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Abstract
Over-estimation of worst-case execution times (WCETs) of real-time tasks leads to poor resource
utilization. In a mixed-criticality system (MCS), the over-provisioning of CPU time to accommodate
the WCETs of highly critical tasks may lead to degraded service for less critical tasks. In this
paper we present PAStime, a novel approach to monitor and adapt the runtime progress of highly
time-critical applications, to allow for improved service to lower criticality tasks. In PAStime, CPU
time is allocated to time-critical tasks according to the delays they experience as they progress
through their control flow graphs. This ensures that as much time as possible is made available to
improve the Quality-of-Service of less critical tasks, while high-criticality tasks are compensated
after their delays.

This paper describes the integration of PAStime with Adaptive Mixed-criticality (AMC) schedul-
ing. The LO-mode budget of a high-criticality task is adjusted according to the delay observed
at execution checkpoints. This is the first implementation of AMC in the scheduling framework
of LITMUSRT, which is extended with our PAStime runtime policy and tested with real-time
Linux applications such as object classification and detection. We observe in our experimental
evaluation that AMC-PAStime significantly improves the utilization of the low-criticality tasks while
guaranteeing service to high-criticality tasks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time systems software

Keywords and phrases progress-aware scheduling, code instrumentation, timing annotation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.6

Acknowledgements This work is supported in part by the National Science Foundation (NSF) under
Grant #1527050. Special thanks to Dr. Ramesh Peri and Intel for generous support and feedback.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

1 Introduction
In real-time systems, computing resources are typically allocated according to each task’s
worst-case execution time (WCET), to ensure timing constraints are met. However, worst-case
conditions for an application are rather rare, resulting in poor resource utilization. Previous
research work [54] shows that the worst-cases lie at the tiny tail-end of the probability
distribution curve of the execution times for many programs. Instead, average-case execution
times are significantly more likely, taking a fraction of the worst-case times.

Mixed-criticality systems (MCSs) provide a way to avoid over-estimation of resource
needs, by considering the schedulability of tasks according to different estimates of their
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execution times at different criticality or assurance levels [52]. Higher criticality tasks are
afforded more execution time at the cost of less time for lower criticality tasks, when it is
impossible to meet all task timing constraints. There have been multiple proposals [6,7,12,15]
since Vestal’s work on MCSs [52]. Most prior work focuses on meeting task deadlines and
ignores other Quality-of-Service (QoS) metrics [51] or average utilization. Although timely
completion is most important for high-criticality applications, QoS is a significant metric for
lower criticality tasks [11,36,48]. This has motivated our work on PAStime (Progress-Aware
Scheduling for time-critical computing), to maximize the QoS for low-criticality tasks.

In PAStime, we first identify a checkpoint in a high-criticality application at an interme-
diate stage in its source code. The application is then profiled offline to measure the time to
reach the marked checkpoint. Using this timing data, the application evaluates its progress at
the checkpoint during runtime. Based on the delay at the checkpoint, PAStime predicts the
expected execution time of a high-criticality application. We consequently adjust the runtime
of the application, given that the change does not hamper schedulability of co-running tasks.
If at runtime a highly critical program is deemed to be making insufficient progress, it is
given greater CPU time.

We combine PAStime with Adaptive Mixed-criticality (AMC) scheduling [7], to improve
the performance of low-criticality tasks. In AMC, the system is started in LO-mode, where all
tasks are scheduled with their LO-mode budgets. When a high-criticality task runs for more
than its LO-mode budget, the system is switched to HI-mode. In HI-mode, all low-criticality
tasks are stopped, and the high-criticality tasks are given their increased HI-mode budgets.
However, switching to HI-mode should be avoided as much as possible [5], because it affects
the performance of low-criticality tasks, which are not executed in HI-mode.

Several works extend the mixed-criticality task model to improve the performance of
low-criticality tasks, such as providing an offline extra budget allowance to the high-criticality
tasks [45], and estimating multiple budgets [35, 43] and periods [46, 48] for low-criticality
tasks. However, these approaches do not utilize runtime information.

We extend AMC with PAStime to avoid mode switches, by dynamically adjusting the
LO-mode budget for a high-criticality task, based on progress to execution checkpoints. Then,
we predict the expected execution time of a high-criticality task based on the observed delay
until a checkpoint. We carry out an efficient online schedulability test to determine whether
we can increase the LO-mode budget of the delayed high-criticality task to our predicted
execution time. In case the taskset is still schedulable with the increased budget, we extend
the LO-mode budget of the high-criticality task to the predicted execution time. When a
high-criticality task finishes within its extended budget, we keep the system in LO-mode and
avoid a mode switch that would otherwise happen in AMC. Thus, PAStime improves the
QoS of low-criticality tasks by keeping the system in LO-mode for a longer time.

Factors such as I/O events and hardware microarchitectural delays lead to actual execution
times exceeding those predicted by PAStime. Any high criticality task running at the end of
its predicted execution time causes a timer interrupt to switch the system into HI-mode, as
is the case with AMC scheduling. Thus, a high-criticality task never misses its deadline.

1.1 Contributions
The central idea of PAStime is to help the OS make scheduling decisions based on a program’s
runtime progress. This work is the first implementation of AMC in the scheduling framework
of LITMUSRT [10,14]. Such an implementation helps in testing AMC scheduling with a wide
range of real-time Linux applications. We also implement an extension to AMC scheduling
with our PAStime runtime policy. We test our implementation with real-world applications:
an object classification application from the Darknet neural network framework [44], an
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object tracking application from the dlib machine learning toolkit [16], and an MPEG video
decoder [20]. We show that PAStime increases the average utilization of low-criticality
tasks by 1.5 to 9 times for 2 to 20 tasks. We also demonstrate that our implementation of
AMC-PAStime has minimal and bounded additional overhead in LITMUSRT.

We provide a C library for PAStime to instrument checkpoints in high-criticality programs.
In addition, we modify the LLVM compiler [29] to automatically identify potential locations
of checkpoints during profiling for simple time-critical applications, and also instrument the
checkpoints in the final binary executable file.

The next section describes our approach to PAStime. Section 3 details the theoretical
background behind AMC and its extension with PAStime. Section 4 describes the design
and implementation of PAStime, which is then evaluated in Section 5. Finally, we describe
related work, followed by conclusions and future work in Sections 6 and 7, respectively.

2 Approach
Compiler infrastructures such as LLVM are capable of producing a program’s control flow
graph (CFG). A CFG represents the interconnection between multiple Basic Blocks (BBs),
where a block is a sequence of straight-line code without any internal branches. However,
CFGs are not typically utilized by an OS to manage time for different computing resources,
in spite of being a rich source of analytical information about a program. Consequently,
current OSs are oblivious to a program’s computing requirements (e.g., CPU utilization) at
different points in its execution. A developer of an application can, instead, help the OS
make decisions related to resource management, by providing runtime information about a
program at certain points in its source code.

PAStime dynamically decides a program’s execution budget based on its runtime progress
and theoretical analysis of the allowable delay at specific checkpoint locations. At runtime,
PAStime measures the time (i.e., CPU time) to reach a checkpoint from the start of a task,
and then compares that time to a pre-profiled reference value. The task’s execution budget
which was previously set based on profiling, is then adjusted according to actual progress.

