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Abstract—This paper addresses the problem of scheduling
tasks with different criticality levels in the presence of I/O
requests. In mixed-criticality scheduling, higher criticality
tasks are given precedence over those of lower criticality
when it is impossible to guarantee the schedulability of all
tasks. While mixed-criticality scheduling has gained attention
in recent years, most approaches typically assume a periodic
task model. This assumption does not always hold in practice,
especially for real-time and embedded systems that perform
I/O. In prior work, we developed a scheduling technique in
the Quest real-time operating system, which integrates the
time-budgeted management of I/O operations with Sporadic
Server scheduling of tasks. This paper extends our previous
scheduling approach with support for mixed-criticality tasks
and I/O requests on the same processing core. Results show
that in a real implementation the mixed-criticality scheduling
method introduced in this paper outperforms a scheduling
approach consisting of only Sporadic Servers.
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I. INTRODUCTION

Mixed-criticality scheduling orders the execution of

tasks of different criticality levels. Criticality levels are

based on the consequences of a task violating its tim-

ing requirements, or failing to function as specified. For

example, DO-178B is a software certification used in

avionics, which specifies several assurance levels in the

face of software failures. These assurance levels range

from catastrophic (e.g., could cause a plane crash) to non-

critical when they have little or no impact on aircraft

safety or overall operation. Mixed-criticality scheduling

was first introduced by Vestal (2007) [1]. Later, Baruah,

Burns and Davis (2011) [2] introduced Adaptive Mixed-

Criticality (AMC) scheduling. The work presented in this

paper builds upon AMC to extend it for use in systems

where tasks make I/O requests. This is the first paper to

address the issue of I/O scheduling in an Adaptive Mixed-

Criticality scenario. Our approach to AMC with I/O is

based on experience with our in-house real-time operating

system, called Quest [3].

Quest has two privilege levels similar to UNIX-based

systems, separating a trusted kernel space from a less

privileged user space. In contrast, an alternative system

configuration, called Quest-V, supports three privilege

levels. The third privilege level in Quest-V is more trusted

than the kernel, and operates as a lightweight virtual

machine monitor, or hypervisor. Unlike with traditional

virtual machine systems, Quest-V uses its most trusted

privilege level to partition resources amongst (guest)

sandbox domains. Each sandbox domain then manages

its own resources independently and in isolation of other

sandbox domains, without recourse to a hypervisor. This

leads to a far more efficient design, where virtualization

overheads are almost entirely eliminated. It has been

shown in prior work that it is possible to dedicate separate

tasks of different criticality levels to different sandboxes in

Quest-V [4]. This is demonstrated in Figure 1. Note that

each sandbox has a different criticality level with level

0 being the least critical. However, Quest-V has thus far

not considered tasks of different criticality levels within

the same sandbox and, hence, for scheduling on the same

(shared) processor cores.

In this paper, we show how to integrate task and I/O

event scheduling in an Adaptive Mixed-Criticality [2]

framework built within the Quest kernel. We extend Quest

with support for mode changes between different criti-

cality levels. This enables components of different levels

to coexist in a single Quest-V sandbox or in a single

Quest system, as depicted in Figure 2. A Quest-V system

is therefore able to support more criticality levels than

sandboxes, while a Quest system is able to differentiate

between the importance of separate tasks.

Figure 1: Mixed-Criticality Levels Across Separate Quest-V Sandboxes

Figure 2: Quest Support for Mixed-Criticality Scheduling



Previous mixed-criticality analysis assumes that all jobs

in the system are scheduled under the same policy, typ-

ically as periodic tasks. However, as previously shown

by Danish, Li and West [5], using the same scheduling

policy for both task threads and bottom half interrupt

handlers1 results in lower I/O performance and larger

overheads. Specifically, the authors compared the Spo-

radic Server (SS) [6] model for both main threads and

bottom half interrupt handlers to using Sporadic Servers

for main threads and Priority Inheritance Bandwidth-

preserving Servers (PIBS) for bottom half threads. The

results showed that by using PIBS for interrupt bottom

half threads, the scheduling overheads are reduced and

I/O performance is increased.

The contributions of this paper include a mixed-

criticality analysis assuming threads are scheduled using

either the Sporadic Server or PIBS scheduling model. It

is shown that while a system of Sporadic Servers and

PIBS has a slightly lower schedulability than a system of

only Sporadic Servers from a theoretical point of view, in

practice a real implementation of both scheduling policies

results in Sporadic Server and PIBS outperforming a

system of only Sporadic Servers.

