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Abstract

This paper focuses on an efficient user-level method for
the deployment of application-specific extensions, using
commodity operating systems and hardware. A sand-
boxing technique is described that supports multiple ex-
tensions within a shared virtual address space. Appli-
cations can register sandboxed code with the system, so
that it may be executed in the context of any process.
Such code may be used to implement generic routines
and handlers for a class of applications, or system ser-
vice extensions that complement the functionality of the
core kernel. Using our approach, application-specific ex-
tensions can be written like conventional user-level code,
utilizing libraries and system calls, with the advantage
that they may be executed without the traditional costs of
scheduling and context-switching between process-level
protection domains. No special hardware support such
as segmentation or tagged translation look-aside buffers
(TLBs) is required. Instead, our “user-level sandboxing”
mechanism requires only paged-based virtual memory
support, given that sandboxed extensions are either writ-
ten by a trusted source or are guaranteed to be memory-
safe (e.g., using type-safe languages).

Using a fast method of upcalls, we show how our
mechanism provides significant performance improve-
ments over traditional methods of invoking user-level
services. As an application of our approach, we have
implemented a user-level network subsystem that avoids
data copying via the kernel and, in many cases, yields far
greater network throughput than kernel-level approaches.

1 Introduction

General purpose systems such as Linux are increasingly
being used for a number of diverse applications, includ-
ing those in desktop, server and embedded environments.
Unfortunately, the services provided by general purpose
systems are often ill-suited to the specific needs of many

applications. For example, a real-time application is not
well served by a scheduling policy that does not consider
the timely and predictable execution of tasks. Similarly,
a web server [1] may benefit from its own buffer cache
algorithm that over-rides the default caching and paging
policy [2]. This has motivated researchers to study var-
ious methods of system- and application-level extensi-
bility [3, 4, 5, 6, 7, 8], thereby allowing services to be
tailored for specific purposes [9, 10].

Unfortunately, designing a system that supports exten-
sibility poses at least three conflicting challenges: (1)
how to guarantee efficient execution of the extension
code that modifies or adds functionality to the system
and/or application, (2) how to ensure the safety of ex-
tensions that could otherwise violate the integrity of the
system, or the application, and (3) how to provide sup-
port for extensibility without significant modification to
the standard interfaces offered by the system. Arguably
the most efficient approach is to allow extensions to be
linked into a single address space shared with core sys-
tem functionality. This enables extensions to be invoked
by direct function calls, but requires special safety ap-
proaches to prevent untrusted application-specific code
from jeopardizing system correctness.

Various approaches have been proposed to guarantee
the safety of service extensions, including: sandbox-
ing [11, 6], type-safe languages [12, 5], proof-carrying
codes [13], and hardware-support [7, 14]. Hardware
safety techniques beyond page-based protection schemes
are not common across all architectures. By comparison,
software-based safety approaches are not typically as ef-
ficient. That said, software fault isolation [11] is an ef-
fective method of isolating untrusted code in its own fault
domain, by inserting safety checks that prevent jumps
or stores to addresses outside a restricted range. Imple-
menting such safety checks typically requires a number
of dedicated machine registers. This is problematic on
architectures such as the Intel x86 that have a limited
number of general purpose registers.



Most software safety techniques assume the co-
existence of untrusted and trusted code in a single ad-
dress space. However, many researchers have argued for
the separation of high-level abstractions and application-
specific services from the basic services of the kernel.
Micro-kernels adhere to this philosophy. Unfortunately,
there are costs associated with the implementation of
services outside the kernel. Overheads are typically in-
curred as a result of communication via the trusted ker-
nel, as well as scheduling and switching between ad-
dress spaces that isolate services. In fact these overheads
have caused major problems for the efficient design of
micro-kernels, unless special hardware features such as
segmentation and tagged translation look-aside buffers
(TLBs) are used [14].

While segmentation units and tagged TLBs are not
common on all processors, page-level protection is
prevalent. The challenge is to support safe and effi-
cient service extensibility using only page-based hard-
ware protection. Where possible, the separation of core
system abstractions and high-level services, as in micro-
kernels, is desired.

1.1 Motivation and Contributions

This paper is motivated by the desire to implement ex-
tensible services at user-level in a manner that is safe,
efficient, and requires minimal changes to the underly-
ing kernel. We show how it is possible to achieve these
goals using a user-level sandboxing technique, that en-
ables COTS systems to be extended for the specific needs
of applications. In fact, our approach places no specific
requirements on the underlying OS structure. As a con-
sequence, it is possible for our technique to implement
micro-kernel services, interposition agents [15], virtual
machines [16, 17] and entire library OSes [18] in a sand-
boxed region above a kernel that is, say, monolithic.

By supporting service extensions at user-level, there
are several advantages. Most notably:
• it is possible for such code to leverage libraries that

would be unavailable within the kernel,
• there is no need for custom interfaces as extensions

can instead leverage existing system call interfaces,
• it is possible to rapidly prototype code that would

otherwise cause system failure, and
• extensions can be developed in a manner similar to

regular application code without awareness of ker-
nel internals.

We show how to efficiently extend the behavior of an
existing system at user-level without the traditional costs
of communicating between logical protection domains.
While our approach is not as fast as pure software-based
fault isolation in a single address space, it eliminates the
costs of heavyweight context-switches between multiple

process-level address spaces. Our approach provides an
efficient way to pass control from a process-private ad-
dress space to a sandboxed service extension. Using a
fast method of upcalls [19], we show how our sandbox-
ing technique for implementing logical protection do-
mains provides significant performance improvements
over traditional methods of invoking user-level services
(e.g., using signals). Fundamentally, signal-handling
mechanisms usually suffer from system scheduling over-
heads: a signal generated by a kernel event remains
pending until the corresponding address space is active.
If numerous other processes are running on a heavily-
loaded system, it may be an arbitrarily-long time before
a pending signal is serviced. In effect, traditional ker-
nel event notification mechanisms suffer from scheduling
delays that may be proportional to the number of pro-
cesses in the system or, worse still, may depend on the
CPU scheduling policy. In the latter case, a high prior-
ity process may starve the execution of another that has
a pending signal.