Figure 1 shows the CFG for a program with two loops, starting at BB2 and BB6. In this
example, PAStime inserts a checkpoint between the two loops at the end of BB5. BB5 is a
potentially good location for a checkpoint because there is one loop before and after this BB,
providing an opportunity to increase the budget to compensate for the delay until BB5.

Suppose that we derive the LO-mode budget of the whole program to be 2000 ms by
profiling, and the LO-mode time to reach the checkpoint at BB5 is 500 ms. The program
is then executed in the presence of other tasks. The execution budget at the checkpoint
(in BB5) is adjusted, to account for the program’s actual runtime progress. For example,
suppose the program experiences a delay of 100 ms to reach the checkpoint in BB5, thereby
arriving at 600 ms instead of the expected 500 ms. Therefore, the program is delayed by
( 100

500 × 100=) 20% from its LO-mode progress.
Depending on the relationship between the task’s LO- and HI-mode progress to the

checkpoint, the task’s budget is adjusted according to the 20% observed delay at the
checkpoint. One approach is to extrapolate a linear delay from the checkpoint to the end
of the task’s execution. Thus, the total execution time of 2000 ms is predicted to complete
at (2000 + 20%× 2000=) 2400 ms. PAStime uses the available information at a checkpoint
to extend the LO-mode budget of a high-criticality application. In Section 5.8, we explore
other possible execution time prediction models.

ECRTS 2020
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Figure 1 CFG and Average Time Estimates of a Program
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2.1 Benefits of Adaptive Mixed-criticality Scheduling
We see progress-aware scheduling as being beneficial in mixed-criticality systems. Adaptive
Mixed-criticality scheduling [7] is the state-of-the-art fixed-priority scheduling policy for
Mixed-criticality tasksets. In AMC, a system is first initialized to run in LO-mode. In
LO-mode, all the tasks are executed with their LO-mode execution budgets. Whenever a
high-criticality task overruns its LO-mode budget, the system is switched to HI-mode. In
HI-mode, all low-criticality tasks are discarded (or given reduced execution time [5, 35]),
and the high-criticality tasks are given increased HI-mode budgets. The system’s switch to
HI-mode therefore impacts the QoS for low-criticality tasks.

By combining PAStime with AMC (to yield AMC-PAStime), we extend the LO-mode
budget of a high-criticality task to its predicted execution time at a checkpoint. Going back
to our previous example in Figure 1, we try to extend the LO-mode budget of the task by
400 ms. We carry out an online schedulability test to determine if we can extend the task’s
LO-mode budget by 400 ms. If the whole taskset is still schedulable after an extension of the
LO-mode budget of the delayed high-criticality task, the increment in the task’s LO-mode
budget is approved. We let the task run until the extended time and keep the system in
LO-mode. In case the high-criticality task finishes within its extended time, we avoid an
unnecessary switch to HI-mode. Thus, the low-criticality tasks run for an extended period of
time and do not suffer from degraded CPU utilization and QoS, as occurs with AMC.

In case the task does not finish within the predicted time, then the system is changed
to HI-mode, and low-criticality tasks are finally dropped. This behavior is identical to
AMC, and every high-criticality task still finishes within its own deadline. Therefore, we
improve the QoS of the low-criticality tasks when the high-criticality tasks finish within their
extended LO-mode budgets, and otherwise, we fall back to AMC. When there is no delay at
a checkpoint, we do not change a task’s LO-mode budget.

3 Theoretical Background
In this section, we provide a response time analysis for AMC-PAStime by extending the
analysis for AMC scheduling. We also describe details about the online schedulability test
based on the response time values.

3.1 Task Model
We use the same AMC task model as described by Baruah et al [7]. Without loss of generality,
we restrict ourselves to two criticality levels - LO and HI. Each task, τi, has five parameters:
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Ci(LO) - LO-mode runtime budget, Ci(HI) - HI-mode runtime budget, Di - deadline, Ti -
period, and Li - criticality level of a task, which is either high (HC) or low (LC). We assume
each task’s deadline, Di, is equal to its period, Ti. A HC task has two budgets: Ci(LO) for
LO-mode assurance and Ci(HI) (> Ci(LO)) for HI-mode assurance. A LC task has only
one budget of Ci(LO) for LO-mode assurance.

3.2 Scheduling Policy
Both AMC and AMC-PAStime use the same task priority ordering, based on Audsley’s
priority assignment algorithm [2]. If a task’s response time for a given priority order is less
than its period, then the task is deemed schedulable. The details of the priority assignment
strategy are discussed in previous research work [3,7]. We do not change the priority ordering
of the tasks at runtime.

AMC-PAStime initializes a system in LO-mode with all tasks assigned their LO-mode
budgets. We extend a high-criticality task’s LO-mode budget at a checkpoint if the task
is lagging behind its expected progress, as long as the extension does not hamper the
schedulability of the delayed task and all the lower or equal priority tasks. An increase to the
LO-mode budget of a task that violates its own or other task schedulability is not allowed. If
a high-criticality task has not finished its execution even after its extended LO-mode budget,
then the system is switched to HI-mode.

3.3 Response Time Analysis
The AMC response time recurrence equations for (1) all tasks in LO-mode, (2) HC tasks
in HI-mode, and (3) HC tasks during mode-switches are shown in Equation 1, 2 and 3,
respectively. hp(i) is the set of tasks with priorities higher than or equal to that of τi.
Likewise, hpHC(i) and hpLC(i) are the set of high- and low-criticality tasks, respectively,
with priorities higher than or equal to the priority of τi.

AMC provides two analyses for mode switches: AMC-response-time-bound (AMC-rtb)
and AMC-maximum. We use AMC-rtb for our analysis, as AMC-maximum is computationally
more expensive. However, AMC-rtb does not allow a taskset which is not schedulable by
AMC-maximum. Therefore, AMC-rtb is sufficient for schedulability.

RLOi = Ci(LO) +
∑

τj∈hp(i)

dR
LO
i

Tj
e × Cj(LO) (1)

RHIi = Ci(HI) +
∑

τj∈hpHC(i)

dR
HI
i

Tj
e × Cj(HI) (2)

R∗i = Ci(HI) +
∑

τj∈hpHC(i)

dR
∗
i

Tj
e × Cj(HI) +

∑
τj∈hpLC(i)

dR
LO
i

Tj
e × Cj(LO) (3)

With AMC-PAStime, we not only measure Ci(LO) and Ci(HI), but also the LO-mode
time to reach a checkpoint CCPi (LO). If a high-criticality task, τi, is delayed by X% at a
checkpoint, compared to its LO-mode progress, then τi takes (CCPi (LO) + CCP

i (LO)×X
100 ) time

to reach the checkpoint. Hence, τi’s budget is tentatively increased from Ci(LO) to C ′i(LO),
where C ′i(LO) = f(Ci(LO), X). Here, f(Ci(LO), X) is a function to predict the delayed
total execution time, given that the observed delay until the checkpoint is X%. For example,
by a linear extrapolation of the observed delay of X% at a checkpoint, the original budget
Ci(LO) changes to f(Ci(LO), X) =

(
Ci(LO) + Ci(LO)×X

100
)
. It is possible for f to depend

on task-specific and hardware microarchitectural factors such as cache and main memory
accesses. We show more execution time prediction techniques in Section 5.8.

