic,

and social environments will require affect-like mechanisms to be effective [Minsky,

2006; Pfeifer, 1993; Sloman & Croucher, 1981; Toda, 1962].

3. Approach

Human affect moderates attentional, cognitive, and physical resources based on the

state of current goals and the relevant aspects of the environment. For instance, fear

results in attentional/perceptual focusing that filters out elements of the environment

that would normally be attended to by resources that are needed by the threatened

goal.

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 3

We believe computational systems can benefit from a similar mechanism. For in-

stance, operating systems, which are responsible for allocating resources (e.g., central

processing unit (CPU) processor time, memory, network access) to processes, can

more effectively allocate these resources if they are aware when the processes are be-

ing threatened due to a lack of those resources. For instance, an unmanned aerial vehi-

cle’s (UAV’s) navigation process is threatened when the UAV is in danger of collid-

ing with another object, but it does not normally require a large number of resources

for normal flight. Obviously, the success of such a mechanism relies on a level of self-

awareness on the part of the processes to recognize threats, but one of the results of

this effort was to demonstrate that it is possible to create such self-aware processes and

that the overhead of such self-awareness more than pays for itself in efficiency im-

provements.

Current real-time operating systems attempt to provide scheduling functionality

that allows for hard real-time tasks (i.e., tasks that must be achieved within a set

amount of time) to meet their deadlines. However, systems currently in use are typi-

cally designed to support a single application in which all tasks and their worst case

execution times are known a priori. Such systems fail to support applications that con-

sist of a dynamic set of hard real-time, soft real-time (i.e., tasks with set deadlines, but

without critical results if they are not met), and non-real-time tasks. Also, in the ab-

sence of adaptation to environmental conditions, such as flying near obstacles or not,

time-critical tasks may utilize more resources than necessary, therefore preventing ef-

ficient use of resources for computation involving soft real-time or best-effort tasks.

Our approach uses affective scheduling to adapt the priorities of tasks based on their

likelihoods of success or failure. Such adaptation is driven by an analog to human

emotions such as fear and hope.

4. System Overview

We designed and prototyped this concept as the Affective Process Management Mod-

ule (APMM) within the Marvin Affective Architecture, illustrated in Figure 1. The

basic Marvin architecture is adapted from Neal Reilly [Neal Reilly, 1996], where it

was used to model the generation and influence of affect in software agents for games.

The architecture is, in turn, based on the cognitive-appraisal theory of emotion put

forth by Ortony et al. [Ortony, Clore, & Collins, 1988].

4 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

Figure 1. Marvin and APMM Conceptual Design

In this approach, System Processes (e.g., operating system threads that correspond

to software applications) are extended to support Affect Attributes (e.g., likelihood of

success) in addition to standard annotation (e.g., name, status). The Affective Process

Management Module (APMM) is notified when there are certain kinds of changes we

refer to as Affect Patterns, which are inspired by the affective literature. For instance,

the APMM is updated when the likelihood of success for a high-importance process

changes. The patterns correspond to process-specific “emotions.” These emotions

have a type (e.g., fear), an intensity (which in the case of fear is based on the im-

portance of the process not failing and the likelihood that it will if not tended to), and a

cause of the emotion (e.g., fear of failing due to lack of CPU resources or network

bandwidth). The latter can be used to provide more specific and appropriate emotional

responses. For instance, in humans fear of failing a test and fear of a mugger produce

different responses that are suited to the situation [Neal Reilly, 2006]; similarly, in our

system, fear of failure due to lack of CPU resources or due to lack of network band-

width can be handled differently.

The emotions are used by the APMM to reallocate resources (e.g., CPU) via the

standard Process Manager for the operating system (OS). We also have put in place

mechanisms to bypass the process manager when we find we want to achieve effects

(Process Mods) that are not directly supported by the OS. For instance, we can com-

municate a general Priority state that the processes can use to affect their behavior; if

the APMM indicates that the system is in an emergency state, then processes might

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 5

switch into a new mode where most processes shut down and others perform shut-

down, emergency behaviors.