In summary, our user-level sandboxing mechanism
provides:

1. separation of application-specific services from the
kernel address space, thereby avoiding unnecessary
pollution of the most trusted protection domain, and

2. predictable delay bounds between the generation
and delivery of kernel events that invoke user-level
services. Such delay bounds are independent of sys-
tem load, process activity and CPU scheduling poli-
cies.

This work is the basis for a more efficient system de-
sign with multiple trust levels, such that the kernel may
mediate access rights to specific resources via upcalls
to sandboxed services. We compare various techniques
to access sandboxed service extensions. On a Pentium
4 processor, we can safely switch from the kernel to a
sandboxed extension function in 11000 cycles, compared
to 46000 cycles if we invoke a user-level extension in
a private address space that is not currently active. Fi-
nally, we show the flexibility of our sandbox approach,
by implementing a user-level CPU service manager, and
a network protocol stack that avoids data copying via the
kernel (similar to U-Net [20]). In the latter case, our
stack implementation is able to achieve better network
throughput than kernel-level methods, in many cases.

The following section describes our user-level sand-
box technique in more detail. This is followed by Sec-
tion 3 that evaluates the performance of our approach on
a Linux x86 platform. Related work is then discussed
in Section 4. Finally, conclusions and future work are
described in Section 5.

2



2 User-Level Sandboxing

Overview: The basic idea of user-level sandboxing is to
modify the address space of all processes, or logical pro-
tection domains, to contain one or more shared pages of
virtual addresses. The virtual address range shared by
all processes provides a sandboxed memory region into
which extensions may be mapped. Under normal oper-
ation, these shared pages will be accessible only by the
kernel. However, when the kernel wishes to pass con-
trol to an extension, it changes the privilege level of the
shared page (or pages) containing the extension code and
data, so that it can be executed with user-level capabili-
ties. This prevents the extension code from violating the
integrity of the kernel. However, the extension code itself
can run in the context of any user-space process, even one
that did not register the extension with the system. There
is potential for corrupt or ill-written extension code to
modify the memory area of a running process. To guard
against this, we require extension code is either written
by a trusted source, or is guaranteed to be memory-safe
(e.g., using type-safe languages such as Cyclone [12], or
software-based fault isolation methods).

An astute reader might wonder why we cannot sim-
ply link extension code into the kernel address space,
if we require it to be written either by a trusted source
or in a memory-safe manner. If we allow trusted users
(e.g., kernel developers) to link application-specific code
with the kernel, it is still possible to introduce accidental
bugs, whereas user-level sandboxing prevents this poten-
tial problem. Likewise, if a type-safe language is used to
guarantee memory safety, managing access rights on I/O
devices controlled by privileged instructions is still prob-
lematic: either the language prevents issuing I/O instruc-
tions or requires special features (e.g., a device-specific
driver development library). With user-level sandboxing,
an upcall could promote access rights of a sandbox exten-
sion to e.g., access a subset of I/O space. For example,
the x86 allows this by controlling the I/O privilege levels
on a task/process basis, thereby restricting the range of
port addresses accessible by user-level code.

It should be noted that we do not require the entire sys-
tem kernel to be written in a type-safe language. If a ker-
nel is written in a language such as C or C++, then link-
ing type-safe extensions with it is, in some ways, simi-
lar to linking sandbox extensions with unsafe user-level
libraries. Arbitrary casts and pointer arithmetic in func-
tions accessed via external interfaces can violate memory
protection. We at least isolate extensions from the kernel
to maintain system integrity, but care must be taken when
allowing an arbitrary sandbox extension to execute on a
given host. It is still possible that user-level processes can
be adversely affected by a misbehaving sandbox routine.

2.1 Hardware Support for Memory-Safe
Extensions

Our approach assumes that hardware support is lim-
ited to page-based virtual memory (i.e., processors with
an MMU). More specialist hardware methods of imple-
menting logical protection domains to accommodate ex-
tension code include the use of processors with tagged
TLBs, or combined segmentation and paging units.
Tagged TLBs provide a fast way to switch between
protection domains mapped to separate address spaces,
by storing the virtual-to-physical address translations of
these address spaces in non-overlapping regions of a ded-
icated hardware cache. Alternatively, hardware lack-
ing tagged TLBs but supporting segmented memory has
been used to isolate these logical protection domains in
different memory segments.

Tagged TLBs have the advantage that they do not
need to be entirely flushed and reloaded when switch-
ing between address spaces (e.g., during a process con-
text switch), unlike untagged TLBs that only cache ad-
dress translations for an unspecified virtual memory re-
gion. Tagged TLBs are found in Sparc and MIPS proces-
sors, that use address space identifiers (ASIDs) to mark
entries in the TLB. In contrast, processors such as the In-
tel x86 (at least the IA-32 variant) and the PowerPC have
untagged TLBs but employ both segmentation and pag-
ing units. Specifically, the x86 processor uses segmen-
tation hardware to convert between logical and linear
addresses, and paging hardware to translate between lin-
ear and physical addresses; untagged instruction and data
TLBs are used only to cache linear-to-physical transla-
tions. The advantage with an architecture such as the
x86 is that protection domains can be mapped to separate
memory segments restricted to specific ranges of linear
addresses. Switching between protection domains in dif-
ferent linear address ranges simply involves changing the
base and limit values of addresses for the active segment.