The rest of the paper is organized as follows. Sec-

tion II provides the necessary background information

on Sporadic Servers and PIBS and introduces a response

time analysis for them. Next, Section III briefly discusses

the Adaptive Mixed-Criticality (AMC) model. Section IV

contains the AMC scheduling analysis for a system of

Sporadic and Priority Inheritance Bandwidth Preserving

Servers. Section V discusses experimental results, while

related work is described in Section VI. Finally, conclu-

sions are discussed in Section VII.

II. SPORADIC SERVER AND PIBS

Sporadic Servers (SS) [6] and Priority Inheritance

Bandwidth-preserving Servers (PIBS) [5] are the two

scheduling models used in the Quest real-time operating

system [3]. Sporadic Servers are specified using a budget

capacity, C, and period T . By default, the Sporadic Server

with the smallest period is given highest priority, which

follows the rate-monotonic policy [7]. The main tasks in

Quest run on Sporadic Servers, thereby guaranteeing them

a minimum share of CPU time every real-time period.

Replenishment lists are used to track the consumption of

CPU time and when it is eligible to be re-applied to the

corresponding server.

PIBS uses a much simpler scheduling method which is

more appropriate for the short execution times associated

with interrupt bottom half threads. A PIBS is specified

by a utilization, U . A PIBS always runs on behalf of a

Sporadic Server and inherits both the priority and period

of the Sporadic Server. For example, the PIBS running

in response to a device interrupt would run on behalf

of the Sporadic Server that requested the I/O action to

1We use the Linux terminology, where the top half is the non-
deferrable work that runs in interrupt context, and the bottom half is
the deferrable work executed in a thread context after the top half.

be performed. The capacity of a PIBS is calculated as

C=U×T , where T is the period of the Sporadic Server.

As with a Sporadic Server, PIBS uses replenishments

but instead of a list there is only a single replenishment.

When a PIBS has executed Cactual, its next replenishment

is set to t+Cactual/U , where t is the time the PIBS started

its most recent execution. A PIBS cannot execute again

until the next replenishment time regardless of whether it

has utilized its entire budget or not. Since a PIBS uses only

one replenishment value rather than a list, it is beneficial

for scheduling short-lived interrupt service routines that

would otherwise fragment a Sporadic Server’s budget into

many small replenishments. The replenishment method of

a PIBS limits its maximum utilization within any sliding

window of size T to (2− U)U . This occurs when the

PIBS first runs for C1=U(T − UT ) and then again for

C2=UT . This is demonstrated in Figure 3:

C1 + C2

T
=

(T ′×U) + C2

T

=
(T − C2)×U + C2

T

=
(C2/U − C2)×U + C2

C2/U

= (2− U)U

Figure 3: PIBS Server Utilization

The interaction between Sporadic Servers and PIBS is

depicted in Figure 4. First, the Sporadic Server initiates a

blocking I/O related system call (Step 1). The system call

invokes the associated device driver, which programs the

device (Step 2). The device eventually raises an interrupt,

which is handled by the top half handler (Step 3). The

top half handler acknowledges the interrupt and wakes

up one of the PIBS to handle the remaining bottom half

work (Step 4). Finally, after a PIBS finishes executing it

will wake up the corresponding Sporadic Server that was

blocked on the I/O request (Step 5) [5].

Figure 4: Sporadic Server and PIBS Interaction



If PIBS were replaced with a Sporadic Server, the short

execution time of a bottom half interrupt handler may

cause the server to block before exhausting its available

capacity. This leads to a fragmented replenishment list.

To reduce scheduling overheads and because of memory

limits, Sporadic Server replenishment lists are kept to a

finite length. When a replenishment list is full, items are

merged to make space for new replenishments. This causes

the available budget to be deferred [8], and the effective

utilization of the Sporadic Server drops below its specified

value. This in turn results in deadlines being missed. In

contrast, a PIBS has only a single bandwidth preserving

replenishment list item, leading to lower scheduling over-

heads and increased effective utilization.