ECRTS 2020
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With the increased LO-mode budget C ′i(LO), an online schedulability test then calculates
the the extended LO-mode response time, RLO-exti , for τi, using Equation 4. Similarly, R∗-exti

is calculated using Equation 5. Equations 4 and 5 are extensions of Equations 1 and 3.
AMC-PAStime checks at runtime whether both RLO-exti and R∗-exti are less than or equal to
τi’s period to determine its schedulability.

The new response times are then calculated for all tasks in LO-mode with priorities less
than or equal to τi, using Equation 4. Similarly, new response times are calculated for all
HC tasks with lower or equal priority to τi during a mode switch, using Equation 5. If all
newly calculated response times are less than or equal to the respective task periods, the
system is schedulable. In this case, AMC-PAStime approves the LO-mode budget extension
to τi. If the system is not schedulable, then τi’s budget remains Ci(LO).

RLO-exti = C ′i(LO) +
∑

τj∈hp(i)

dR
LO-ext
i

Tj
e × C ′j(LO) (4)

R∗-exti = Ci(HI) +
∑

τj∈hpHC(i)

dR
∗-ext
i

Tj
e × Cj(HI) +

∑
τj∈hpLC(i)

dR
LO-ext
i

Tj
e × Cj(LO) (5)

AMC-PAStime only extends the LO-mode budget of a delayed HC task for its current
job. When a new job for the same HC task is dispatched, it starts with its original LO-mode
budget. If another request for an extension in LO-mode for the same task appears, AMC-
PAStime tests the schedulability with the maximum among the requested extended budgets.
The system keeps track of the maximum extended budget for a task and uses that value
for online schedulability testing. We explain the AMC-PAStime scheduling scheme with an
example taskset in Table 1.

Table 1 A Mixed-criticality Taskset Example

Task Type C(LO) C(HI) T Pr RLO R∗

τ1 HC 3 6 10 1 3 6
τ2 LC 2 - 9 2 5 -
τ3 HC 5 10 50 3 15 38

Suppose, task τ1 is delayed by 66% at a checkpoint in the task’s source code. PAStime
will then try to extend the budget by (3 × 66

100 ) ≈ 2 time units. Therefore, the potential
extended budget C ′1(LO) for τ1 would be (3 + 2) = 5 time units. PAStime will calculate the
response times, RLO-exti and R∗-exti , for τ1 and the lower priority tasks τ2 and τ3. RLO-ext1
would just be 5, and R∗-ext1 would remain the same as R∗1 = 6, as τ1 is the highest priority
task. The new RLO-ext2 would be 7 (by Equation 4) which is smaller than its period of 9.
Therefore, τ2 would still be schedulable if we extend τ1’s LO-mode budget from 3 to 5.

For τ3, the new RLO-ext3 and R∗-ext3 would be, respectively, 26 (by Equation 4) and 40 (by
Equation 5) which are also smaller than τ3’s period of 50. Therefore, the extended budget
of 5 for τ1 would be approved by AMC-PAStime. In conventional AMC scheduling, the
system would be switched to HI-mode if τ1 did not finish within 3 time units. However,
AMC-PAStime will extend τ1’s LO-mode budget to 5 because of the observed delay at its
checkpoint, so the system is kept in LO-mode. Consequently, LC task τ2 is allowed to run by
AMC-PAStime, if τ1 finishes before 5 time units. If τ1 does not finish even after 5 time units,
the system would be switched to HI-mode.

In this example, 5 jobs of τ1 are dispatched for every single job of τ3, as τ3’s period of 50
is 5 times the period of τ1. Suppose τ1 asks for the 66% increment in its LO-mode budget
for the first job, as we have explained above. In its second job, τ1 asks for an increment
of 33% (1 time unit) in its LO-mode budget. In this case, we again need to calculate the
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response times for all tasks. If we calculate the online response times for τ2 and τ3 assuming
(3 + 1) = 4 time units for C ′1(LO), then we would not account for the first job of τ1, which
potentially executes for 5 time units. We would need to keep track of the extended LO-mode
budgets for all jobs of τ1, to accurately calculate online response times for τ2 and τ3.

To avoid the cost of recording all extended LO-mode budgets for a task, AMC-PAStime
simply stores the maximum extended budget for a task. When calculating online response
times to check whether to approve an extension to the LO-mode budget, the system uses
the maximum extended budget of every high-criticality task. This value is stored in the
max_extended_budget variable for each HC task. Therefore, when τ1 asks for 4 time units
as its extended LO-mode budget in its second job, the system calculates RLO-ext1 , R∗-ext1 ,
RLO-ext2 , RLO-ext3 , R∗-ext3 with C ′1(LO) = 5.

AMC-PAStime uses maximum extended budgets to calculate safe upper bounds for online
response times. The max_extended_budget task property is reset when a task has not
requested a LO-mode budget extension for any of its dispatched jobs within the maximum
period of all tasks.

3.4 Online Schedulability Test
AMC-PAStime performs an online schedulability test whenever a high-criticality task asks
for an extension to its LO-mode budget. The test calculates the response times (RLO-exti

and R∗-exti ) of the delayed high-criticality task and all lower priority tasks. Then, it checks
whether the response times are less than or equal to the task periods. If any task’s response
time is greater than its period, the online schedulability test returns false, and the extension
in LO-mode for the high-criticality task is denied. If the schedulability test is successful the
high-criticality task is permitted to run for its extended budget in LO-mode.

Algorithm 1 shows the pseudocode for the online schedulability test. The offline response
time values (RLOi and R∗i ) are stored in the properties for each task τi. When a high-criticality
task τk is delayed, it asks for an extension of its LO-mode budget by e time units.

Line 6 in Algorithm 1 determines whether the newly requested extension, e, is more than
a previously saved maximum extended budget for τk. In lines 8–11, the C ′i(LO) is set to the
maximum extended budget for all the lower priority tasks and τk. As we have explained
above, it is practically infeasible to store the execution times of every job of all the tasks
to calculate online response times. Therefore, we store the maximum extended budget of
every task and use this to calculate response times online. For the currently delayed task,
τk, C ′k(LO) is set to the maximum value between a previously saved max_extended_budget
and the currently requested Ck(LO) + e. Considering the example in Table 1 from the paper,
line 10 would translate to C ′i(LO)=max(5, 4) for the second LO-mode extension request.

Then, Equation 4 is solved in line 13 by initializing RLO-exti to the RLOi plus extra budget
e′ from line 6. If a lower priority task is a high-criticality task, then R∗-exti is calculated in
line 17, with the newly derived value of RLO-exti .

Online response time calculations may take significant time, depending on the number of
iterations of Equations 4 and 5. However, the response time values from Equations 1, 2, 3
are already calculated offline to determine the schedulability of a taskset using Audsley’s
priority assignment algorithm [2] with AMC scheduling. Since AMC-PAStime uses the same
priority ordering as AMC, the offline response times for schedulability remain the same.

AMC-PAStime initializes the online RLO-exti in Equation 4 with RLOi + e, where RLOi is
calculated offline by Equation 1 and e(> 0) is the extra budget of the delayed task.