While segmentation and tagged TLBs offer various
benefits, they are not common across all architectures.
This has meant many systems such as Linux support only
process-based protection domains at the page granular-
ity. Switching between one process address space and
another on a Linux x86 system requires changing page
tables used for linear address translation. Unfortunately
this results in a TLB flush and reload, which can be ex-
pensive for tasks with large working sets. As the dispar-
ity between processor and memory speeds increases [21],
it is clearly desirable to keep address translations for sep-
arate protection domains in cache memory as often as
possible. This is certainly the case for processors that are
now clocking in the gigahertz range, while main memory
is accessed in the 108Hz range. User-level sandboxing
avoids the need for expensive page table switches and
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TLB reloads by ensuring the sandbox is common to all
address spaces.

2.2 Implementation Details

We have implemented user-level sandboxing on a Linux
x86-based system, with a few small changes (approxi-
mately 100 lines) to the core kernel. These changes are
required to: (1) create a shared sandbox region, (2) sup-
port protected mapping of sandboxed extensions, (3) al-
low access to restricted sandboxed memory regions from
conventional process address spaces, and (4) invoke ex-
tension functions from within the kernel. The key modi-
fications involve additional entries in the page tables (or,
more precisely, global directories) of processes, and the
implementation of upcall code that toggles page protec-
tion bits.

Recently, we have just completed a binary-rewriting
approach that eliminates the need to patch and recom-
pile the kernel in order to enable user-level sandboxing.
While this technique is out of the scope of this paper, it
involves setting up jump instructions at a few key kernel
memory locations, to invoke alternative code in a kernel-
loadable module. The rewritten memory locations are
identified using the kernel’s system map, which is a table
identifying the addresses of kernel symbols. In effect,
our sandboxing approach can theoretically be applied to
existing systems without significant disruption to the pre-
existing kernel.

For the most part, our approach is not restricted to
Linux. However, where necessary, we describe the
system-specific features required for user-level sandbox-
ing to work. The user-level sandboxing implementation
requires a few additional interface functions over those
provided by the traditional system call interface. These
interface functions are contained within kernel-loadable
modules and invoked via ioctls, avoiding the need for
new system calls.
Logical Protection Domains for Extension Code: Tra-
ditional operating systems provide logical protection do-
mains for processes mapped into separate address spaces,
as shown in Figure 1(a). With user-level sandboxing
(Figure 1(b)), each process address space is divided into
two parts: a conventional process-private memory region
and a shared virtual memory region. The shared region
acts as a sandbox for mapped extensions. Technically
speaking, our sandbox implementation is further divided
into public and protected areas, as explained later, but
this is not a general requirement of the approach. Kernel
events delivered to sandbox code are handled in the con-
text of the current process, thereby eliminating schedul-
ing costs.

Sometimes it is important for a process to ex-
change data with extensions registered in the sand-

box. As a result, we allow controlled access to a re-
gion of sandbox addresses by both code in a process-
private region and code in the sandbox itself. An
ioctl function, registered with the kernel, called
allocate mapped data(), maps a region of the
sandbox into a process-private address space, as in Fig-
ure 1(b). This mapped region is accessible by the
calling process and sandbox extensions that can ref-
erence the corresponding range of addresses. This
data-sharing scheme relies on hardware page protection,
so allocate mapped data() allocates memory on
4KB page boundaries.

Sandbox Regions: In our current implementation, the
sandbox consists of two 4MB regions of virtual mem-
ory that are identically mapped in every address space to
the same physical memory (as shown in Figure 2). These
regions employ the page size extensions supported by the
Pentium processor and are each represented by one page
directory entry in every process 1. Although a number of
MMU-enabled processors support multiple page-sizes, a
sandbox should be designed to minimize the number of
pages it uses while occupying the largest memory area
necessary for extensions. As will become evident later,
this design consideration shows benefits when the num-
ber of TLB entries for the sandbox is (on average) less
than the working-set size of typical application and sys-
tem processes.

One 4MB sandbox region is permanently assigned
read and execute permission at both user- and kernel-
level and acts as a public area. This region is marked
as a global page using the global flag supported by Pen-
tium Pro and more recent IA-32 [22] processors. This
prevents the page directory entry for this page from be-
ing invalidated when a context switch occurs. The other
region is permanently assigned read-write permission at
kernel-level but, by default, it is inaccessible at user-
level. We refer to this region as the protected area. The
region can be made accessible to user-level by toggling
the user/supervisor flags of its page directory entry and
invalidating the relevant TLB entry via the INVLPG in-
struction. This is only allowed when an upcall occurs
from the trusted kernel. In general, a sandbox need not
have two classes of memory regions as in our case. We
chose this way as a means to trade security for efficiency.
Sandbox/Upcall Threads: Sandboxed code can link
with libraries that make system calls. Care must be taken
that an extension registered by one process does not af-
fect the progress of another process, by issuing a block-
ing system call. For example, if process pi registers an
extension ei that is invoked at the time process pj is ac-
tive, it may be possible for ei to affect the progress of pj

1The 32-bit x86 processor uses a two-level paging scheme, com-
prising page directories and tables.
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Figure 1: (a) Traditional view of logical protection domains, each mapped to a separate address space. (b) Each
process address space has a shared virtual memory region, or sandbox, into which extensions are mapped.
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Figure 2: Sandboxes common to all processes are
mapped to the same physical address ranges. Pages of
the sandbox can be mapped into process-private address
spaces to exchange data.

by issuing ‘slow’ system calls. Any sandbox code that is-
sues a blocking system call is promoted to a new thread
of execution, if it is not already associated with its own
thread. Since sandbox threads execute in any process
context, essentially they are inexpensive to schedule.

A sandbox-bound thread of execution is created by a
user-level process using the create upcall() inter-
face function. This interface function, like the POSIX
pthread create() produces a new thread of control
sharing the credentials and file descriptor tables of the
caller. The thread produced by create upcall(),
however, does not possess a conventional hardware-
based address space. Instead, sandbox threads execute
using the page tables of the last active address space.
Mapping Code into the Sandbox: The existence of a
shared sandbox requires the modification to the page ta-
bles and address spaces of all created processes (when
they are first ‘forked’). As stated earlier, all processes
will have page tables that can resolve virtual addresses

of instructions and data in this memory area, thereby en-
abling sandbox code to execute in any process context.