Figure 5 shows an example of replenishment list frag-

mentation. A main task, τ1, wishes to execute for 8 time

units and then issues an I/O request (e.g., a blocking

read) every period of 16 time units. A bottom half (BH)

handler thread, τ2, associated with a Sporadic Server

(U = C
T

= 4
16 ), handles device interrupts corresponding

to I/O requests. τ1 begins execution at t=0 and consumes

its entire budget before blocking on I/O. A single replen-

ishment for 8 time units is posted at t=16, one period

after τ1 started using its budget. Server replenishments are

shown in boxes as budget, time. Suppose an I/O event

causes four interrupts to occur, each requiring a bottom

half to execute for one time unit. τ1 must wait for all four

interrupts to be handled before being able to resume. The

first interrupt occurs at t=9 and is immediately handled

by τ2. Also at t=9, the head replenishment list item for

the server associated with τ2 is updated to a new starting

time. This is to ensure that a future replenishment is

posted at the correct time. Once τ2 completes execution

of the bottom half interrupt handler, it blocks until another

interrupt occurs.

When τ2 blocks it posts a replenishment item for

the capacity that it used. Since it used 1 time unit of

capacity and started executing at t=9, a replenishment of

1 time unit is posted at t=25. At t=11, another interrupt

occurs, waking up τ2 for another time unit. The time

of the first replenishment list item is updated to 11 to

reflect that the Sporadic Server started execution at that

time. After handling the bottom half interrupt handler,

another replenishment item for one time unit is posted,

this time at t=27. When the third interrupt occurs, τ2
again executes for 1 time unit. However, when τ2 attempts

to post a subsequent replenishment, its server’s list is

full.2 To ensure that τ2 does not adversely affect other

running tasks, its remaining capacity of one time unit is

merged with the next replenishment list item, which in this

example is at t=25. This results in the available capacity

for τ2 being zero, leaving it unable to immediately handle

the interrupt that occurs at t=15. Instead, the execution

of the interrupt is delayed and completes only at t=26.

Meanwhile, τ1, which had the capacity to execute at t=16,

2For the sake of this example the replenishment list size is three.
In practice, a larger size would be chosen, but list fragmentation and
capacity postponement are still possible [5].

is blocked waiting for completion of the fourth interrupt

handler. τ1 begins execution at t=26, leaving only six

rather than eight time units until its deadline at t=32.

Figure 5: Example Task and I/O Scheduling using Sporadic Servers

Figure 6 shows a similar scheduling scenario. However,

this time the interrupt bottom halves are handled by a

PIBS. As with the previous scenario, τ1 initiates an I/O

related event at t=8 and blocks until the completion

of the event. The first interrupt occurs at t=9 and is

immediately handled by PIBS. As with the Sporadic

Server, the time in the replenishment list item is updated

to reflect when the PIBS started execution. Once the

event is handled, the PIBS posts a single replenishment

item at t=13. This is because τ2 is running on behalf

of τ1, so it inherits both the priority and period of τ1.

Consequently, τ2 is eligible for execution again on its

server at te = t + Cactual/U = 9 + 1/0.25 = 13. The

second interrupt occurs at t=11 but its handling is deferred

until τ2 has available capacity. At t=13, the third interrupt

arrives and τ2 has the capacity to handle both it and the

previous interrupt. Finally, the fourth interrupt arrives at

t=15, which can also be handled by τ2. Since τ2 has

executed for 75% of its available capacity after processing

the fourth interrupt, a replenishment is posted twelve time

units after it started execution, at t=25. This permits τ1 to

continue execution at t=16. The pattern then repeats itself.

This simple example demonstrates the advantages of PIBS

for bottom half threads compared to Sporadic Servers.

Finally, note that even if the replenishment list in the

first example had been long enough to avoid the delayed

budget, the Sporadic Server would have experienced twice

as much context switching overhead compared to the

equivalent PIBS.

Note that in the first example, if a different policy for

handling a full Sporadic Server replenishment list had been

chosen, τ2 might have completed in time for τ1 to finish

before its deadline. For example, if the later replenishment

items were merged instead of the head replenishment item,

τ2 would have had one remaining time unit of capacity to

handle the last bottom half interrupt handler. However, as



Figure 6: Example Task and I/O Scheduling using Sporadic Servers &
PIBS

more interrupts occur, this temporary fix will no longer

work as more capacity is delayed further in time.