Since the budget of a delayed task is extended by e, RLO-exti must be greater than or
equal to RLOi + e. Hence, this is a good initial value to start calculating RLO-exti online. In
Section 5, we establish an upper bound on the total number of iterations needed to check

ECRTS 2020
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Algorithm 1 Online Schedulability Test
1: Input: tasks - set of all tasks in priority order
2: τk - delayed task
3: e - extra budget for τk
4: Output: true or false
5: function IsBudgetChangeApproved(tasks, τk, e)
6: e′ = max(τk.max_extended_budget, Ck(LO) + e)− Ck(LO)
7: for each task τi in {τk ∪ lower priority tasks than τk in tasks} do
8: C ′i(LO) = τi.max_extended_budget
9: if τi is τk then

10: C ′i(LO) =max(C ′i(LO), Ci(LO) + e)
11: end if
12: Initialize RLO-exti for Equation 4 with RLOi + e′

13: Solve Equation 4
14: if RLO-exti ≤ Ti then
15: if τi is high-criticality then
16: Initialize R∗-exti for Equation 4 with R∗i
17: Solve Equation 5 with the new RLO-exti

18: if R∗-exti > Ti then Return false

19: end if
20: end if
21: else Return false

22: end if
23: end for
24: τk.max_extended_budget = max(Ck(LO) + e, τk.max_extended_budget)
25: Return true

26: end function

the schedulability of random tasksets, if the highest priority task’s budget is extended by
different amounts.

4 Design and Implementation of PAStime
In this section, we first describe the overall design of AMC-PAStime in LITMUSRT [10, 14].
This is followed by a description of how checkpoints are instrumented in an application’s
source code. We then show the algorithm to determine and insert checkpoints, which is
integrated into the LLVM compiler infrastructure. A high-criticality task requires profiling
to determine the placement of checkpoints, before it is ready for execution with other tasks.
We describe how the profiling and execution of a high-criticality task is performed, along
with the scheduling mechanism in PAStime. The source code for PAStime in LITMUSRT is
publicly available [41].

AMC-PAStime has two phases: a Profiling phase for high-criticality tasks, and an
Execution phase. In the Profiling phase, one or more checkpoints are placed at key stages
in a program’s source code. The average time to reach each checkpoint is then measured.
After profiling all high-criticality tasks, the system switches into the Execution phase. The
time taken to reach each checkpoint in every high-criticality task is observed by the system
at runtime. Each observed time is compared against the profiled time to reach the same
checkpoint. Any high-criticality task lagging behind its profiled time to a checkpoint is
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Figure 2 Implementation of AMC-PAStime in LITMUSRT
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tentatively given increased LO-mode budget, according to the approach described in Section 3.
Figure 2 shows an overview of the design of AMC-PAStime in LITMUSRT. Step 1 is the

compilation of a high-criticality application’s source code in the Profiling phase, which uses
our compilation procedure [41]. The compiled executable has checkpoints embedded into
its code for profiling. Step 2 executes the program to generate timing metadata for each
checkpoint in a timeinfo.h file. Step 2 is performed multiple times with different program
inputs to generate an average time to reach each checkpoint.

Step 3 compiles the source code along with the checkpoint timing metadata header file
(timeinfo.h) for the Execution phase, producing a binary image that is used for deployment
under working conditions. Finally, Step 4 runs the code in the Execution phase along with
all other tasks. At some point after the system is started, Step 4a starts running a job for a
high-criticality task. When a checkpoint is reached, Step 4b asks the LITMUSRT kernel how
much budget it has consumed. Step 4c returns the spent budget from the LITMUSRT kernel
to the application.

After receiving the spent budget, tspent, the application compares it to the reference
timing, tref, for the checkpoint from the timeinfo.h header file. It calculates the extra
budget, e, needed in LO-mode, using an execution time prediction model as described later
in Section 5.8. If e > 0, Step 4d asks LITMUSRT for extra budget. The AMC-PAStime
scheduling policy in the LITMUSRT kernel runs an online schedulability test. If the test
returns true, the LO-mode budget of the current task is extended by e. If the test algorithm
returns false, the task budget is not altered. Finally, Step 4f finishes the current job of the
running task.

4.1 Checkpoint Instrumentation and Detection
A checkpoint is a key stage in an application’s code, used to evaluate the progress of a
currently running task. Well placed checkpoints balance the number of instructions that are
executed prior to the checkpoint, with those that remain to the next checkpoint or the end
of the program. Ideally, there should be a meaningful number of instructions leading up to a
checkpoint to determine progress. Likewise, there should be sufficient instructions after a
checkpoint to increase the likelihood that a task is adequately compensated for execution
delays using an extended budget.

A developer of a high-criticality application finds a potential checkpoint location in the
program’s source code for its Execution phase, after trying out multiple locations in the
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Profiling phase. PAStime includes a development library to instrument checkpoints for
the two different phases. Additional modifications to the LLVM compiler [29] are used to
automatically detect and instrument checkpoints in the Profiling phase.

4.2 Checkpoint Library
We have developed a C library to instrument checkpoints in the two PAStime phases. The
main purpose of the library is to generate the necessary checkpoint timing information during
the Profiling phase and then request a task’s extended LO-mode budget from the LITMUSRT
kernel during the Execution phase.

In the Profiling phase, a writeTime function call from our library is inserted into the
application code at a desired checkpoint. writeTime takes a unique ID for each checkpoint.
The function logs the time to reach that checkpoint in the source code since the start of a job.
The average of multiple such timing entries is saved in timeinfo.h after the Profiling phase.

During the Execution phase, a preprocessor macro called ANNOUNCE_TIME is inserted
at a checkpoint. This macro obtains the spent budget from the LITMUSRT kernel via a
get_current_budget system call. Then, it compares the spent budget with the reference
budget from the timeinfo.h header file, and calculates the extra budget using an execution
time prediction model. If extra budget is needed, the macro makes a set_rt_task_param
LITMUSRT system call.

4.3 Manual Checkpoint Instrumentation
A developer may attempt various strategies to identify a key stage [13,22,50] of an application
to instrument a checkpoint. The developer uses either the writeTime function for the Profiling
phase, or the ANNOUNCE_TIME macro for the Execution phase to instrument a checkpoint.
Checkpoints should generally be avoided inside tight loops. Visiting a checkpoint every loop
iteration incurs a small overhead that is accumulated across multiple iterations.

4.4 Automatic Checkpoint Instrumentation
We have written a compiler pass in LLVM to automatically instrument checkpoints for
the Profiling phase of PAStime. The instrumented code is run in the Profiling phase, and
multiple checkpoint timing information is generated. Finally, the developer chooses one such
checkpoint for the Execution phase.

The compiler pass automatically inserts checkpoints in the basic block preceding each
loop in a function, except the first loop. The first loop is excluded so that enough instructions
are executed before a checkpoint to determine meaningful delays.

For nested loops, we consider only the outer loop. Automatic instrumentation works
with only simple program structures and ignores intersecting loops. LLVM’s LoopInfo
analysis identifies only natural loops [37]. We utilize the LoopInfo class in our checkpoint
instrumentation implementation.

Algorithm 2 identifies checkpoint locations for the Profiling phase. It starts a Depth First
Search (DFS) from the starting Basic Block (BB) of a function, by calling DoDFS in line 6.
The algorithm then checks whether a BB is part of a loop using LoopInfo’s getLoopFor
member function. This function returns a unique LoopID for every new loop. A nested inner
loop has the same ID as its outer loop. If a BB is not part of a loop, then it returns null.

