
‘QoS Safe’ Kernel Extensions for Real-Time Resource Management

Richard West and Jason Gloudon

Computer Science Department
Boston University
Boston, MA 02215

{richwest,jgloudon}@cs.bu.edu

Abstract

General-purpose operating systems are ill-equipped to
meet the quality of service (QoS) requirements of complex
real-time applications. Consequently, many classes of real-
time applications have either been carefully developed to
compensate for inadequate system support, or they have
been developed to run on special purpose systems. This
paper focuses on a safe extension architecture for general
purpose systems, to allow applications to customize the be-
havior of the system for their individual needs. Using Linux
as the basis for our work, we describe how application pro-
grammers can safely incorporate ‘service extensions’ into
the kernel, so that application-specific QoS guarantees can
be provided. We introduce the notion of ‘QoS safety’, which
is concerned with meeting the QoS constraints of applica-
tions while maintaining system integrity.

Our safe extension architecture supports the dynamic-
linking of code into the address space of the kernel, to af-
fect service management decisions. Extensions are written
in a type-safe language, to monitor and adapt resource us-
age on behalf of specific applications. Experimental results
show that safe kernel extensions can lead to fewer service
violations (and, hence, better qualities of service) for real-
time tasks, compared to user-level methods that monitor and
adapt system resources.

1. Introduction

Existing general-purpose operating systems are ill-
equipped to meet the QoS requirements of emerging ap-
plications that are inherently real-time in nature. Conse-
quently, many classes of real-time applications have been
custom-developed to compensate for inadequate system
support, or they have been designed to run on special-
purpose systems. This has lead many researchers to pro-
vide middleware solutions (e.g., [12, 2, 19, 16]), that bridge

the ‘semantic gap’ between the needs of applications and
the services provided by the system. Unfortunately, mid-
dleware solutions lack fine-grained control over system re-
sources, thereby limiting the rate at which resource alloca-
tions can be adapted. For example, many of the CORBA-
based (middleware) adaptation frameworks now being de-
veloped (e.g., [19, 16]) are subject to the costs of monitor-
ing and adapting system resource usage via processes and
system calls, that have limited capabilities.

It is desirable to implement QoS management abstrac-
tions at the kernel-level, as opposed to using middleware,
so that resources are managed more efficiently and better
service is provided to real-time applications. Moreover, if
these abstractions are implemented in general-purpose sys-
tems, improved service is possible for many desktop ap-
plications with QoS constraints (e.g., RealNetworks Re-
alPlayer, or Windows Media Player). It is therefore benefi-
cial to extend the behavior of existing commercial off-the-
shelf (COTS) operating systems, by incorporating new ser-
vice abstractions and interfaces. Unfortunately, most COTS
systems are structured around monolithic kernels that have
not been designed to support extensibility [18, 6, 3, 17] or
specialization of system behavior. Although some systems
support limited extensibility, by allowing device drivers to
be loaded at run-time (e.g., Linux and Solaris), they lack
support for code extensions that override or alter the behav-
ior of system-wide service policies.

This paper focuses on a safe extension architecture for
general purpose systems, that allows real-time applications
to customize the behavior of the system for their individ-
ual needs. By incorporating application-specific code in
the kernel, the system can make better resource manage-
ment decisions for applications that need service guaran-
tees. However, this approach raises a number of safety is-
sues. First, traditional notions of safety concerning address
space protection, type-safety and memory bounds checks
for extension code must be enforced. Second, local resource
management decisions for one application should not ad-

versely affect the integrity of the system, or the service
provided to other applications. Finally, the execution time
of extension code must be bounded and small enough not
to impact the overall service provided by the system. For
this reason, we introduce the notion ofQoS safety, which is
concerned with meeting the QoS constraints of applications
while maintaining system integrity.

Our architecture, known as ‘SafeX’, provides QoS safe
guarantees for application-specific kernel extensions, by en-
forcing both compile- and run-time safety checks. SafeX
supports the dynamic-linking of code into the address space
of the kernel, to affect service management decisions. This
approach provides finer-grained control over system re-
source management than current middleware methods im-
plemented at user-level. As a result, system scalability is
improved, while the service constraints of real-time appli-
cations are guaranteed. Specifically, SafeX extensions mon-
itor service and negotiate changes to parameters of the man-
agement policies implemented by the core kernel, to ensure
QoS guarantees for the corresponding applications.