Self-aware applications in our system are designed for use with the APMM, which

enables them to update their affective attributes as needed to improve performance at

key junctures. For instance, the self-aware UAV will know that the success of its

avoid-obstacles objective is threatened when an obstacle is seen to be in its flight path,

and the urgency of this threat is based on the distance to this obstacle. Such applica-

tion-specific knowledge is most easily encoded in the applications themselves. Those

applications that do not use any affective attribute management will execute under

their standard priority with no modifications made by the APMM. When an affect-

enhanced application updates its affective attributes, however, through a library the

APMM provides, the APMM analyzes those updates and determines changes in the

application’s priority and resource requirements. Based on these changes, the APMM

will direct adjustments to the process’s priority through the OS process manager.

Consider the practical example of an “affective” UAV gathering information in a

particular region. While “content,” it distributes resources based on standard process

priorities, just as a normal UAV. However, when this affective UAV notices a poten-

tial collision, its affective processes react to ensure high-priority goals are achieved. In

this case, the key goals are to avoid the collision and to ensure that all data collected is

downloaded to a network resource. Thus, the affective navigation might report a dra-

matic increase in urgency that is combined with the high cost of failure associated with

this objective not being met. This combination of factors would cause the APMM to

significantly increase the priority of the navigation process, which, in turn, would

cause the UAV to shift additional resources to that process. Should the system, how-

ever, get to the point where a crash was imminent, it could switch into an emergency

mode where any critical information about the situation could be communicated back

to the ground station or, in the case of a military UAV, critical data could be deleted

before the crash.

5. Results

To evaluate the basic feasibility and usefulness of such an affect-inspired approach to

improving the performance of computational systems, we performed a number of ex-

periments relating to the effectiveness of our approach in various environments and

system implementations with a focus on fear-based processes for the purpose of these

evaluations.

Our experimental systems assign an importance of not failing attribute to each

process based on the overall criticality of the failure of such a task. For instance, in the

6 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

UAV example, the navigation process is given the highest importance as the UAV

crashes if this process fails. Then, each process is adjusted to update its own likelihood

of failure attribute as appropriate for that process. For instance, the navigation process

used the distance to the nearest potential obstacle to drive updates to its likelihood of

failure attribute. These importance and likelihood attributes were both assigned values

in the range [0,1] and the fear associated with each process is computed by multiply-

ing the importance and likelihood attribute values. This fear value is then used to ad-

just the OS priority for each process, using methods appropriate to the OS being used.

We evaluated this fear-based mechanism in four, increasingly complex systems.

First, we implemented it on a MINIX
®
-based OS and a low-fidelity UAV. Then, we

implemented the same system on a Linux OS. Next, we implemented a Linux
®

-based

version of a high-fidelity ground robot system. Finally, we instantiated the APMM on

a physical ground robot. In this section, we review these experiments and the associat-

ed results.

5.1. Low-Fidelity simulated UAV experiments

We implemented the APMM in both MINIX (an educational micro-kernel operating

system that let us build a rapid prototype) and then in a full Linux system. We created

a basic UAV simulation environment that enables a variety of time-critical system

events (e.g., navigation obstacle avoidance, communications requirements, processing

requirements, sensor tasks provided by simulated ground agents) to be defined and

played back in the specified order to a set of processes. Each event requires a system

response within a specified period of time before it fails. Failed navigation-responses

lead to crashes; other failed events, such as communication and sensor responses, are

logged but not considered system failures. In cases of system failures, the simulation is

continued at that point to continue gathering data for the remainder of the scenario

events.

The simulated UAV runs its processes as either affective or non-affective, dis-

patches the time-critical events to the processes, and collects profiling information.

When started as affective processes, each process registers an initial affective process

profile and then, during execution, uses information from the time-critical events it

handles to update the values of its affective profile properties. For instance, the navi-

gation process updates its likelihood of failure to be higher the closer it is to an obsta-

cle (and, therefore, the less time there is to respond before failing).

The scenario was designed to mostly fully occupy the simulated UAV, with transi-

ent periods of under-utilization and over-utilization. Thus, our simulation experiment

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 7

evaluates the affective and non-affective scheduling policies under a variety of system

environments.

The primary metric used for this experiment was whether the system responded

within the time-limits allocated for each simulated event. Our preliminary results

showed that both the MINIX and Linux APMMs provide dramatic improvements in

efficiency over the non-affective versions. This is shown in Table 1. The improve-

ments come both in terms of the ability to respond to non-catastrophic, time-critical

events (Failures in the table are failures to respond in time to events such as sensor or

communications tasks; there were 60 such events in the simulation) and catastrophic,

time-critical events (Crashes in the table; there were two such events in the simula-

tion).