If a BB is part of a loop, line 12 first checks whether there is any loop before the current
loop using a dictionary isLoopBefore. isLoopBefore is pre-populated for every BB in the
CFG to indicate whether there is at least one loop seen in the paths from the starting BB
to the current BB. To pre-populate isLoopBefore, the algorithm checks whether there is a
path to a BB from the loop BBs.
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Algorithm 2 Determine and Insert Checkpoints
1: isLoopBefore: identifies if a loop is in the paths from the starting BB to another BB
2: visited: set of already visited BBs in DFS
3: function insertCheckpoint(function)
4: startingBB = function.getEntryBlock()
5: doDFS(startingBB)
6: end function
7: function doDFS(currentBB)
8: if currentBB is in visited then return
9: end if
10: LoopID = getLoopFor(currentBB)
11: if LoopID != null then
12: if isLoopBefore[currentBB] ∧ isLoopHeader(currentBB) then
13: insert checkpoint before currentBB
14: end if
15: end if
16: insert currentBB in visited
17: for each s in successors of currentBB do doDFS(s)
18: end for
19: end function

Algorithm 2 then verifies that the current BB is a header of a loop using LoopInfo’s
isLoopHeader member function. A header is the entry-point of a natural loop. We insert a
checkpoint in the predecessor BB of a header.

Finally, if there is at least one loop before the current header BB, a checkpoint is added
before the current BB in line 13. As natural loops have only one header, a checkpoint is
avoided for any inner loop within a nested loop. We continue the DFS by marking the
current BB as visited.

We have implemented the above algorithm in a compiler pass within LLVM [29], to
automatically detect and instrument appropriate function calls as checkpoints in a C language
program. This uses our previously described Checkpoint library for the Profiling phase. A
developer uses our modified LLVM compiler with their high-criticality application written
in C. Our compiler pass operates at the LLVM Intermediate Representation (IR) level. It
takes a piece of IR logic as input, figures out the points of interest according to the above
algorithm for checkpoints in a particular function, and generates the instrumented IR. These
IRs are compiled into executable machine code. As the compiler pass operates at the IR
level, it is easily extensible to other high-level languages and back-ends supported by LLVM.

4.5 Profiling and Execution Phases
The Profiling phase of PAStime determines viable checkpoints for use in the Execution phase,
and also the LO- and HI-mode budgets for a high-criticality application. A checkpointed
program is run multiple times in the Profiling phase against a set of test cases. The program
is allowed to have multiple test checkpoints, which are either generated automatically using
our modified LLVM compiler, or manually by a developer. Each checkpoint has a unique ID
(function ID, BasicBlock ID) given to the checkpoint function call writeTime. A Python
package then runs the Profiling phase to collect the average times (LO-mode) to reach
different checkpoints.

Step 4 in Figure 2 is the start of the Execution phase. One checkpoint from those
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generated in the Profiling phase for a high-criticality application is instrumented with an
ANNOUNCE_TIME macro. Although in general it is possible to use multiple checkpoints within
the same application in the Execution phase, our experience shows that one is sufficient
to improve LO-mode service. Multiple checkpoints add overhead to the task execution.
Moreover, later checkpoints account for execution delays that make earlier checkpoints
redundant, as long as they are reached before the LO-mode budget expires.

The key issue in deciding on a single checkpoint for the Execution phase is to ensure it is
not placed too late in the instruction stream. If it is placed too far into the program code a
mode switch may occur before the task’s LO-mode budget is extended due to delays. We
show in Section 5.6 the effects of using checkpoints at different locations in a program’s code.

4.6 LITMUSRT Implementation
As a first step to applying PAStime for use in adaptive mixed-criticality scheduling, we
extended LITMUSRT with AMC support. This required modifications to the existing
partitioned fixed-priority scheduling policy, to include the following new variables in the task
properties: c_lo, c_hi, r_lo, r_star, c_extended, max_extended_budget.

Tasks are divided into low- and high-criticality classes. By default, the HI-mode budget
for low-criticality tasks, c_hi, is set to zero. If desired, we also support a reduced, non-zero
HI-mode execution budget for low-criticality tasks, as discussed in the work on Imprecise
Mixed-criticality scheduling [35]. Task priorities are determined offline, along with all response
times for a system operating in LO-mode (r_lo) and during a mode switch (r_star). These
parameters are then initialized in the kernel when the system starts executing a set of tasks.

The system is started in LO-mode, with all tasks assigned their c_lo budgets. Whenever
a high-criticality task is out of its LO-mode budget, an enforcement timer handler (based on
Linux’s high-resolution timer [33]) is fired, and the system is switched to HI-mode.

For AMC-PAStime, c_extended is the extended LO-mode budget for a delayed job of
a high-criticality task. An enforcement timer handler is therefore triggered only when a
high-criticality task is still unfinished after the depletion of it c_extended time.

As Baruah et al. suggest [7], an AMC system switches back to LO-mode when none of
the high-criticality tasks have been running for more than their LO-mode budgets. In the
case of AMC-PAStime, the system will switch to a lower criticality level when none of the
high-criticality tasks have been running for more than their extended LO-mode budgets. A
list is used to keep track of which high-criticality tasks complete within their (extended)
LO-mode budgets, to determine when to revert to a lower system criticality level.

A task’s LO-mode budget is extended by AMC-PAStime by making a set_rt_task_param
system call inside the ANNOUNCE_TIME macro. We have implemented the task_change_params
callback of a LITMUSRT sched_plugin interface to support runtime adjustment of task
parameters. In the task_change_params callback, the system runs an online schedulability
test. If the test returns true, the budget extension is approved, and the enforcement timer
for the current task is adjusted accordingly. The task’s c_extended variable is updated,
along with the maximum value of its extended budget in max_extended_budget.

It is worth noting that a budget extension could be delayed until a mode switch is about
to happen. However, this strategy needs the scheduler to save the delay at a checkpoint and
later decide about the budget extension at a mode switch point. This approach potentially
increases runtime overhead while repeatedly accumulating task delays. Conversely, redundant
budget extensions in PAStime are avoided by following a lazy budget extension approach.
Such strategies are open to further study.
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5 Evaluation
We tested our implementation of AMC and AMC-PAStime in LITMUSRT with real-world
applications on an Intel NUC Kit [24]. The machine has an Intel Core i7-5557U 3.1GHz
processor with 8GB RAM, running Linux kernel 4.9. We use three applications in our
evaluations: a high-criticality object classification application from the Darknet neural
network framework [44], a high-criticality object tracking application from dlib C++ library
[16], and a low-criticality MPEG video decoder [20]. These applications are chosen for their
relevance to the sorts of applications that might be used in infotainment and autonomous
driving systems. The dlib object tracking application is only used for the last set of
experiments to test two different execution time prediction models.

For object classification, we use the COCO dataset [32] images for both profiling and
execution. The dataset for the Profiling phase was chosen from random images from the
dataset and used to determine the LO- and HI-mode budgets of the Darknet high-criticality
application. The dataset for the Execution phase was also randomly chosen but similarly
distributed in terms of image dimensions as the data of the Profiling phase was. For the
video decoder application, we use the Big Buck Bunny video [8] as the input. We have turned
off memory locking with mlock by the liblitmus library, as multiple object classification
tasks collectively require more RAM than the physical 8GB limit.

5.1 Task Parameters
Table 2 shows the LO- and HI-mode budgets for the three applications. Each object
classification and tracking task consist of a series of jobs that classify objects in a single
image. Each video decoder task decodes 30 frames in a single job.