Using Linux as the basis for our work, we describe how
application programmers can safely incorporate service ex-
tensions into the kernel, so that application-specific QoS
guarantees can be provided. We show the usage of SafeX
to implement a simple CPU service manager. This service
manager adapts the scheduling of various real-time tasks, to
ensure their QoS constraints are met even when there are
run-time changes in resource needs.

In summary, the goals of this work are:
• to provide a mechanism by which untrusted applications
may dynamically-link ‘QoS safe’ code into the Linux ker-
nel, to improve or guarantee the service provided to such
applications, while maintaining system integrity,
• to define and implement appropriate safe interfaces that
allow application-specific extensions to monitor and adapt
services, thereby guaranteeing QoS even when there are
changing resource demands, and
• to demonstrate that ‘QoS safe’ kernel extensions improve
the service to real-time applications, compared to user-level
methods of service (and, hence, resource) management.

Using safe kernel extensions, the following benefits are
possible:
• resource management decisions can be made without hav-
ing to schedule processes (that would otherwise make the
decisions), thereby improving performance,
• finer-grained control of resource usage and allocation is
possible, compared to user-level methods of monitoring and
adapting such resource usage and allocation, and
• service is provided in a manner that better matches the
needs of individual applications, that would otherwise have
to play tricks with system calls and the basic abstractions
offered by the system.

The rest of the paper is as follows: the next section de-

scribes some of the related work. Section 3 discusses SafeX
in more detail, outlining some of the QoS safety issues. In
Section 4, we show the performance of safe kernel exten-
sions using a simple PID controller, that adapts the schedul-
ing parameters of real-time tasks. Finally, conclusions and
future work are discussed in Section 5.

2 Related Work

There has been significant work on adaptive resource
management [14, 8, 15] and reservation [21, 10, 7, 4]. Like-
wise, many researchers have implemented entire QoS archi-
tectures [1, 12, 2] to meet the service requirements of real-
time applications. By comparison, our work focuses on the
provision of QoS safe mechanisms at the kernel-level of ex-
isting general purpose operating systems.

General purpose systems provide a set of generic ser-
vice policies that are ill-suited to the needs of many ap-
plications, such as those with real-time constraints. This
has stimulated research in extensible operating system de-
signs [18] which give applications greater control over the
management of their resources. In contrast, microkernels
such as Mach offer a few basic abstractions, while moving
the implementation of more complex services and policies
into application-level components. By separating kernel-
and user-level services, microkernels introduce significant
amounts of interprocess communication overhead. This has
caused microkernels to fall out of favor despite substantial
reductions [9] in communication costs.

Other OS approaches, such as the Exokernel [5], try
to efficiently multiplex hardware resources among applica-
tions that utilize library operating systems, implemented at
user-level. In contrast, SPIN [3] is an extensible operat-
ing system that supports extensions written in the Modula-3
programming language. This language provides type-safety
and memory protection, by enforcing interface contracts be-
tween code modules. Extensions signed by the trusted sys-
tem compiler are deemed safe and may be loaded into the
kernel address space at runtime. Interaction between the
core kernel and SPIN extensions is mediated by an event
system, which dispatches events to handler functions in the
kernel, without the overhead of kernel/application boundary
crossing. By providing handlers for events, extensions can
implement application-specific resource management poli-
cies with low overhead.

Other related systems research includes the VINO [17]
operating system. VINO supports system extensions known
as grafts. These are object files generated and digitally
signed by a trusted compiler as in SPIN. Unlike SPIN and
the approach taken in SafeX, VINO employs C++, which
is not type-safe. To enforce memory protection,sandbox-
ing [13] techniques are applied to grafts. In fact, VINO runs
graft code in the context of transactions, so that the system

can be returned to a consistent state if execution of a graft
is aborted.