Table 1. Performance Statistics for APMM

Affective

Linux

Non-

affective

Linux

%

Improvement

Affective

MINIX

Non-

affective

MINIX

%

Improvement

Total Pro-

cessing Time

(ms) 28,471 184,135 85% 63,550 156,551 59%

Failures 0 49 100% 23 50 54%

Crashes 0 1 100% 0 1 100%

One concern with affective processing was that it might help in the extreme,

emergency cases, but it might not be effective otherwise due to the overhead

associated with computing affective priorities. This would imply that some non-

emergency tasks that would be handled otherwise would be missed by an affective

system. We found, however, that this was not the case. In fact, we found just the

opposite; because the emergency-response tasks could be reduced in priority when

there were no emergencies, the entire system performed more efficiently and that non-

emergency, time-critical event responses were handled successfully more often. In

fact, none of the 23 Failures of the affective MINIX system were handled successfully

by the non-affective system, so there was never a case where the affective system

performed worse than the non-affective system and many cases where it performed

better.

5.2. Linux process-level scheduling analyses

Using our Linux implementation, we performed additional experiments to quantify the

effects of affective scheduling through the use of the UAV simulation. The application

8 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

consists of a main process that communicates events to three handler processes. De-

pending on the type of event, it is passed either to the uavav (navigation control),

uavsen (sensor reading), or uavxfr (data transfer) process for handling by a specified

deadline. The experiment was run twice—once using the standard SCHED_RR policy

in Linux, and another with adaptation of priorities using affective scheduling (built on

top of SCHED_RR in Linux). The APMM is implemented as a library in Linux that

provides an interface for affective processes to adjust their priorities.

Figure 2 shows the instantaneous requested load on the system at various points in

time during the UAV simulation run. At each sampling point, the requested load asso-

ciated with each outstanding event at that time is calculated as C/D, where C is the

remaining time needed to process the event, and D is the event’s relative deadline. The

sum of these C/D values over all outstanding events is plotted on the vertical axis. The

utilization measurements show that, on average, the system is approximately fully

loaded, with transient periods of under-utilization and over-utilization. Thus, our simu-

lation experiment evaluates the affective and non-affective scheduling policies under a

variety of system environments.

Figure 2. Utilization vs. Time

We measured the percentage of deadlines met for each of the event-handling pro-

cesses in the simulation. Figure 3 shows the results, comparing the affective schedul-

ing scenario with normal (non-affective) Linux scheduling using SCHED_RR. As

shown in the plot, the uavav process achieved all deadlines in the affective case, while

only one-third of the events handled by this process completed by their deadlines in

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 9

the non-affective case. For uavsen, uavxfr, and the total of all events, the affective case

scores approximately 20 percent higher, compared to non-affective scheduling. This

indicates that not only is the Marvin-based system better able to handle the critical

events (those being handled by the uavav process) as intended, but that it performed

better on the lower-priority, non-emergency processes as well, largely because the

uavav could be adjusted to require both more or less CPU time as needed in the cur-

rent situation.

Figure 3. Success Ratio

In addition to success ratios, we record the cumulative response times over all

events processed during the simulation run. Figure 4 compares the affective and non-

affective cases. The vertical axis displays the total response time incurred for all

events completed up to the completion of the event specified on the horizontal axis. As

shown, the affective case results in lower total response time in comparison to the non-

affective case.

10 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

Figure 4. Cumulative Response Time

5.3. High-fidelity ground robot simulation experiments

The low-fidelity UAV experiments showed the basic feasibility of this approach. Next,

we moved to a higher-fidelity simulator to see if the results held up. For this purpose,

we used the SAIC robot simulation that was developed under a previous effort. This

software supports creating waypoints to generate a path that the robot will then follow.

To test the APMM, we created paths of varying complexity and executed them under

increasing speeds until the robot showed signs of losing vehicular control. Another el-

ement of performance we tested was how well the robot stays within its operational

envelope (i.e., how well it stays on the path) while negotiating the course.