A loader, utilizing functions from the GNU BFD (Bi-
nary File Descriptor) library, is used to map extensions
into the sandbox. In effect, our loader is similar to the
insmod routine from the GNU modutils suite, but it
loads an object into the sandbox rather than the kernel. In
the current implementation, an extension must be com-
piled into a target object (currently, ELF) format, where
the loader maps the .rodata and .text sections of the
object into the public super-page. The .bss and .data
sections of an object are loaded into the read-write (pro-
tected) region.

Extension code is activated by upcalls from the trusted
kernel. To ensure the protected region of a sand-
box is user-level accessible, the kernel toggles the
user/supervisor flag of the corresponding super-page be-
fore issuing the upcall. After toggling the privilege
protection flag, the TLB entry for the super-page must
be flushed and reloaded to eliminate stale flag settings.
When the process whose page tables were used by a
sandbox function is again scheduled, the user/supervisor
flag must be reset before the process regains control of
the CPU at user-level. This is necessary to keep ma-
licious processes from gaining access to the protected
sandbox area.
Additional Support for User-Level Sandboxing: As
sandbox extensions do not have conventional address
spaces, they are unable to use certain system interfaces
related to memory management, without modification.
Some of the the affected interfaces include brk(),
mmap() and shmget(). These interfaces are used
to fulfill a variety of needs: brk() affects the break-
point at the end of the heap data area in a process,
while shmget() allocates shared memory segments.
Likewise, mmap() can allocate either process-private
or shared virtual memory as well as providing memory-
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mapped file I/O. In our current implementation, we allow
C and Cyclone extensions to link with a slightly modified
version of the dietlibc library, to manage sandbox mem-
ory.
Fast Upcalls: Traditionally, signals and other such ker-
nel event notification schemes [23, 24] have been used
to invoke actions in user-level address spaces when there
are specific kernel state changes. Unfortunately, these
schemes incur costs associated with the traversal of
the kernel-user boundary, process context-switching and
scheduling. Our upcall mechanism operates like a soft-
ware trap (i.e., the mirror image of a typical system call),
to efficiently vector events to user-level sandbox exten-
sions.

Operating systems such as Linux that leverage hard-
ware protection to separate user- and kernel-address
spaces do not support conventional trap gates to user-
level. General protection faults occur when attempt-
ing to trap to a ‘ring of protection’ that is less critical
than the kernel. However, architectures such as the In-
tel IA-32 support instructions such as SYSENTER and
SYSEXIT that can be used in conjunction with Model
Specific Registers (MSRs) [22] to allow fast transitions
between kernel and user-level address spaces. On the
IA-32 architecture, where there are four rings of pro-
tection, these instructions enable efficient transitions be-
tween rings 0 (the kernel privilege level) and 3 (the
user privilege level). Unnecessary memory references,
to lookup and retrieve segment descriptors, followed by
corresponding protection checks are avoided when using
SYSEXIT/ENTER.

While these instructions are not a portable approach
to implementing fast upcalls, it is possible to substi-
tute them with ‘activation records’ placed on a kernel
stack, that trick the hardware into thinking it is return-
ing to user-level. For this reason, we allow our sand-
box scheme to be configured with support for either SY-
SEXIT/ENTER, or traditional activation records. Us-
ing a return-from-interrupt instruction (e.g., iret on the
x86, or something similar on other architectures), con-
tents of a stack activation record can be popped into ma-
chine registers, to pass control to user-level. It is worth
noting that Linux 2.6 and systems such as Windows XP
use SYSEXIT/ENTER on the Intel x86 to implement
system calls. Without being able to virtualize model spe-
cific registers we are thus unable to make use of these
special instructions on such systems. Notwithstanding,
stack activation records are not much more expensive, as
shown in Section 3.4.

Finally, to avoid the problem of generating upcalls
when no user-level process is running (e.g., a kernel
thread is active), all extensions utilize a private stack in
the sandbox.
Potential Protection Problems: In the general scheme,

when an upcall event is issued from the kernel, the
mechanism will modify relevant entries in the current
process’s page (or, equivalently, global directory) table.
User-level access to the protected region of the sandbox
is allowed only while the upcall event is being processed.
Preemption and signal handling during the execution of
code in the sandbox must be disabled. Allowing pre-
emption may cause reentrancy problems (e.g., if another
process runs and an upcall occurs again), while conven-
tional signal handling can provide a ‘trap door’ into the
sandbox for malicious users. For example, if a signal is
delivered to the current process while executing sandbox
code, the protected sandbox memory region is open to
read-write access via the signal handler. Minor changes
to the kernel simply delay delivery of signals until exten-
sions have completed execution, and the sandbox pro-
tected area is reset to the supervisor privilege level.

Dispatching Upcalls: Each process that registers code
with the sandbox is assigned a client identifier, that is
used to ensure the correct extension is invoked when
an upcall occurs. Since multiple upcalls may be pend-
ing, each client has a corresponding queue for related
events. This is similar to the POSIX.4 specification for
real-time signals. However, POSIX.4 signals can remain
pending until the corresponding process is allocated the
CPU, which depends on the scheduling order of other
processes.

In the current implementation of our sandboxing
scheme, we have developed a generic kernel routine,
start upcall(), that delivers upcall events to appro-
priate clients. An active sandbox extension loops through
all events in its queue before returning (if it is a pure up-
call function), or sleeping (if it is a thread). Specifically,
each event is associated with a POSIX siginfo t
structure, that can carry different arguments to exten-
sions. Eventually, we intend to implement a full-featured
event notification scheme. However, we have already im-
plemented a method to trigger events when various bot-
tom half handlers are invoked at predetermined timer in-
tervals in Linux. This method requires no changes to the
core kernel, as it is wholly contained in a kernel module.