For systems where memory is plentiful, PIBS are ar-

guably still preferential over Sporadic Servers for the man-

agement of I/O events. Even if sufficient space exists for

a highly fragmented replenishment list, a Sporadic Server

may still experience a significant reduction in effective

utilization. If the cost of reprogramming hardware timers

is a non-trivial fraction of a budget replenishment, it makes

sense to merge small replenishments into fewer larger

ones. These merges lead to the same net effect as having

finite replenishment lists, as described above.

A. Response Time Analysis for SS and PIBS

In order to perform an Adaptive Mixed-Criticality anal-

ysis for a combined Sporadic Server and PIBS system,

the response time analysis equation of the system must

be derived. First, under the assumption that a Sporadic

Server can be treated as an equivalent periodic task [6],

the response time equation for task τi in a system of only

Sporadic Servers is the following:

Ri = Ci +
∑

τj∈hp(i)

⌈

Ri

Tj

⌉

Cj

where hp (i) is the set of tasks of equal or higher priority

than task τi. Second, due to the worst-case phasing of a

combined system of PIBS and Sporadic Servers, a PIBS

utilization bound of (2− U)U cannot repeatedly occur.

The worst case phasing can result in at most an additional

capacity (i.e., execution time) of (Tq−TqUk)Uk for PIBS

τk assigned to the Sporadic Server τq . This is only possible

if PIBS blocks waiting on I/O before consuming its full

budget capacity. Therefore, a tighter upper-bound on the

interference a PIBS can cause is:

Iqk (t) = (Tq−TqUk)Uk +

⌈

t

Tq

⌉

TqUk

= (1− Uk)TqUk +

⌈

t

Tq

⌉

TqUk

=

(

1 +

⌈

t

Tq

⌉

− Uk

)

TqUk

This can be incorporated into the response time analysis of

Sporadic Server τi, in a system consisting of both Sporadic

Servers and PIBS, in the following way:

Ri = Ci +
∑

τj∈hp(i)

{⌈

Ri

Tj

⌉

Cj

}

+
∑

τk∈ps

max
τq∈hip(i)

{Iqk (Ri)} (1)

Where ps is the set of all PIBS and

hip (i)=hp (i) ∪ {τi}, i.e. the set containing τi and all

tasks with equal or higher priority than task τi. This

is necessary as the PIBS can be running on behalf of

task τi. In general, there is no a-priori knowledge about

which PIBS runs for which Sporadic Server. Therefore,

the Sporadic Server, τq that maximizes the interference

caused by the PIBS must be considered. If such a-priori

knowledge existed, it could be used to reduce the possible

set of Sporadic Servers on behalf of which a PIBS

could be executing. However, without such knowledge all

possible Sporadic Server tasks of equal or higher priority

must be considered.

The response time analysis for a PIBS is therefore

dependent on the associated Sporadic Server. The response

time analysis for PIBS τp when assigned to Sporadic

Server τs is:

sRp =(2− Up)UpTs +
∑

τj∈hip(s)

{⌈

sRp

Tj

⌉

Cj

}

+
∑

τk∈ps\{τp}

max
τq∈hip(s)

{Iqk (sRp)} (2)

Note that (2−Up)UpTs is the maximum execution

time of the PIBS over a time window of Ts, i.e.

Isp (Ts)= (2−Up)UpTs. Besides the first terms differing,

Equation 2 differs from Equation 1 in that hip (s) is used

instead of hp (s) for the set of Sporadic Servers. This is

because Sporadic Server τs must be included as it has an

equal priority to PIBS τp when τp is running on behalf of

τs. Also, the summation over all PIBS does not include

PIBS τp when determining its response time. If sRp≤Ts,

for each and every Sporadic Server τs that τp can be

assigned to, then τp will never miss a deadline.

III. BACKGROUND: AMC SCHEDULING

This section will provide the necessary background in-

formation on Adaptive Mixed-Criticality (AMC) schedul-

ing [2] to understand the analysis in Section IV. A more

detailed analysis can be found in Baruah (2011) [2].

In AMC, a task τi is defined by its period, deadline,

a vector of computation times and a criticality level,
(

Ti, Di, ~Ci, Li

)

. In the simplest case, Li∈{LO, HI}, i.e.

there are two criticality levels LO and HI where HI>LO.