The experiment simulated a path-following scenario involving a ground vehicle

that must autonomously follow a predetermined path in the simulated environment at

increasingly fast speeds, more rapid accelerations, and on narrower paths. Default

Linux scheduling mechanisms were used in the APMM-disabled case. In the APMM-

enabled case, affective processing was used to dynamically adjust the priorities of

three processes. The vehicle control unit (VCU) process is responsible for movement

control, the path pursuit process (PathPursuit) computes the necessary adjustments to

keep the robot as close to the path as possible, and the arbiter process (Arbiter) medi-

ates the execution of the other two processes. All runs of the experiment were per-

formed on a dual-core Dell Inc.’s Latitude
®
 laptop running a Linux 2.6.32 kernel,

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 11

which we modified with APMM extensions (such extensions were disabled for the

APMM-disabled run).

Our first experiment focused on the time to complete the task. Our hypothesis was

that by being able to dynamically switch between the VCU and PathPursuit tasks as

each task needed CPU resources, we would be able to achieve the overall goal of

completing the task quickly while staying on the path more often than in the case

where the priorities of the tasks were fixed (as is standard on the MP systems). The

basic idea being that the system could adjust the priorities of the various processes on

the straight-aways and in the turns to use those processes that were most important at

the time. In fact, we found that the APMM-enabled case completed the path-following

scenario as much as 12 percent faster than in the APMM-disabled case with no loss of

control.

Our second experiment focused on power usage. A key problem with many mod-

ern systems (e.g., robotic systems, smart phones), is the limits on power availability

due to battery constraints. We had expected to find that the battery would drain less

simply because of spending less time moving, but we also wanted to measure if the

CPU and other non-navigation systems would require more or less power. Figure 5

plots the results of power usage measurements for the APMM-enabled and APMM-

disabled runs of the experiment. The measurements were taken using the dstat utility

while the system was unplugged, thereby putting a power drain on the battery. The re-

sults show a base-line power usage of approximately 33.7 watts, just before the path-

following scenario begins. This base-line power usage is a result of running system pe-

ripherals such as the display, disk, universal serial bus (USB) devices, network, and so

on. Measurements were taken at 1-second intervals and correspond to the instantane-

ous power usage at each sample. Results show decreased power usage (normalized by

the base-line system power usage) of 25 percent in the APMM-enabled case when

compared with APMM-disabled case. We believe this result demonstrates significant

promise for using these kinds of mechanisms on cell phones and other power-

constrained systems.

12 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

Figure 5: Power Usage Comparison

Finally, we wanted to measure how much other work an APMM-enabled system

could potentially get done with the savings provided. To evaluate this, we ran the same

path-following experiment for both APMM-enabled and APMM-disabled cases while

running a background workload process, to compare the amount of background pro-

cessing that can be done during the scenario. The background process is a CPU-bound

synthetic workload that executes a loop consisting of integer arithmetic instructions.

We found that the APMM-enabled system was able to process 56 percent more of

these background tasks than with the APMM disabled (Figure 6). This increased ca-

pacity is due to restricting CPU bandwidth available to tasks related to path-following

when not needed, which provides a larger fraction of the CPU for background tasks

when using affective, real-time scheduling schemes.

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 13

Figure 6: Background Workload Progress

5.4. Live Robot Demonstration

The simulation experiments demonstrate the effectiveness of the APMM capability for

improving scheduling of applications to improve both emergency and non-emergency

performance. We also created a live robot demonstration to show that: (1) the APMM

modifications to the Linux kernel and environment require only modest application

changes and (2) that they can be deployed on an existing, non-simulated platform. We

did not, however, have the time or budget to perform a thorough set of quantitative

tests, especially as our tests require pushing the robot to the edge of safe use, so we

have not yet demonstrated that the efficiencies found on the simulated systems carry

over to the physical system and leave this for future work.

SAIC modified its previously developed robot autonomy software suite for the

APMM program. This meant adding approximately 50 lines of code to each of four

software applications. Integration also required updating the Linux kernel to an

APMM-enhanced kernel. Otherwise, this effort was one of deploying the updated ro-

bot software used in the MP simulation environment onto the physical platform.

We used a Segway
®
 RMP 400 robot platform for the demonstration. The robot as

it appeared at the demonstration site can be seen in Figure 7.