3 Experimental Evaluation

This section assesses the effectiveness of a user-level
sandboxing implementation applied to a Linux kernel.
With the exception of the experiments in Sections 3.5
and 3.6, all other cases involve a patched Linux 2.4.9
kernel running on a series of 1.4 GHz Pentium 4 based
systems, connected by a Gigabit Ethernet network.
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3.1 Interposition

Interposition agents [15] introduce user code between the
operating system interface and applications, in order to
modify or replace the services that the operating system
provides. The Linux 2.4.x kernel series introduced ex-
tensions to ptrace to facilitate system call interception
at user-level. The ptrace mechanism incurs a large over-
head in the form of several context switches per system
call. This significantly reduces the performance of ap-
plications under interposition that make frequent kernel
service requests.

To show how the sandbox can reduce interposition
overheads, the first experiment involves a series of agents
that simply trace each system call made by an unmodi-
fied thttpd 2.20c web server under a range of HTTP re-
quest loads. The HTTP requests are generated from an-
other host over a Gigabit Ethernet network using httperf.
The same file is targeted in each request, which is made
with a timeout of 1 second. The average rate of success-
ful responses is recorded over 30000 requests, for three
types of interposition agents:

• A kernel scheduled thread in a traditional process
address space using ptrace (‘Process traced’)

• A kernel scheduled thread in the sandbox using
ptrace (‘Sandbox thread’)

• An upcall handler based agent executing in the
sandbox (‘Sandbox upcall’)
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Figure 3: The performance of a thttpd web server while
tracing its system calls using a variety of mechanisms.

Figure 3 shows the relative performance of these
agents, compared to the situation where the web server
runs untraced (‘Untraced Process’). For comparison,
measurements are taken for the sandbox-based agents
when the sandbox is left open to user space, so that no
TLB flushes are performed when context switching be-
tween the web server and the agent. This is the ‘no TLB
flush’ case in Figure 3.

These results show that with the existing ptrace in-
terface, the sandbox can be used to reduce interposition
overheads, and that with the appropriate interface addi-
tional gains can be made. Part of the motivation here is
based on the fact that projects such as User-Mode Linux
use ptrace to intercept system calls and direct requests
into a guest kernel running above a host OS. Using our
technique, it is possible to implement an entire guest sys-
tem such as User-Mode Linux in a sandbox, while avoid-
ing many of the costs associated with switching between
a tracing thread and the protection domain being traced.

3.2 Inter-Protection Domain
Communication

To investigate the effects of working set size on the effec-
tiveness of sandbox-based extensions, a number of IPC
ping-pong experiments similar to those conducted in the
“small spaces” work [21] were carried out. These exper-
iments also consider the effects of both instruction and
data TLBs, found on the x86 architecture. The Pentium
4 processor has a 64 entry data TLB and an 128 entry
instruction TLB for address translation.

Two threads exchange four byte messages over con-
nected pipes. One thread simulates an application thread
in a traditional address space with a configurable instruc-
tion and data TLB working set. The second thread acts
as an extension running either in a separate full address
space or in the sandbox. The ”application” thread fills
some number of TLB entries, sends a message to the ”ex-
tension” thread, and reads a reply message. The applica-
tion thread then accesses its previously referenced pages.
The extension thread, which has a small fixed TLB size,
is executed either in the sandbox or in a traditional ad-
dress space. To simulate various data TLB sizes, the ap-
plication thread reads 4 bytes of data from a series of
memory addresses spaced 4160 byte apart. To simulate
instruction TLB sizes, the application thread performs a
series of relative jumps to instructions spaced 4160 bytes
apart. These spacings were chosen to avoid cache in-
terference effects. The TLB miss counts were obtained
using the Pentium 4 CPU performance counters.

Figure 4(a) shows the data TLB working set of the ap-
plication thread is maintained for up to approximately
45 entries when the extension thread is mapped into the
sandbox. At this point the combined data TLB demands
of the operating system, the application and the exten-
sion no longer fit the 64 entries available on the Pentium
4 and each page access incurs a TLB miss. Note that for
the extension thread in a traditional address space, every
data page access after the IPC ping-pong incurs a TLB
miss regardless of the working set size, as all TLB en-
tries are purged on every context switch.

As shown in Figure 4(b), the instruction TLB entries
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Figure 4: Effects of working set sizes in terms of (a) data, and (b) instruction pages on the number of TLB misses,
for inter-protection domain communication. The ‘User’ case is for traditional inter-process communication, while the
‘Sandbox’ case shows communication costs between a process and a sandboxed protection domain.

of the application thread are preserved when the exten-
sion is located in the sandbox. No instruction TLB
misses occur until the working set approaches 110 en-
tries, which is close to the available 128 TLB entries.
Thereafter, the number of instruction TLB misses are
similar for both extension types. These results corre-
spond to those in the “small spaces” work that uses the
segmentation features of the x86 to implement multiple
logical protection domains within a single address space.
This shows that our user-level sandbox technique can
achieve inter-protection domain communication perfor-
mance similar to approaches based on specialist hard-
ware features such as segmentation.

Finally, Figure 5(a) shows the communication latency
remains lower with the sandbox extension even when the
data TLB miss rates are similar. Likewise, in Figure 5(b),
the pipe latency is considerably lower for the sandboxed
extension, until the instruction TLB is filled.