Our approach has particular similarities to SPIN. How-
ever, our work differs in a few key areas. Namely, we pro-
vide a mechanism by which safe extensions can be incor-
porated into existing COTS systems. Furthermore, our ap-
proach supports extensions that monitor and adapt resource
usage, to guarantee or improve QoS for real-time appli-
cations. Using SafeX, extension code is guaranteed to be
QoS safe, since safety checks beyond those limited to exist-
ing type-safe languages (e.g. memory protection) are sup-
ported. These additional safety aspects of SafeX are dis-
cussed in the following section.

3 The SafeX Approach to QoS Safe Extensi-
bility

SafeX supports both compile-time and run-time safety
checks to:
• guarantee QoS constraints to real-time applications – the
QoS contractrequirement,
• enforce timely and bounded execution of service exten-
sions – thepredictabilityrequirement,
• guarantee that a service extension does not improve the
QoS for one application at the cost of others – theisolation
requirement, and
• guarantee the internal state of the system is not jeopar-
dized – theintegrity requirement.

Collectively, the above requirements are needed to en-
force a QoS safe system. With these requirements in mind,
we can now discuss the SafeX approach to QoS safe exten-
sibility in more detail.
Language Support – SafeX requires that service exten-
sions be written in the Popcorn [11] programming language.
Popcorn is designed for syntactic similarity to C, and is
compiled to TALx86, an extended version of the Intel IA-
32 assembly language. TALx86 is an instance of Typed
Assembly Language (TAL) [11] that, by adding typing an-
notations and typing rules to traditional assembly language
guarantees memory, control flow and type safety of TAL
programs. Popcorn is supported by a number of TALx86
tools that can verify internal type consistency of TALx86
source files and linked object code.
Memory Protection – Extensions running within the ker-
nel address space may potentially access and modify any
data within the kernel and violate the memory protections
enforced on user processes as well as the integrity of kernel
data structures and code. The type safety of Popcorn pre-
vents extension code from forging pointers to arbitrary ad-
dresses or casting pointers to arbitrary types. Therefore, by
controlling the pointers passed to extension code, the parts
of the kernel address space that may be accessed by an ex-
tension can be finely controlled. This provides the basis for

SafeX interfaces discussed later.
Another issue raised by passing pointers to extensions is

the possibility that memory referenced by a pointer may be
deallocated or reused by the core kernel. Extension code
cannot be trusted to stop using pointers to such memory
after reuse or deallocation. Consequently, some form of
garbage collection must be used to safely manage memory
referenced by extensions. The current safe extensions im-
plementation does not do such garbage collection, but de-
fers deallocation of memory objects until all extensions ref-
erencing them are unloaded from the kernel’s address space.
CPU Protection – Extension code may potentially execute
for unbounded periods of time, taking control of the sys-
tem. SafeX requires that applications reserve CPU time for
extensions before they are executed. SafeX enforces time
limits by aborting execution of extension code that exceeds
its reservation. In this way, SafeX can limit the total amount
of CPU time given to and used by extensions. It is worth
noting that the CPU time used by an extension is charged
to the associated application so that the total CPU time con-
sumed on the behalf of the application is considered in its
scheduling.

SafeX tracks extension execution time by decrementing
a counter at each system timer interrupt. Consequently,
extension code may not be executed while interrupts are
masked, and they may not directly disable interrupts. In the
current implementation, SafeX aborts extensions on return
from the system timer interrupt to extension code, if they
exceed their time limit.
Exception Handling – Checks inserted by the Popcorn
compiler may detect certain errors as extension code exe-
cutes, such as arithmetic exceptions and null pointer deref-
erences, which raise exceptions that may be caught and han-
dled by extension code. If such exceptions are not caught
within an extension, they are caught by a handler provided
by the safe extension environment.
Synchronization – Certain kernel functions require syn-
chronized access to shared resources. The Linux kernel
uses locks and interrupt masking to create critical sections
of code. As explained under CPU protection (above), ex-
tensions may not be allowed to mask interrupts. Locks are
potentially problematic, as an extension holding a lock may
be aborted when failing to catch an exception or by exceed-
ing its execution time. Aborting an extension under such
conditions may leave the resource being accessed in an im-
proper state with locks unreleased.