14 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

Figure 7: The SAIC Robot Used in the Demonstration

The robot was given a rectangular path to follow (Figure 8), which is shown by the

red line in the figure. The software on the robot was started and stopped using a laptop

computer connected via wireless radio, but all processing occurred onboard the robot.

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 15

Figure 8: Aerial View of the Demonstration Site

The robot performed several complete and partial runs of the path with and with-

out an APMM. Since the robot was constrained to well within its performance enve-

lope for safety reasons, we did not expect to see any visually noticeable impact from

running the APMM, and this was the case. The demonstration did, however, show that

the APMM can be applied to an existing platform with minimal modification and no

negative impacts to operation and performance, which was the objective for this live

exercise.

6. Discussion and Future Work

To date, we have only used the Marvin architecture to implement and evaluate a fear-

inspired method of reallocating CPU resources to threads. The point of this initial fear-

focused effort was to demonstrate that using ideas from human emotional mechanisms

as inspirations for computational system design is a fruitful path for generating effec-

tive resource-allocation mechanisms at all, but we believe that there are many other

such mechanisms that might be developed using this same motivation. For instance,

we already have the infrastructure in place to support “hope,” which we believe would

tend to provide additional resources to threads that are nearing completion, thus poten-

16 S. Neal Reilly, G. Fry, S. Guarino, M. Reposa, R. West, R. Costantini, and J. Johnston

tially reducing context switching. Similarly, using the existing mechanisms, we could

use fear- or hope-based mechanisms to allocate non-CPU resources, such as network

bandwidth. Other mechanisms corresponding to, say, anger or pity are also possible

and could be used to adjust to threads that regularly over-demand or under-receive

CPU resources. We also believe reallocating physical resources, much as emotion-

driven adrenaline, which is used to allocate physical resources in humans, could be

used to make more power-efficient systems. This could be used to improve the per-

formance of smart phones or other power-limited devices beyond the efficiencies al-

ready demonstrated due to reduced CPU usage.

Acknowledgments. This work was performed under DARPA contract number

Contract W31P4Q-09-C-0469.

References

Agarwal, A. & Harrod, W. [2006]. Organic Computing. Cambridge, MA: MIT CSAIL /

DARPA IPTO.

Ganek, A. G. & Corbi, T. A. [2003]. The Dawning of the Autonomic Computing Era. IBM Sys-

tems Journal, 42(1), 5-18.

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., & Kubiatowicz, J. [2003]. Pond: the

OceanStore Prototype. In Proceedings of 2nd USENIX Conference on File and Storage

Technologies (FAST '03). San Francisco, CA.

Patterson, D. A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J. et al. [2002]. Re-

covery Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies.

(Rep. No. Technical Report UCB // CSD-02-1175). Berkeley, CA: U.C. Berkeley.

Anderson, M. L. & Perlis, D. R. [2005]. Logic, Self-Awareness, and Self-Improvement: The

Metacognitive Loop and the Problem of Brittleness. Journal of Logic and Computation,

15(1), 21-40.

Damasio, A. R. [1994]. Descrates' Error: Emotion, Reason and the Human Brain. New York:

G.P. Putnam's Sons.

Sloman, A. & Croucher, M. [1981]. Why Robots Will Have Emotions. In Proceedings of 7th In-

ternational Joint Conference on Artificial Intelligence. Vancouver.

Toda, M. [1962]. The Design of the Fungus Eater: A Model of Human Behavior in an Unso-

phisticated Environment. Behavioral Science, 7.

Pfeifer, R. [1993]. The New Age of the Fungus Eater. In Proceedings of Second European Con-

ference on Artificial Life (ECAL). Brussels.

Minsky, M. [2006]. The Emotion Machine. New York: Simon & Schuster.

Neal Reilly, W. S. [1996]. Believable Social and Emotional Agents (PhD Thesis). (Rep. No.

CMU-CS-96-138). Pittsburgh, PA: Carnegie Mellon University.

Evaluating Affect-Inspired Techniques to Manage Real-Time Systems 17

Ortony, A., Clore, G. L., & Collins, A. [1988]. The Cognitive Structure of Emotions. NY:

Cambridge University Press.

Neal Reilly, W. S. [2006]. Modeling What Happens Between Emotional Antecedents and Emo-

tional Consequents. In R. Trappl (Ed.), Cybernetics and Systems 2006. Vienna, Austria.