3.3 Web Server Performance Using
Dynamic Content Requests

Further experiments were carried out to evaluate the per-
formance of applications composed of traditional address
space processes extended with sandbox-based code. An
unmodified Apache 2.0.44 web server was configured
to support FastCGI, an interface between web servers
and external processes that generate dynamic content.
Apache was configured to communicate over a local
UNIX domain socket with a multi-threaded FastCGI pro-
cess to satisfy HTTP requests coming from another host.
On each request the FastCGI process reads a 36 Kilo-
byte XML file from the filesystem, transforming it into
a 20 Kilobyte HTML response. Each request is gen-
erated by httperf with a 5 second timeout. Figure 6
shows the performance of the application, when FastCGI

threads are running in a separate address space from
the Apache server process (the ‘User’ case), and when
FastCGI threads are executing within the sandbox (the
‘Sandbox’ case). As can be seen, the maximum response
rate is improved when FastCGI threads are mapped to the
sandbox. Similarly, the average request connection time
remains lower for a larger request rate when FastCGI
threads execute in the sandbox.

In summary, these experiments show that when the
working sets of logical protection domains do not exceed
the TLB limits, fast inter-protection domain communica-
tion is possible with our method. This is possible without
the need for special hardware support, such as segmenta-
tion.

3.4 Microbenchmarks

Operation Cost in CPU Cycles
Upcall including TLB flush/reload 11000

TLB flush and reload 8500
Raw upcall 2500

Signal delivery (current process) 6000
Signal delivery (different process) 46000

Table 1: Microbenchmarks taken on a 1.4GHz Pentium
4, 512 Megs RAM. Cycles given above are based on the
time stamp counter.

Table 1 presents a number of microbenchmarks that
point to the effectiveness of using our fast upcalls
method, for invoking sandbox code. In this table, the fast
upcall costs are shown for the SYSEXIT/ENTER imple-
mentation. The complete upcall cost includes the CPU
cycles required to go from kernel space to a user-space
upcall handler function. This includes the costs of flush-
ing the sandbox data area TLB entry, placing arguments
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Figure 5: Latency of communication via a pipe between two protection domains, as a function of working set sizes in
terms of (a) data, and (b) instruction pages.
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Figure 6: Performance of an unmodified Apache 2.0.44 web server handling dynamic content requests with the help of
FastCGI processes mapped to both separate address spaces (‘User’ case) and sandboxed memory regions (‘Sandbox’
case).

on the upcall stack, performing a SYSEXIT and execut-
ing the user-level prologue of the upcall handler function.
The TLB flush and reload time dominates the overall up-
call cost, while the remaining “raw upcall” cost accounts
for less than a quarter of the elapsed cycles. Copying
arguments and trampoline code to the (user-level) upcall
stack consumes majority of the clock cycles associated
with the raw upcall. The trampoline code is simply a
SYSENTER instruction, placed on the upcall stack be-
fore any arguments and referenced by the return address
(also on the same stack) of the upcall handler. A few
hundred cycles of the raw upcall can be attributed to the
SYSEXIT instruction, while the rest are associated with
saving information on the kernel stack when we return
via the corresponding SYSENTER.

The signal costs measure the overheads of delivering a
signal to user space from the kernel within the same ad-
dress space context as well as between different address
spaces. The costs of delivering a signal within the same
address space is much lower than the cost of an upcall, as

no hardware protection overheads are involved, but once
an address space switch and scheduling operation are in-
volved the costs of delivering a signal from kernel to a
user-space process are over 4 times the cost of a full up-
call. Note that the measured cost of delivering a signal
to a different process involves making that process the
highest priority, so it is guaranteed to be scheduled next.

While the previous table does not include the costs
of using activation records, our tests suggest they in-
cur less than 10% additional overheads compared to SY-
SEXIT/ENTER. This is still better than using signals to
invoke user-level services, since activation records have
fixed overheads that are not dependent on system load,
process behavior, or CPU scheduling policies.

3.5 System Service Extensions in the
Sandbox

In this set of experiments, we compare the performance
of kernel-level extensions against user-level approaches

9



for monitoring and adapting system resource usage. The
aim is to see whether it is possible to implement system-
wide service extensions in a user-level sandbox, and still
achieve a similar level of control over physical resources
to that of kernel-based approaches. This set of experi-
ments uses a standalone 550 Mhz Pentium III with 256
MB of RAM. In this case, a user-level sandbox is imple-
mented on a patched Linux 2.4.20 kernel.

Four different methods of dynamically managing CPU
usage are compared, for a set of processes each with spe-
cific resource requirements over finite windows of real-
time. Further details about the exact setup of these exper-
iments can be found in our earlier work [25]. The four
methods implement a CPU service manager within: (1) a
user-level process, (2) a sandboxed thread, (3) a pure up-
call function in the sandbox, and (4) a kernel bottom-half
handler.

Three processes, P1, P2 and P3 have target CPU de-
mands of 40mS every period of 400mS, 100mS every
period of 500mS, and 60mS every period of 200mS,
respectively. For simplicity, the processes are all CPU-
bound, have memory footprints less than 4KB when
stripped of symbols, and merely iterate over a number of
integer computations. Note that in similar experiments,
more realistic and complex application processes encode
a number of video frames into groups of pictures. Re-
sults of these experiments are not included due to space
constraints, and because they show similar performance
patterns to those shown in this section. In any case,
processes P1, P2 and P3 have static real-time priorities
initialized to 80 ∗ (target/period), where target and
period denote the target CPU time required in a given
request period, measured in milliseconds. Since Linux
real-time priorities range from 1 (lowest) to 99 (highest),
kernel daemons are assigned real-time priorities of 97 or
higher, thereby ensuring the whole system continues to
function responsively.

The kernel-based service manager is invoked once ev-
ery 10mS from a Linux timer queue, to monitor the CPU
allocations of the three CPU-bound processes. Similarly,
the upcall-based service manager is invoked once every
10mS by upcall events triggered from a timer bottom
half. Corresponding handler functions in each case ad-
just the timeslice of the three process as necessary, us-
ing the same PID 2 controller described in prior experi-
ments [25]. A guard function allows a process’s timeslice
to increase as long as its average CPU usage, measured
over twice its period, is not above the target utilization.