For tasks for which L=LO, C (HI) is not defined as there

are no HI-criticality versions of these tasks to execute. For

HI-criticality tasks C (HI)≥C (LO). The system also has

a criticality level and it initially starts in the LO-criticality

mode. While running in the LO-criticality mode, both LO-



and HI-criticality tasks execute, and while running in HI-

criticality mode, only HI-criticality tasks execute. If a

high-criticality task exhausts its C (LO) before finishing

its current job, the system switches into the HI-criticality

mode and suspends all LO-criticality tasks. This requires a

signaling mechanism available to tasks to signal that they

have completed execution of a specific job instance.

The schedulability test for AMC consists of three parts:

1) the schedulability of the tasks when the system is in

the LO-criticality state, 2) the schedulability of the tasks

when the system is in the HI-criticality state and 3) the

schedulability of the tasks during the mode change from

LO-criticality to HI-criticality. The first two are simple

and can be handled with the traditional response time

analysis, taking into account the appropriate set of tasks

and worst case execution times. Specifically, the response

time analysis for each task τi when the system is in the

LO-criticality state is:

RLO

i = Ci (LO) +
∑

τj∈hp(i)

⌈

RLO

i

Tj

⌉

Cj (LO)

and the response time analysis for the HI-criticality state

is:

RHI

i = Ci (HI) +
∑

τj∈hpH(i)

⌈

RHI

i

Tj

⌉

Cj (HI)

where hpH (i) is the set of all high-criticality tasks with

a priority higher than or equal to that of task τi.
What remains is whether all HI-criticality tasks will

meet their deadlines during the mode change from LO-

criticality to HI-criticality. Baruah, Burns and Davis pro-

vided two sufficient but not complete scheduling tests for

the criticality mode, i.e. the tests will not admit task sets

that are not schedulable but may reject task sets that are

schedulable. The first is AMC-rtb (response time bound)

which derives a new response time analysis equation

for the mode change. The second is AMC-max which

derives an expression for the maximum interference a HI-

criticality task can experience during the mode change.

AMC-max iterates over all possible points in time where

the interference could increase, taking the maximum of

these points. AMC-max is more computationally expen-

sive than AMC-rtb but dominates AMC-rtb by permitting

certain task sets that AMC-rtb rejects, and accepting any

task set that AMC-rtb accepts. Both tests use Audsley’s

priority-assignment algorithm [9], as priorities that are

inversely related to period are not optimal for AMC [1],

[2].

In this paper, we focus on the use of AMC-rtb for

response time analysis of a system with Sporadic Servers

and PIBS. This is because of the added expense incurred

by AMC-max, which must iterate over all time points

when LO-criticality tasks are released.

The AMC-rtb analysis starts with a modified form of

the traditional periodic response time analysis:

R∗
i = Ci +

∑

τj∈hp(i)

⌈

R∗
i

Tj

⌉

Cj (min (Li, Lj)) (3)

Where min (Li, Lj) returns the lowest criticality level

passed to it, e.g. in the case of a dual-criticality level

system, HI is only returned if both arguments are HI. The

use of min implies that we only consider criticality levels

equal to or less than the criticality level of τi. If we divide

the higher priority tasks by criticality level, we obtain the

following:

R∗
i = Ci +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (min (Li, Lj))

+
∑

τj∈hpL(i)

⌈

R∗
i

Tj

⌉

Cj (LO) (4)

Where hpL (i) is the set of all LO-criticality tasks with

a priority higher than or equal to the priority of task τi.
The min in the third term is replaced with LO as we know

Lj=LO. Since we are only concerned with high priority

tasks after the mode change, i.e. Li=HI, Equation 4

becomes:

R∗
i = Ci (HI) +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (HI)

+
∑

τj∈hpL(i)

⌈

R∗
i

Tj

⌉

Cj (LO) (5)

Finally, the response time bound can be tightened even

further by recognizing that LO-criticality tasks can only

interfere with HI-criticality tasks before the change has

occurred. With this observation the final AMC response

time bound equation is:

R∗
i = Ci (HI) +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (HI)

+
∑

τj∈hpL(i)

⌈

RLO

i

Tj

⌉

Cj (LO) (6)

A. LO-criticality tasks running in the HI-criticality mode

Burns and Baruah [10] provide an extension to AMC

that permits lower criticality tasks to continue execution in

the HI-criticality state. This extension is used in our AMC

model with support for I/O, which is briefly summarized

as follows:

If LO-criticality tasks are allowed to continue execution

in the HI-criticality mode at a lower capacity, the following

is the response time for a HI-criticality task τi:

R∗
i = Ci +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (HI)

+
∑

τj∈hpL(i)

⌈

RLO

i

Tj

⌉

Cj (LO)

+
∑

τj∈hpL(i)

(⌈

R∗
i

Tj

⌉

−

⌈

RLO

i

Tj

⌉)

Cj (HI) (7)

The final term in Equation 7 expresses the maximum

number of times the LO-criticality task will be released

multiplied by its smaller3
HI-criticality execution time.