SafeX addresses this issue by restricting the use of syn-
chronization primitives to core kernel code or SafeX code.
Critical sections of code requiring the use of such primitives
must be implemented entirely within the trusted core kernel
and SafeX. Since SafeX does not preempt the execution of
core kernel code or SafeX code, critical sections are guaran-
teed to execute in their entirety, so that shared resources are

never left in an unknown state. Extensions can then access
shared resources through SafeX interfaces that encapsulate
the necessary synchronization.

The above design issues solve thepredictabilityand in-
tegrityrequirements of a QoS safe system. However, further
support is necessary to satisfy theQoS contractand isola-
tion requirements. For this reason, we describe the addi-
tional management features that SafeX leverages to provide
QoS safety.

3.1 Additional QoS Management Features Re-
quired for QoS Safety

To provide QoS safe resource management, new abstrac-
tions must be developed inside the kernel. For this reason,
we have developed an adaptive QoS management system,
called Linux Dionisys [20] (see Figure 1(a)). In this sys-
tem, SafeX is incorporated intodaemonprocesses running
on each host of a distributed system. Application processes
link with the Dionisys library to create service extensions.
These service extensions are eithermonitors, handlersor
service managers. A service manager is an encapsulation
of a resource management subsystem within the kernel, and
has a corresponding policy for providing service of a spe-
cific type. For example, a CPU service manager has a pol-
icy for CPU scheduling, while a network service manager
might have a policy for flow control and/or packet schedul-
ing. Observe that kernel service managers (see Figure 1(b))
run asbottom halfhandler routines that are invoked peri-
odically or in response to events within the system. This
enables extensions to execute asynchronously to applica-
tion processes, so an application may influence the way re-
sources are allocated to it even when not scheduled.

Each service manager has two queues for monitor and
handler functions. A monitor function,M , bound to the
queue of service manager,S, is executed periodically on
behalf of an application,A. Using the interfaces provided
by SafeX,M observes the service provided toA by S. Sim-
ilarly, a handler function,H, that is bound to the queue ofS
and operating on behalf of an application,A′, is executed in
response toeventsfrom a corresponding monitor function
associated withA′. H uses SafeX interfaces to influence
changes to the service provided byS, so that improved ser-
vice (or guaranteed QoS) is provided toA′. Moreover, ap-
plications can createevent channelsbetween their monitor
and handler functions, so that deficiencies in one monitored
service can trigger compensatory changes in the same or
other service managers.

Monitors and handlers operate onattribute classes.
These are data structures that hold the names of various
QoS attributes and their corresponding values. For exam-
ple, a name-value pair referring to CPU scheduling priority
would bepriority-numericvalue. As another example, an

application-specific attribute for a video application might
be framerate-numericvalue. These attribute classes are
created by applications and linked into the kernel address
space of a given host by a SafeX daemon. Service exten-
sions and applications get and set these attributes by name,
as long as they have the necessary access rights.

Each host has a separate attribute store for each appli-
cation, that is identified by aclass descriptor. Applica-
tion processes and service extensions on a given host may
only retrieve and set attributes in the corresponding attribute
class on the local host (as identified by aclass descriptor).
As with service extensions, an application process can cre-
ate an attribute class for deployment on a remote host. Ac-
cess to this class is granted to remote processes that ac-
quire permission from the class creator. Observe that the
nameserver in Figure 1(a) maintains a database of bindings
of class descriptors to attribute classes on each host, event
channel ids to actual channels, and service extension names
to their actual locations.

Each service manager is equipped with aguard func-
tion that is automatically generated by the code genera-
tor in a SafeX daemon process running on the same host.
A guard function is responsible for the mapping of at-
tributes, contained in attribute classes, to kernel policy-
specific structures. It ensures that attributes are within valid
ranges and will not affect the QoS guarantees to the corre-
sponding application, or other applications. Observe that
each SafeX daemon process implements a code genera-
tor and linker/loader, for compiling and linking extension
code into the host’s kernel address space. Moreover, each
SafeX daemon is capable of generating code for run-time
safety checks of extensions, thereby guaranteeing they have
bounded execution time.

In summary, SafeX is used to implement safe kernel ex-
tensions in our QoS system called Linux Dionisys. Monitor
and handler extensions affect resource management deci-
sions so that QoS guarantees for applications can be met.
This is necessary for theQoS contractrequirement of a QoS
safe system. Likewise, guard functions help satisfy theiso-
lation requirement of a QoS safe system.