Table 2 Applications and their Budgets
Application C(LO) C(HI)
Darknet object classification 345 ms 627 ms
dlib object tracking 10.7 ms 18 ms
video decoder 250 ms -

The LO-mode budget, C(LO), is the average time that a task takes to complete its job.
In Section 5.5, we also present experiments where we increase our LO-mode budget estimate.
The HI-mode budget, C(HI), accounts for the worst-case running time of the high-criticality
task for any of its jobs. The LO-mode utilization of each individual task is generated by the
UUnifast algorithm [9]. We then calculate a task’s period by dividing its LO-mode budget
by its utilization.

In all experiments, we observed that none of the tasks exceed their HI-mode budget.
Consequently, none of the high-criticality tasks miss their deadlines in any of our tests. Hence,
we assume that our derivation of LO- and HI-mode budgets are safe and correct for our
experiments. The main focus of our evaluation now is to compare the QoS of the LC tasks.

5.2 QoS Improvements for Low-criticality Tasks
We compare the QoS for low-criticality tasks using AMC and AMC-PAStime in different
cases. In every case, each taskset has an equal number of high-criticality object classification
tasks and low-criticality video decoder tasks. We experiment with ten schedulable tasksets
in all cases except the base case described below. We run each of the tests ten times, and
we report the average of the measurements for low-criticality tasks. As stated earlier, all
high-criticality tasks meet their timing requirements in each case. Execution time prediction
at a checkpoint for PAStime is done with a linear extrapolation model for all the experiments
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Figure 3 Video Decoder Performance
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Figure 4 Varying # of Tasks
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(f(Ci(LO), X) = Ci(LO) + Ci(LO)×X
100 from Section 3) except in Section 5.8 where we

discuss other approaches.
Our base case is to run one high-criticality object classification task and one low-criticality

video decoder task for 180 seconds. Here, we set the periods of both tasks to 1000 ms rather
than using the UUnifast algorithm, yielding a total LO-mode utilization of ~60%.

Figure 3a shows the cumulative number of frames decoded by the video decoder task.
The LO-mode Upper Bound (UB) line shows the cumulative number of decoded frames if the
system is kept in LO-mode all the time. This line represents a theoretical UB for a decoded
frame playback rate of 30 frames per second over the entire experimental run.

We see in Figure 3a that AMC-PAStime has a 9–21% increase in the cumulative number
of decoded frames compared to AMC scheduling. The performance of the low-criticality task
is related to the number of HI-mode switches in the two scheduling policies. AMC-PAStime
decreases the number of HI-mode switches by 35%, compared to AMC scheduling.

Although the number of decoded frames is an illustrative metric for a video decoder’s
QoS, the average utilization of an application is a more generic metric. Average utilization
represents the CPU share a task receives over a period of time. Figure 3b shows that AMC-
PAStime achieves 10% more utilization on average for the video decoder task, compared to
AMC scheduling. The LO-mode UB line is the maximum utilization of the video decoder
task, which is 25% (i.e., C(LO)/Period = 250 ms/1000 ms).

5.3 Scalability
To test system scalability, we increase the number of tasks in a taskset up to 20 tasks. As
explained above, we generate the periods of the tasks by distributing the total LO-mode
utilization of ~60% to all the tasks using the UUnifast algorithm. This setup is inspired by
the theoretical parameters in previous mixed-criticality research work [7]. The LO-mode
utilization bound for low-criticality tasks remains between 25–35%.

Figure 4 shows the average utilization of the low-criticality tasks, when the total tasks
vary from 2 to 20. Each task in this case consists of 20 jobs. We see that the average
utilization drops for AMC scheduling as the number of tasks increases.

AMC-PAStime achieves significantly greater average utilization for the low-criticality
tasks, by deferring system switches to HI-mode until much later than with AMC scheduling.
This is because the LO-mode budgets for the high-criticality tasks are extended due to
runtime delays.

AMC-PAStime decreases the number of mode switches by 28–55%. AMC-PAStime’s
resistance to switching into HI-mode allows low-criticality tasks to make progress. This in
turn improves their QoS. In these experiments, AMC-PAStime improves the utilization of the
low-criticality tasks by a factor of 3, 5 and 9, respectively, for 8, 14 and 20 tasks. Table 3a
shows that AMC-PAStime reduces the number of mode-switches compared to AMC.
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Table 3 Number of Mode Switches
# of tasks AMC AMC-

PAStime
2 4 2
8 9 4
14 7 5
20 5 3

(a) Varying Number of Tasks

Utilization (%) AMC AMC-PAStime
40 11 4
50 11 4
60 9 4
70 10 5
80 11 9

(b) Varying Initial LO-mode Utilization

5.4 Varying the Initial Total LO-mode Utilization
In this test, we vary the initial total LO-mode utilization for 8 tasks from 40% to 80% by
adjusting the periods of all tasks. The initial utilization does not account for increases caused
by LO-mode budget extensions to high-criticality tasks.

Figure 5 demonstrates that AMC-PAStime improves average utilization of the low-
criticality tasks by more than 3 times, up to 70% total LO-mode utilization. After that,
AMC-PAStime and AMC scheduling converge to the same average utilization for low-
criticality tasks. This is because there is insufficient surplus CPU time in LO-mode for
AMC-PAStime to accommodate the extended budget of a high-criticality task. Therefore,
the LO-mode extension requests are disapproved by AMC-PAStime. The reduced number of
mode switches for AMC-PAStime, shown in Table 3b, also corroborates the rationale behind
AMC-PAStime’s better performance than AMC.

We note that the schedulability of random tasksets decreases with higher LO-mode
utilization in AMC scheduling. Therefore, many real-world tasksets may not be schedulable
because of their HI-mode utilization. Thus, AMC-PAStime’s improved performance is
significant for practical use-cases.

5.5 Estimation of LO-mode Budget
In our evaluations until now, we estimate a LO-mode budget based on the average execution
time of the high-criticality object classification application. In the next set of experiments,
we estimate the LO-mode budget of a high-criticality task to be a certain percentage above
the average profiled execution time. An increased LO-mode budget for high-criticality tasks
benefits AMC scheduling. This is because high-criticality tasks are now given more time to
complete in LO-mode, and therefore low-criticality tasks will still be able to execute as well.
As a result, the utilization of low-criticality tasks is able to increase.

Suppose that C(LO) is an average execution time estimate for the LO-mode budget of a
high-criticality task. Let (C(LO) + o) be an overestimate of the LO-mode budget. As before,
AMC-PAStime detects an X% lag at a checkpoint and predicts the total execution time to
be C(LO) + e. If the actual LO-mode budget is (C(LO) + o) then AMC-PAStime requests
for an extra budget of (e− o), assuming (e− o) > 0.

Even for overestimated C(LO), Figure 6 shows that AMC-PAStime still improves utiliza-
tion for the low-criticality tasks by more than a factor of 3 up to an overestimation of 40%.
Overestimation helps in reducing the number of mode switches for AMC scheduling after
40%, as high-criticality tasks have larger budgets in LO-mode.