3For LO-criticality tasks that can execute in HI-criticality mode,
C (LO)>C (HI), whereas for HI-criticality tasks C (HI)≥C (LO).



While Equation 7 also applies to LO-criticality tasks that

continue running after the mode change, a tighter bound

is possible. Specifically, if a LO-criticality task has already

run for C (HI) before the mode change then it has met its

HI-criticality requirement. Therefore, RLO

i can be replaced

with a smaller value for LO-criticality tasks. To this end

RLO∗
i is defined as the following:

RLO∗
i = min (Ci (LO) , Ci (HI))+

∑

τj∈hp(i)

⌈

RLO∗
i

Tj

⌉

Cj (LO) (8)

Note that RLO∗
i =RLO

i if Li=HI and RLO∗
i ≤RLO

i if Li=LO,

as LO-criticality tasks will have a smaller capacity in the

HI-criticality mode. Therefore, Equation 7 can be replaced

with the following more general equation that is tighter for

LO-criticality tasks:

R∗
i =Ci +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (HI)

+
∑

τj∈hpL(i)

⌈

RLO∗
i

Tj

⌉

Cj (LO)

+
∑

τj∈hpL(i)

(⌈

R∗
i

Tj

⌉

−

⌈

RLO∗
i

Tj

⌉)

Cj (HI) (9)

In Section IV we will use both AMC models described

in this section to derive an AMC model for a system

that includes Priority Inheritance Bandwidth-Preserving

Servers.

IV. AMC SPORADIC SERVER AND PIBS SCHEDULING

This section describes the system model for I/O

Adaptive Mixed-Criticality (IO-AMC), comprising both

Sporadic Servers and Priority Inheritance Bandwidth-

Preserving Servers (PIBS). IO-AMC focuses on the

scheduling of I/O events and application threads in a

mixed-criticality setting. Based on the IO-AMC model,

we will derive a response time bound, IO-AMC-rtb, for

Sporadic Servers and PIBS.

A. I/O Adaptive Mixed-Criticality Model

Sporadic Servers follow a similar model to the original

AMC model. A Sporadic Server task τi is assigned a

criticality level Li∈{LO, HI}, a period Ti and a vector of

capacities ~Ci. The deadline is assumed to be equal to the

period. If Li=LO, τi only runs while the system is in the

LO-criticality mode and therefore only C (LO) is defined.

For HI-criticality tasks both C (LO) and C (HI) are defined

and C (HI) ≥ C (LO).
For PIBS, an I/O task τk is again assigned to either

the LO or HI criticality level; Lk∈{LO, HI}. As previously

discussed, PIBS are only defined by a utilization Uk. The

period, deadline and priority for a PIBS is inherited from

the Sporadic Server for which it is performing a task.

For IO-AMC, this definition is extended and each PIBS

is defined by a vector of utilizations ~Uk. If τk is a LO-

criticality PIBS, i.e. Lk=LO, then Uk (LO)>Uk (HI) and if

Lk=HI then Uk (LO)≤Uk (HI). This definition allows LO-

criticality PIBS to continue execution after the switch to

HI-criticality. This model allows users to assign criticality

levels to I/O devices indirectly by assigning criticality

levels to the PIBS that execute in response to the I/O

device.