3.2 SafeX Interfaces

To affect changes to the service received by an applica-
tion, the handlers (in a system such as Linux Dionisys) need
interfaces to adjust the parameters of the underlying mecha-
nism providing the service. Though handlers execute within
the kernel address space, they cannot be trusted to directly
modify core kernel data. SafeX, therefore, provides service
extensions with interfaces to manipulate kernel data struc-
tures and perform operations requiring special privileges.
For example, as mentioned previously, extensions must use
SafeX interfaces to request operations requiring synchro-

App process

Daemon

Nameserver

Daemon

Host 1 Host n

App process

Daemon

SM 3

User
Level

Kernel
LevelSM 1

(eg., CPU)
SM m

(eg., Buffer)
SM 2

(eg., Network)

Event Channels

Lookup /
Translation

Dionisys
Library

Dionisys
Library

RPCsRPCs

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel
policy-specific

structures

Kernel timer queue of
bottom half (SM)

functions

Guard fn

MonitorsEvents out

Events in

Figure 1. (a) The Linux Dionisys QoS system, and (b) the internals of a kernel service manager. The
SafeX code generator and linker reside in the daemon processes of Linux Dionisys.

nization. SafeX interface functions may be used only by
extensions possessing the capabilities for these interfaces.
SafeX capabilities are in fact pointers which are unforge-
able due to the type safety of the extension language.

SafeX interfaces, like system calls, must validate argu-
ments passed to them by extensions. They must also ensure
that requested operations are safe, as some operations or de-
cisions, while not violating system protections, may have a
negative effect on system performance. SafeX interfaces are
therefore responsible for limiting the possible global effects
of operations requested by extensions and require careful
design balancing the degree of application control over re-
source allocations with concern for system stability.

Internally, SafeX uses functions that are similar to those
provided by the Dionisys library. Applications directly ac-
cess the Linux Dionisys interface, as shown in Figure 2, to
specify service extensions. These library routines contact
a nameserver, which in turn contacts the SafeX daemons
using RPCs to take appropriate action.

4 Experimental Evaluation

This section describes a series of experiments performed
on a 500MHz Intel Pentium III with 128 Megabytes of
RAM, running a patched Linux 2.4.17 kernel that sup-
ports Dionisys and SafeX QoS management features. These
experiments compare the performance of safe kernel ex-
tensions against user-level approaches for monitoring and
adapting system resource usage. An elementary CPU ser-
vice manager is created and used to evaluate the ability of
safe extensions to meet the real-time needs of processes,
even when there are fluctuations in resource demands. The
CPU service manager provides the ability for service ex-
tensions to monitor and adapt the allocations of CPU time
to corresponding applications over finite windows of real-

time.

Figure 3 and shows the pseudo-code for monitor and
handler extensions created on behalf of all application pro-
cesses. QoS safety checks are performed using a simple
guard function, as described in Figure 4. The CPU service
manager decides that it is safe to allow a process to execute
if its CPU utilization measured over twice its request period
is at or below its target utilization.

Comparison experiments performed at user-level involve
a real-time process (acting as a service manager) that ac-
cesses the/proc filesystem for state information about the
CPU usage of all monitored processes. Using this informa-
tion, the service manager issues system calls to affect the
service provided to application processes. In each experi-
ment, a set of applications specify their service constraints
in terms of target, minimum and maximum CPU time re-
quired over finite windows of real-time. The performance of
user-level versus kernel-level monitoring and adaptation is
compared, when the progress of all service-constrained ap-
plications is affected by a bursty disturbance process. The
disturbance attempts to hog all available CPU cycles dur-
ing its active periods. It is modeled as a Markov Modu-
lated Poisson Process, with average exponential inter-burst
times of 10 seconds and average geometric burst lengths
of 3 seconds. Both the user-level service manager and the
disturbance process have Linux real-time priorities of96.
To ensure the system behaves correctly, kernel daemons are
modified to run with real-time priorities set at97.