There is no improvement by AMC scheduling after 60% LO-mode budget overestimation.
AMC-PAStime also shows no benefits with increased overestimation, because the LO-mode
budget extensions are disapproved by the online schedulability test. Therefore, the system is
switched to HI-mode by an overrun of a high-criticality task.
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Figure 5 Varying LO-util.
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Figure 6 Overestimated C(LO)
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Figure 7 Checkpoint Location
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5.6 Checkpoint Location
We use our modified LLVM compiler in the Profiling phase to determine a viable check-
point for the high-criticality object classification task. We instrument checkpoints in the
forward_network function of the Darknet neural network module. We consider four check-
point locations in the Profiling phase, which are both automatically and manually instru-
mented. In the Execution phase, we measure performance for each of these checkpoint
locations. Figure 7 shows the variation in the number of mode switches against the location
of a checkpoint. The x-axis is the approximated division point of a checkpoint location with
respect to C(LO). For example, 0.1× means that the checkpoint is at (0.1× C(LO)).

We see that the number of mode switches decreases if the location of a checkpoint is
more towards the middle of the code. However, a checkpoint near the start and the end of
the source code have nearly the same number of mode switches, as with AMC scheduling. A
checkpoint near the beginning of a program is not able to capture sufficient delay to increase
the LO-mode budget enough to prevent a mode switch. Likewise, a checkpoint near the end
of a program is often too late. A HI-mode switch may occur before the high-criticality task
even reaches its checkpoint. Hence, a checkpoint at 0.8× in the source code of a program
reduces the number of mode switches by just 1.

5.7 Overheads
The main overheads of AMC-PAStime compared to AMC are the online schedulability test
and budget extension. We first derive an upper bound on the overhead by offline analysis
and compare with the experimental measurements.

Our offline upper bound is the total number of iterations in solving the response time
recurrence relations during the schedulability test in AMC-PAStime. We generate 500 random
tasksets of 20 tasks for different initial LO-mode utilizations. Initial LO-mode utilizations
range from 40% to 90%. The utilization of each individual task is generated using the
UUnifast algorithm, and each period is taken from 10 to 1000 simulated time units, as done
in previous work [7, 23]. As our experimental taskset has a criticality factor (CF = C(HI)

C(LO) )
of ~1.8, we also test with a CF of 1.8.

Among the schedulable tasks with AMC scheduling, we increase the demand in LO-mode
budget of the highest priority task. Then, we calculate the total number of iterations needed
to determine whether an extension of the budget can be approved by an offline version of
the online schedulability test. Here, one iteration is a single update to the response time in
any one of the recurrence equations (in Equations 4 and 5) used to test for schedulability.

We increase the demand for extra budget from 10 to 80% in this analysis because the CF
is 1.8. We check the maximum number of iterations to decide the schedulability of a taskset
across the 500 tasksets. We carry out this offline analysis with 40-90% initial LO-mode
utilization.
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Figure 8 Offline Iterations
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Figure 9 Online Iterations
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Figure 10 Budget Extension
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In Figure 8, we show the maximum number of iterations to decide the schedulability of a
taskset, against a demand of 10 to 80% extra budget in LO-mode by the highest priority
task. Each point in the figure represents the maximum iterations across the 500 tasksets to
either approve or disapprove of schedulability.

We have observed the number of iterations to be as high as 120. Therefore, we set 120
as the highest number of allowed iterations for the online schedulability test. When the
number of iterations exceed 120 at runtime, we disapprove a LO-mode budget extension. This
strategy maintains a safe and known upper bound on the online overhead of AMC-PAStime.

5.7.1 Microbenchmarks
Each iteration of a response time calculation has a worst-case time of 1µs, for our implement-
ation of the online schedulability test in LITMUSRT. Therefore, we bound the worst-case
delay for the online schedulability test in LITMUSRT at 120µs for our test cases. Additionally,
the worst-case execution time for the ANNOUNCE_TIME macro is 10µs. Hence, the maximum
total overhead of an ANNOUNCE_TIME call, accounting for the schedulability test, is 130µs.
The 130µs overhead is factored into the LO-mode extension inside the LITMUSRT kernel.

Figure 9 shows the number of iterations for the online schedulability test for a taskset of
20 tasks with 60% initial total LO-mode utilization, in cases where an extension was approved
and disapproved. We see that the offline bound of 120 iterations is much higher than the
actually observed number of iterations. Hence, we never need to abandon the schedulability
test because of excessive overheads. In addition, disapproval takes less time than approval
online, which corroborates our offline observations in Figure 8.

Figure 10 shows the maximum and average times for a LO-mode budget extension decision
including the online schedulability test. It demonstrates that the extension approval decision
takes more time with increasing number of tasks. However, the maximum times are still
significantly lower than the offline upper bound of 130µs for 20 tasks. In general, budget
extension overheads can be bounded according to the number of tasks in the system.

5.8 Execution Time Prediction Model
As we have explained in Section 3, the execution time after a checkpoint is predicted by a
function f(Ci(LO), X), where Ci(LO) is the LO-mode budget, and X% is the observed delay
percentage relative to the LO-mode time to reach the checkpoint. The parameter X in f is
a timing progress metric, which is used to make runtime scheduling decisions in PAStime.

5.8.1 Linear Extrapolated Delay
We have already shown in the previous experiments how a straightforward linear extrapolated
delay improves the utilization of LC tasks compared to AMC for an object classification
application. In such a case, f(Ci(LO), X) = Ci(LO) + Ci(LO)×X

100 . A linear extrapolation
of delay at a checkpoint applied to the entire LO-mode time makes sense in the absence of
additional knowledge that could influence the remaining execution time of the task.
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Figure 11 Prediction Accuracy
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Figure 13 Prediction Models
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We now investigate further whether the linear extrapolation is effective in detecting the
amount of delay in our Darknet high-criticality object classification task. We compare the
predicted and actual times taken by the high-criticality tasks when LO-mode is extended by
AMC-PAStime. This experiment is performed with 8 tasks for 40 jobs each. The initial total
LO-mode utilization is 60%, before applying budget extensions.

We show ten of the extended jobs in Figure 11. We see that the predicted execution times
are close to the actual execution times. For cases where the predicted times exceed the actual
budget expenditure, the predictions overestimate execution by just 0.88% on average for this
experiment. In Figure 11, Job ID 6, 8 and 10 show lower predicted times than the actual
spent budgets. For these jobs, the system is switched to HI-mode because the extended
LO-mode is not enough for a task to complete its job. In these cases, the predicted times are
smaller than the spent budgets by 0.49%.

This experiment shows that the checkpoint is effectively being used to predict the execution
time of a high-criticality task in most cases. The budget extensions are a reasonable estimate
of the actual task requirements.

5.8.2 Alternative Execution Time Compensation Models
In our experiments, we compare the linear extrapolation model with an alternative com-
pensatory execution time prediction model. The alternative approach compensates for the
observed delay at a checkpoint, by adding the delay amount to the predicted execution time.
If the observed delay is Y , then the estimated total execution time is C ′i(LO) = Ci(LO) + Y .

We have also investigated variations to the linear extrapolation model, even though
it has proven effective in our previous experiments. A further experiment multiplies the
extrapolated delay by a factor K, such that the predicted execution time is f(Ci(LO), X) =
Ci(LO) +K × Ci(LO)×X

100 .
Figure 12 compares AMC-PAStime with the alternative compensatory model compensate,

and linear extrapolation model where K ranges from 0.1 to 1.5. The linear extrapolation
model (K = 1) outperforms the other approaches, while the compensatory model improves
the utilization slightly compared to AMC.