Both the kernel- and pure upcall-based service man-
agers check the identity of the running process when
they are invoked via the kernel timer queue. Account-
ing information for the CPU usage of the current process

2Proportional plus integral plus derivative.

is updated to the nearest clock tick (or jiffy). The ker-
nel approach accounts for lost ticks but the sandboxed
approach does not, making the latter method of track-
ing CPU usage slightly less accurate. In contrast, the
process- and thread-based managers determine the CPU
usage of the three processes via the /proc filesystem,
when they are scheduled by the kernel. To ensure pre-
dictable service, the process- and thread-based managers
are assigned real-time priorities of 96.

For all four service manager methods, a background
disturbance process attempts to consume all available
CPU cycles when it is active. Its execution pattern is
based on a Markov Modulated Poisson Process, with av-
erage exponential inter-burst times of 10 seconds and av-
erage geometric burst lengths of 3 seconds. Each burst of
the disturbance is triggered with an initial priority of 96,
but when the corresponding service manager is active,
the disturbance’s priority is adjusted to maintain service
to the other three processes. In all cases, the disturbance
is scheduled using the POSIX.4 SCHED FIFO policy.
The aim is to maintain fine-grained control over CPU al-
location for processes that could be part of a real-time
application.
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Figure 7: CPU service management controlled by (a) a
user-level real-time process, and (b) a sandboxed thread.

Figures 7 and 8 show the abilities of each service
management method to maintain CPU allocations of the
three processes at their target levels. Both the process-
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Figure 8: CPU service management controlled by (a)
a pure upcall function in the sandbox, and (b) a kernel
bottom-half handler.

and thread-based approaches suffer from the need for
scheduling by the kernel in order to control resource
allocation. When the disturbance uses SCHED FIFO
scheduling it cannot be preempted by a service manager
that is scheduled at the same initial priority. For brevity,
we do not include results for the case when the distur-
bance is scheduled using a SCHED RR policy, but the
pure upcall- and kernel-based approaches still perform
better. Moreover, having the disturbance scheduled using
SCHED FIFO indicates the vulnerability of process- and
thread-based approaches to user-level service manage-
ment. That is, they are dependent upon the parameters
of other schedulable entities, and the scheduling policy
enforced by the underlying kernel. This contrasts with
the pure upcall- and kernel-based service managers, that
do not entirely depend upon the underlying nature of the
kernel’s scheduling policy.

As can be seen from Figure 8, implementing an ef-
ficient service extension for dynamic management of
CPU cycles is possible using user-level sandboxing. The
upcall-based service manager successfully maintains the
target CPU allocations to all three processes, without
allowing the background disturbance to hog all the re-
sources when it is active. While the kernel-based ap-
proach provides the finest granularity of control over re-

source allocation, implementing extensions in the ker-
nel precludes the use of libraries, system calls and the
benefits of isolating application-specific code outside the
kernel protection domain. With all the user-level ap-
proaches, including the pure upcall method, conventional
system calls such as sched setscheduler() are
available to control CPU allocations. In general, the
slight reduction in fine-grained control over resources is
offset by the ease of programming at user-level.

3.6 User-Level Networking in the Sandbox

As a further application of our approach we have im-
plemented a network stack in the sandbox, that avoids
copying and processing within the kernel. In effect, this
allows custom stack configurations to be implemented,
so that network data can be processed in an application-
specific manner. For example, one could implement a
special-purpose routing protocol in user space using this
technique.

In the following experiments, several IBM x-series
305 servers are connected via Tigon3 Gigabit Ethernet
cards. Each machine has a 2.4GHz Pentium 4 CPU and
1024MB RAM. With slight modifications to the Ethernet
driver in a Linux 2.4.20 kernel, we are able to DMA data
directly into sandboxed memory. Details of this exten-
sion to our sandbox system can be found in an accompa-
nying paper [26].
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Figure 9: Throughput comparison of an optimized sand-
box stack versus alternative user- and kernel-level imple-
mentations.

Figure 9 compares the throughput of a sandboxed net-
working stack versus alternative kernel- and user-level
implementations, to forward data between two UDP
socket end-points. The alternative user-level approach
relays data via a process that simply reads from one
socket and writes to another. In contrast, the kernel
approach uses a kernel thread to connect two socket
end-points. As can be seen, the kernel method yields
the highest throughput when there are no background
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threads active on the end-host. However, since both the
kernel- and user-level relaying agents execute in their
own thread contexts they are subject to scheduling over-
heads. This can be seen by the fact that only the sand-
boxed networking approach maintains the same level
of throughput irrespective of the number of background
threads.
Summary: The experiments discussed in this section
primarily focus on performance gains of our approach,
rather than the novelty of particular sandboxed services.
However, user-level sandboxing is flexible enough to
support a number of fairly powerful service extensions,
whose capabilities can be controlled by upcalls from the
trusted kernel. For example, sandbox services may be
granted controlled access to I/O devices by upcalls that
enable access to a subset of all available IO port ad-
dresses. Results show that e.g., jitter-sensitive applica-
tions may suffer from scheduling and switching over-
heads (and policies) associated with traditional user-level
services isolated in separate protection domains. This is
evident from our CPU service management experiments,
similar to those already published as part of our safe ker-
nel extension work [25].

4 Related Work

There have been a number of related research efforts
that focus on OS structure, extensibility, safety, and ser-
vice invocation. For example, micro-kernels such as
Mach [27] offer a few basic abstractions, while moving
the implementation of more complex services and poli-
cies into application-level components. By separating
kernel- and user-level services, many micro-kernel im-
plementations have either suffered from significant inter-
protection domain communication costs or lack of porta-
bility [14].