Experimental Setup – User- and kernel-level service man-
agers initialize each test application with a static priority
of 80 ∗ (target/period), wheretarget andperiod denote
the target CPU time required by an application in a given
request period, measured in milliseconds. The CPU allo-
cation for each process is monitored every10 milliseconds.
In the case of kernel monitoring, an extension function is

DClassdescrt DinitApp (void)
• Obtains from the nameserver a globally unique class descriptor

for an application.

int DCreateAttrClass (DClassDescr t cd, char *smname,
DAttr t *attrib class)

• Creates an attribute class, referenced byattrib classand associated
with cd, in the service manager namedsm name.

• Returns 0 on success, -1 on failure.

int DCreateSM (char *sm name, int period, char *srcfile)
• Creates a service manager namedsm namefrom src file.

The service manager is executed everyperiodclock ticks.
• Returns 0 on success, -1 on failure.

int DCreateMonitor (DClassDescr t cd, char *monname,
int period, char *monsrc file)

• Similar toDCreateSM(). The monitor is executed everyperiod
clock ticks and gets values from the attribute class identified bycd.

• Returns error code (for now, 0-success, 1-SMno exist).

int DCreateHandler (DclassDescr t cd, char *handname,
char *handsrc file)

• Creates a handler namedhandname, from handsrc file.
• Returns error code (for now, 0-success, 1-SMno exist).

int DCreateEventChannel (DClassDescr t cd, char *monname,
char *handname)

• Addshandnameto the subscription list for an event channel
from mon name.

• Returns error code (for now, 0-success, 2-Monitorno exist).

• sm nameuniquely identifies a service manager on a given host.
• monnameandhandnameuniquely identify monitors and handlers

associated with specific service managers.

Figure 2. Overview of the Dionisys API.
SafeX uses similar functions internally.

invoked periodically from a Linux timer queue. Handler
functions adjust the timeslice of each process as necessary,
using a PID controller similar to that described in Figure 3.
As stated earlier, a guard function allows a process’s times-
lice to increase as long as its average CPU usage, measured
over twice its request period, is not above the target utiliza-
tion. For these experiments, the PID controller constants
areKd = 1.3 andKp + Kd + Ki = 1.4. These values are
the result of empirical studies to obtain stable results for the
kernel service manager.

Figure 5 shows the percentage of CPU time allocated
to three competing CPU-bound MPEG encoders (P1, P2

and P3) having target CPU demands of20mS every pe-
riod of 100mS, 30mS every period of100mS, and80mS
every period of200mS, respectively. The top figure shows
the performance when service monitoring and adaptation
is done at user-level, using the POSIX.4 SCHEDFIFO
scheduling policy for the disturbance. The middle figure
also shows user-level service management with the dis-
turbance scheduled using SCHEDRR scheduling (with a
110mS timeslice), while the bottom figure shows the re-
sults for kernel-level service management.

In each case, the three MPEG encoding processes re-

void monitor(){
// Get target and actual CPU usage
// from application’s attribute class.
actual_cpu = get_attribute("actual_cpu");
target_cpu = get_attribute("target_cpu");

// Generate an event carrying difference
// in target and actual values.
raise_event("Error", target_cpu-actual_cpu);

}

typedef struct {char *name; int value;} event;

void handler(event ev){
// Get nth sampled error between target
// and actual monitored values.
e[n] = ev.value;

// Update process’ timeslice by PID fn
// of target and actual CPU usage.
// u[n] is the timeslice adjustment
// at the nth sampling interval.
// Kp, Kd and Ki are PID constants.
u[n] = (Kp+Kd+Ki)*e[n]-Kd*e[n-1]+u[n-1];

// Set timeslice adjustment field of
// an application’s attribute class.
// A guard function will
// subsequently verify the QoS safety
// of the new timeslice value.
set_attribute("timeslice-adjustment", u[n]);

}

Figure 3. Pseudo-code for monitor and han-
dler extensions used in the experiments.

guard (attribute, value):
if (attribute == "timeslice-adjustment")

if (CPU utilization is QoS safe)
timeslice=max(0,target_cpu+value);

else block process;

Figure 4. Guard function pseudo-code.

peatedly encode56 kilobyte (160x120 pixel, 24-bit color)
frames into groups of pictures (consisting of30 frames).
The encoded frame sequence consists of a repeated pattern
of I, P andB frames in the orderIBBBBPBBBB. Each
experiment runs for about90 seconds, after which a script
triggers the termination of all processes. This accounts for
the sudden drop in CPU utilization (measured over1 second
intervals) at the end of the experiments.