5.8.3 Prediction based on Memory Access Time
Memory accesses by different processes compete for shared cache lines and consequently
cause unexpected microarchitectural delays. There are previous works that model the
memory [38,42,56] and cache [53,55] accesses in a multicore machine to deal with the issue
of predictable execution. Here, we demonstrate PAStime with an execution time prediction
model based on the number of memory accesses, to increase the LO-mode budget of a
high-criticality task.

In this model, we note the number of memory accesses by a high-criticality task as we
measure the LO- and HI-mode execution time of the task during the Profiling phase. We
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measure the average number of memory accesses in LO-mode for each profiled run of a task
with different inputs, and denote it by M(LO).

During the Profiling phase, we also measure the number of memory accesses in LO-mode
before and after a checkpoint: Mpre_CP (LO),Mpost_CP (LO). These values are also averaged
across all runs of a given task. Therefore, Mpre_CP (LO) +Mpost_CP (LO) = M(LO)

We define a new memory instructions progress metric to be the ratio of task execution time
to the number of memory accesses. The LO-mode value of this metric is Prmem,LO = C(LO)

M(LO) .
In the Execution phase, we measure the number of memory accesses and the used budget up

to a checkpoint, respectively denoted by MCP and Cused for a given task. During Execution,
we calculate the memory instructions progress metric at a checkpoint, Prmem,CP = Cused

MCP
. If

Prmem,CP ≤ Prmem,LO, we predict the task is progressing as expected in LO-mode in terms
of memory access-related delays. There are other factors such as I/O-related delays that
affect the execution time of a task. However, I/O should be budgeted separately from the
main task, as shown in prior work for AMC [39]. Notwithstanding, PAStime is capable of
supporting even richer prediction models based on a multitude of factors that cause delays
due to microarchitectural and task interference overheads.

When Prmem,CP > Prmem,LO, we predict a task’s memory access delays. We calculate
the expected number of memory instructions after a checkpoint: Mexpected_post_CP =
MCP×Mpost_CP(LO)

Mpre_CP (LO) , and increase the LO-mode budget by (Mexpected_post_CP × (Prmem,CP -
Prmem,LO)). This increment helps cover future memory delays after a checkpoint.

We tested both high-criticality dlib object tracking and Darknet object classification
applications with this model. Figure 13 shows experimental results with 4 HC tasks (either
dlib or Darknet) and 4 LC video decoder tasks, with initial 50% LO-mode utilization. We see
that AMC-PAStime-mem with this memory access progress metric provides better utilization
to the LC tasks than AMC. However, it is not better than AMC-PAStime-time, which uses
the default linear extrapolated execution time prediction. Nevertheless, the result shows that
some form of progress metric dynamically improves the utilization of LC tasks.

6 Related Work
The problem of determining tight worst-case execution time (WCET) bounds for tasks [54]
is compounded by timing variations caused by caches, buses and other hardware features.
Recently, mixed-criticality systems (MCSs) [5–7,12,15,52] have gained popularity as they allow
tasks to have multiple estimates of execution time at different criticality, or assurance, levels.
Baruah et al. proposed Adaptive Mixed Criticality (AMC) as a fixed-priority scheduling
policy for mixed-criticality systems [7]. AMC dominates other fixed-priority scheduling
schemes, such as Static Mixed-criticality with Audsley’s priority assignment and Period
Transformation for random tasksets [7, 23].

AMC scheduling affects the QoS of low-criticality tasks by dropping them in HI-mode.
Further research work explored adjustments to the task model, including stretching the
periods [21,46–49], and using reduced budget in HI-mode [4,5, 35,43], to provide improved
service to the low-criticality tasks. AdaptMC employs control-theoretic feedback to manage
the budgets of dual-criticality workloads [40]. In contrast, PAStime adjusts the budget of a
currently running task based on the observed delay at a checkpoint, as we want a simple
budget adjustment mechanism to minimize the runtime overhead. However, future work
may explore integrating control-theoretic feedback, such as the one used by AdaptMC, into
PAStime’s runtime strategy.

Santy et al. proposed the idea of a statically-calculated task allowance [45], for the
theoretical modeling and scheduling of mixed-criticality tasks. In contrast to Santy’s work,
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PAStime dynamically decides whether a task is given extra budget in LO-mode based on the
observed runtime delay at a checkpoint. PAStime is then able to decide which task’s budget
to extend in LO-mode, given the slack in computational resources [15].

The work by Kritikakou et al. uses run-time monitoring and control in mixed-criticality
systems, to increase task parallelism [26–28]. The authors run high- and low-criticality tasks
together and monitor high-criticality tasks at multiple observations points embedded into
their control flow graphs. If interference from the low-criticality tasks is too prohibitive for the
high-criticality tasks, low-criticality tasks are stopped to ensure that the high-criticality tasks
meet their deadlines. The authors use static execution time analysis to decide whether to
run the low-criticality tasks after an observation point in a high-criticality task. In our work,
we dynamically adjust LO-mode budgets of the high-criticality tasks when we detect delays
at intermediate checkpoints. We decide about the LO-mode budgets based on the observed
progress, instead of using static offline remaining time as used by other work. In addition, we
have implemented an LLVM compiler pass to automatically instrument checkpoints in C and
C++ programs, which have been tested with a PAStime implementation in LITMUSRT for
real-world applications developed for Linux. Kritikakou et al.’s research was implemented for a
specific DSP platform, which is yet to be tested for real-world applications. Notwithstanding,
the authors provide an important WCET analysis using CFGs for high-criticality tasks.

Previous ideas of progress-based scheduling were proposed to improve GPU performance [1,
25], fairness among multiple threads [18, 19] and to account for instruction cycles [17]. Most
of these works run a task in an isolated environment and compare its progress to an online
parallel execution with other tasks. Somewhat similar to the motivation behind Jeong et al’s
work [25], we also meet the deadlines of high-criticality tasks. However, PAStime uses CFGs
to monitor progress rather than application-specific features such as frame processing rates
in multimedia applications as done in the other works.

7 Conclusions and Future Work
This paper presents PAStime, a scheduling strategy based on the execution progress of a
task. Progress is measured by observing the time taken for a program to reach a designated
checkpoint in its control flow graph (CFG). We integrate PAStime in mixed-criticality
systems by extending AMC scheduling. PAStime extends the LO-mode budget of a high-
criticality task based on its observed progress, given that the extension does not violate the
schedulability of any tasks. Our extension to AMC scheduling, called AMC-PAStime, is
shown to improve the QoS of low-criticality tasks. Moreover, we implement an algorithm in
the LLVM compiler to automatically detect and instrument viable program checkpoints for
use in task profiling.

This paper presents the first implementation of AMC scheduling in LITMUSRT. We have
also implemented AMC-PAStime in LITMUSRT and compared it against AMC. While both
meet deadlines for all high-criticality tasks, AMC-PAStime improves the average utilization of
low-criticality tasks by 1.5–9 times for 2–20 total tasks. AMC-PAStime is shown to improve
performance for low-criticality tasks while reducing the number of mode switches. Finally,
we have shown that different progress metrics also improve the LC tasks’ utilization.

In future work, we will explore other uses of progress-aware scheduling in timing-critical
systems. We plan to extend the Linux kernel SCHED_DEADLINE policy [30, 31, 34] to support
progress-aware scheduling. We believe that PAStime is applicable to timing-sensitive cloud
computing applications, where it is possible to adjust power (e.g., via Dynamic Voltage
Frequency Scaling) based on progress. Application of PAStime to domains outside real-time
computing will also be considered in future work.
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