Other OS approaches, such as the Exokernel [18], try
to efficiently multiplex hardware resources among appli-
cations linked with library operating systems. In com-
mon with the Exokernel approach, user-level sandbox-
ing enables services and extensions to be linked into pro-
cess address spaces, along with library code they may
use. However, our approach provides a method to exe-
cute service extensions in arbitrary address spaces, with-
out scheduling and context-switching overheads.

We require service extensions for multiple different
applications to be written by a trusted source, or to
be guaranteed memory-safe by using techniques such
as type-safe languages or software fault isolation. The
SPIN operating system [5], for example, uses the type-
safety of Modula-3 to enforce memory protection of un-
trusted extensions linked with core system abstractions.
In our approach type-safe language support is useful to
isolate extensions from one another, and to prevent them

from unauthorized access to the active process-private
address space. However, we use page-level protection
to provide a clean separation between extensions and the
kernel.

Other extensible systems use transaction schemes [6],
process-private address spaces [4], and special hardware
support to isolate or guard against the potential ill-effects
of untrusted service extensions. For example, Palla-
dium [7] leverages both segmentation and multiple rings
of protection to support both user- and kernel-level ex-
tensions. Interestingly, Palladium reorganizes applica-
tion and extension code so that extensions are always
located in a less privileged ring of protection than the
code that invokes their services. However, this method
is primarily targeted at x86-based systems and relies on
hardware support for protection. User-level sandboxing
does not require segmentation and multiple rings of pro-
tection.

Another area of research related to ours has focused
on service invocation, kernel event notifications [23, 24]
and upcalls [19]. Much of this work is concerned with
the way to trigger user-level services or handlers due
to some condition or event in the kernel. For example,
FreeBSD’s ‘kqueues’ [24] and Banga et al’s kernel event
notifications [23] alleviate many of the costs associated
with traditional methods of event delivery (e.g., using
poll() and select()). However, they do not offer
upcalls mechanisms akin to the mirror image of a system
call, capable of triggering handlers without scheduling
overheads. As part of our upcall mechanism, we intend
to implement a general kernel event notification scheme
based on these approaches, but with the ability to directly
invoke a function in a sandbox.

Finally, observe that our work is not to be confused
with user-level resource-constrained sandboxing [28], by
Chang, Itzkovitz and Karamcheti. Their work focuses
on the use of sandboxes to enforce quantitative restric-
tions on resource usage. They propose a method for in-
strumenting an application, to intercept requests for re-
sources such as CPU cycles, memory and bandwidth.
The emphasis of our work is to provide safe and efficient
shared memory support for the execution of user-level
extensions in arbitrary process address spaces. While
we assume page-level protection is provided by hard-
ware, a finer-granularity protection scheme such as Mon-
drian [29] would be desirable. That said, the hardware
for such an approach is not yet readily available.

5 Conclusions and Future Work

This paper describes a safe and efficient method for user-
level extensibility, employing a shared virtual memory
area common to all address spaces. Our approach al-
lows applications to register sandboxed code with the
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system, that may be executed in the context of any pro-
cess, thereby avoiding unnecessary scheduling and con-
text switching overheads.

Upcalls from the trusted kernel are required to toggle
page-level protection bits, to allow extension code to ex-
ecute in a user-level sandbox. Since extensions are exe-
cuted at user-level, they may utilize libraries and make
system calls. Our approach differs from other imple-
mentations that require special hardware support, such as
segmentation or tagged TLBs, to either implement mul-
tiple protection domains in a single address space, or to
support fast switching between address spaces. Like-
wise, we do not require the entire system to be written
in a type-safe language, to provide fine-grained protec-
tion domains. Instead, our user-level sandboxing mecha-
nism requires only paged-based virtual memory support,
given that sandboxed extensions are either written by a
trusted source or are guaranteed to be memory-safe. The
mechanism benefits most by the use of a small number of
extended (or super-) pages on architectures where such
pages are cached in untagged TLBs. Hardware support
for a variety of super-pages is now appearing on differ-
ent architectures (e.g., the UltraSPARC and IA-64). This
will enable larger and more extensions to be mapped into
a sandbox.

In contrast to work such as software fault isola-
tion [11], which assumes untrusted code is isolated in its
own fault domain in a single address space, we support
the ability to place extension code in a memory region
that is shared between separate address spaces. This
makes our technique suitable for existing systems that
support multiple process-private address spaces, rather
than a single memory area, as in systems such as DOS.
We envision our approach as laying the foundations for
a method of implementing first-class user-level services
that are tailored to the needs of specific applications. By
first-class, we mean any service that has the same capa-
bilities and privileges of traditional kernel services, with
the exception that the kernel may always revoke access
rights to any service abusing its capabilities. Our phi-
losophy is in keeping with the micro-kernel design but
unlike past micro-kernel implementations we can invoke
user-level services with low overhead while not requiring
esoteric hardware support.

Future work involves a thorough study of the costs
of software fault isolation methods, and also type-safe
languages such as Cyclone [12], to enforce memory-
protection on multiple untrusted extensions in a user-
level sandbox. We will also address issues related to
CPU protection, to enforce that sandbox extensions do
not execute for unbounded periods. Our earlier work
on safe kernel extensions [25] suggests that CPU protec-
tion can be enforced by requiring extensions to reserve
a CPU share before they are registered with the system.

Each extension may have a corresponding timer that is
decremented every clock tick during execution. A trap to
the controlling kernel is issued when any extension exe-
cutes beyond its CPU quota. At this point some form of
abortive action may be taken.

The user-level sandboxing software is available upon
request. The current implementation requires a minimal
set of changes to the core Linux kernel. In recent work
outside the scope of this paper, we have successfully ap-
plied binary-rewriting techniques to make the necessary
minor changes to the kernel, without having to patch and
recompile any source code. To date, the only require-
ment is that a user reboots his or her machine to reserve
an area of physical memory for the user-level sandbox.
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