The user-level service management suffers from the need
to run a process to control resource allocation. When the
disturbance uses SCHEDFIFO scheduling it cannot be pre-
empted by the service manager. In all other cases, the ser-
vice manager dynamically reduces the priority of the distur-
bance to allow the three time-constrained processes to run
when necessary. However, the user-level approach requires
knowledge of system-wide priorities, and service manage-
ment is at the granularity of a timeslice. By contrast, kernel-

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Figure 5. User- versus kernel-level CPU ser-
vice management.

level service management is not dependent upon scheduling
policies and timeslice granularity.

Figure 6 shows the service violations for all three MPEG
encoding processes over time. A violation occurs if a pro-
cess receives less than its target fraction of CPU time over
its specified period of real-time. Included in the figure are
results for similar experiments in which the MPEG encod-
ing processes are replaced by pure CPU-bound processes
that simply perform infinite loops (i.e., “hardloop” pro-
cesses). As can be seen, kernel-level service management
leads to fewer service violations than all user-level cases,
due to its ability to provide finer-grained resource manage-
ment.

The user-level service manager controls the timeslice of
each application process,Pi, by using thekill() system
call to issueSIGSTOP andSIGCONT signals toPi. Conse-

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

of

 v
io

la
tio

ns

time (seconds)

Kernel Mpeg
Kernel hardloop
User Mpeg,RR

User Mpeg,FIFO
User hardloop,RR

User hardloop,FIFO

Figure 6. Total service violations over time.

quently, the additional overheads incurred by user-level ser-
vice management include: (1) the sending of a signal to an
application process, (2) the context-switching between the
real-time service manager and an application process, and
(3) the time to access the/proc filesystem for monitoring
information.

Microbenchmarks for the above experiments yield the
following. Over a series of4000 measurements, the over-
head of sending a signal to a process is1.5µS. The time
to context-switch between any two processes is2.99µS.
This is the result of usingsched yield() to ping-pong
between two processes with highest real-time priority on
an idle system. Reading/proc/pid/stat for an ap-
plication process with a givenpid is 53.87µS. Finally,
the average time to run both monitors and handlers at user-
level is 190µS for all three time-constrained processes in
our experiments. This includes the overhead of reading
/proc/pid/stat three times. Collectively, these over-
heads affect the granularity of service management com-
pared to our kernel-level approach. The only significant
overheads incurred with the kernel approach come at the
cost of executing monitor functions via a kernel timer queue
(as well as associated handlers). These incur a cost of20µS
for all three processes, in the experimental scenario shown
above.

Observe that with the above experiments, the timeslice
is adapted for each real-time application process. In other
experiments, we have adapted processpriorities to man-
age the window-constrained allocation of CPU cycles. This
shows slight performance improvements for user-level ser-
vice management, because of the reduced overheads of ma-
nipulating priorities from user-level using system calls such
assched setparam(). However, for situations where
the ‘semantic gap’ between the service needs of real-time
applications and the service abstractions provided by the
kernel is significant, the performance of user-level service
management can suffer greatly. This is due to user-level
service management techniques having to leverage service
abstractions via system calls in complex and unconventional
ways.

5 Conclusions and Future Work

The SafeX system demonstrates safe downloading of
executable code into the Linux kernel and the potential
for efficient extensibility afforded by this capability. By
using compiler and language run-time support, SafeX is
able to create logical protection domains within the core
kernel, isolating it from faults within application provided
code. SafeX lays the groundwork for developing service
managers within the Linux kernel which allow applications
to monitor and customize their resource allocations in the
manner most appropriate to their needs.

Using SafeX, we have implemented a simple CPU ser-
vice manager, that adapts the scheduling of various real-
time tasks, to ensure their service constraints are met even
when there are run-time changes in resource demands. By
embedding code inside the kernel, finer-grained manage-
ment of system resources can be achieved. Experimental re-
sults show that safe kernel extensions can lead to fewer ser-
vice violations (and, hence, better qualities of service) for
real-time tasks, compared to user-level methods that moni-
tor and adapt system resources.

Future work with SafeX includes the development of ser-
vice managers and interfaces for memory and network re-
sources, as well as the design of guard functions appropriate
for different service policies. Support for stability analysis
and verification of adaptive systems will also be developed.

References

[1] T. F. Abdelzaher and K. G. Shin. End-host architecture for
QoS-adaptive communication. InProceedings of the IEEE
Real-Time Technology and Applications Symposium, Den-
ver, Colorado, June 1998.

[2] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of
QoS architectures.Multimedia Systems Journal, Special Is-
sue on QoS Architecture, 1997.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, and B. E. Chambers. Extensibility, safety, and
performance in the SPIN operating system. InProceedings
of the 15th ACM Symposium on Operating Systems Princi-
ples, pages 267–284, Copper Mountain, Colorado, Decem-
ber 1995.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-
berschatz. Retrofitting quality of service into a time-sharing
operating system. InProceedings of the USENIX 1999 An-
nual Technical Conference, June 1999.

[5] F. K. Dawson R. Engler and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. InProceedings of the 15th ACM Symposium
on Operating System Principles, pages 251–266, Copper
Mountain Resort, Colorado, USA, December 1995. ACM.

[6] D. Ghormley, S. Rodrigues, D. Petrou, and T. Anderson.
SLIC: An extensibility system for commodity operating sys-
tems. InProceedings of the 1998 USENIX Annual Technical
Conference, June 1998.

[7] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU reservations
and time constraints: Efficient, predictable scheduling of in-
dependent activities. InSixteenth ACM Symposium on Oper-
ating System Principles, volume 31, pages 198–211. ACM,
December 1997.

[8] B. Li and K. Nahrstedt. A control-based middleware frame-
work for quality of service adaptations.IEEE Journal of Se-
lected Areas in Communication, 17(9):1632–1650, Septem-
ber 1999.

[9] J. Liedtke. On micro-kernel construction. InProceedings of
the 15th ACM Symposium on Operating System Principles.
ACM, December 1995.

[10] C. Mercer, S. Savage, and H. Tokuda. Processor capacity
reservation for multimedia operating systems. InIEEE In-
ternational Conference on Multimedia Computing and Sys-
tems. IEEE, May 1994.

[11] G. Morrisett, K. Crary, N. Glew, D. Grossman, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A real-
istic typed assembly language. InACM SIGPLAN Workshop
on Compiler Support for System Software, pages 25–35, At-
lanta, GA, USA, May 1999.

[12] K. Nahrstedt and J. Smith. The QoS broker.IEEE Multime-
dia, 2(1):53–67, 1995.

[13] T. A. R. Wahbe, S. Lucco and S. Graham. Software-based
fault isolation. InProceedings of the 14th SOSP, Asheville,
NC, USA, December 1993.

[14] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Prac-
tical solutions for QoS-based resource allocation problems.
In IEEE Real-Time Systems Symposium. IEEE, December
1998.

[15] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On adap-
tive resource allocation for complex real-time applications.
In Proceedings of the 18th IEEE Real-Time Systems Sympo-
sium (RTSS), San Francisco, USA, December 1997.

[16] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar.
A high-performance endsystem architecture for real-time
CORBA. IEEE Communications Magazine, 14(2), Febru-
ary 1997.

[17] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing with disaster: Surviving misbehaved kernel extensions.
In Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, pages 213–227, Seattle, Wash-
ington, 1996.

[18] C. Small and M. I. Seltzer. A comparison of OS exten-
sion technologies. InUSENIX Annual Technical Confer-
ence, pages 41–54, 1996.

[19] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and
D. Bakken. QuO’s runtime support for quality of service in
distributed objects. InProceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’98), Lake District, Eng-
land, September 1998.

[20] R. West. Adaptive Real-Time Management of Communica-
tion and Computation Resources. PhD thesis, Georgia Insti-
tute of Technology, August 2000.

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: a new resource reservation protocol.IEEE Network,
7(5), September 1993.