With the typical AMC model now augmented to con-

sider PIBS we can now derive a new admissions test for

IO-AMC. First, the PIBS interference equation introduced

in Section II is modified to incorporate criticality levels:

Iqk (t, L) =

(

1 +

⌈

t

Tq

⌉

− Uk (L)

)

TqUk (L)

As before, there are three conditions that must be

considered: (1) the LO-criticality steady state, (2) the

HI-criticality steady state, and (3) the change from LO-

criticality to HI-criticality. The steady states are again sim-

ple and are merely extensions of the non-mixed-criticality

response time bounds. For Sporadic Server tasks the steady

state equations are:

RLO

i = Ci (LO) +
∑

τj∈hp(i)

{⌈

RLO

i

Tj

⌉

Cj (LO)

}

+
∑

τk∈ps

max
τq∈hip(i)

{

Iqk
(

RLO

i , LO
)}

(10)

RHI

i = Ci (HI) +
∑

τj∈hpH(i)

{⌈

RHI

i

Tj

⌉

Cj (HI)

}

+
∑

τk∈ps

max
τq∈hipH(i)

{

Iqk
(

RHI

i , HI
)}

(11)

where hipH (i)=hpH (i)∪{τi}, i.e. it is the set of all

HI-criticality tasks of higher or equal priority than task τi,
plus task τi itself. For PIBS task τp, running on behalf of

Sporadic Server task τs, the steady state equations are:

sR
LO

p =(2− Up (LO))Up (LO)Ts

+
∑

τj∈hip(s)

{⌈

sR
LO

p

Tj

⌉

Cj (LO)

}

+
∑

τk∈ps\{τp}

max
τq∈hip(s)

{

Iqk
(

sR
LO

p , LO
)}

(12)

sR
HI

p =(2− Up (HI))Up (HI)Ts

+
∑

τj∈hipH(s)

{⌈

sR
HI

p

Tj

⌉

Cj (HI)

}

+
∑

τk∈ps\{τp}

max
τq∈hipH(s)

{

Iqk
(

sR
HI

p , HI
)}

(13)

As with the traditional response time analysis of PIBS, its

deadline is the same as that of its corresponding Sporadic

Server τs. Therefore, the above analysis must be applied

to all Sporadic Servers associated with a PIBS.

B. IO-AMC-rtb

The techniques described in Section III are used for the

IO-AMC-rtb analysis. Specifically, LO-criticality PIBS are



allowed to continue execution in the HI-criticality mode.

For a Sporadic Server task the IO-AMC-rtb equation is:

R∗
i = Ci +

∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

Cj (HI)

+
∑

τj∈hpL(i)

⌈

RLO∗
i

Tj

⌉

Cj (LO)

+
∑

τk∈psH

{

max
τq∈hip(i)

Iqk (R
∗
i , HI)

}

+
∑

τk∈psL

{

max
τq∈hip(i)

Iqk
(

RLO∗
i , LO

)

+

max
τq′∈hipH(i)

Iq
′

k

(

R∗
i −RLO∗

i , HI
)

}

(14)

where psH and psL are the set of HI and LO-criticality

PIBS respectively. The last summation in Equation 14

represents the maximum interference a LO-criticality PIBS

can cause. Specifically, Iqk (R
LO

i , LO) represents the max-

imum interference the PIBS can cause before the mode

change and Iq
′

k (R∗
i −RLO

i , HI) represents the total inter-

ference the PIBS can cause after the mode change. Again,

the Sporadic Server that maximizes the interference is

chosen for each PIBS.

The IO-AMC-rtb equation for a PIBS τk when assigned

to Sporadic Server τs is:

sR
∗
p =(2− Up (HI))TsUp (HI)

+
∑

τj∈hipH(s)

⌈

sR
∗
p

Tj

⌉

Cj (HI)

+
∑

τj∈hipL(s)

⌈

sR
LO∗
p

Tj

⌉

Cj (LO)

+
∑

τk∈(psH\{τp})

{

max
τq∈hip(s)

Iqk
(

sR
∗
p, HI

)

}

+
∑

τk∈(psL\{τp})

{

max
τq∈hip(s)

Iqk
(

sR
LO∗
p , LO

)

+

max
τq′∈hipH(s)

Iq
′

k

(

sR
∗
p − sR

LO∗
p , HI

)

}

(15)

Equation 15 differs from Equation 14 in the first term, and

by the exclusion of τp from the set of PIBS. Similar to

Equation 2, the response time analysis requires iterating

over all HI-criticality Sporadic Servers that could be

associated with the PIBS. This is because only the HI-

criticality Sporadic Servers are of interest after the mode

change.

The work by Burns and Baruah [10] that allows LO-

criticality periodic tasks to run in the HI-criticality mode

can easily be applied to LO-criticality Sporadic Servers.

This analysis is excluded for the sake of brevity.

V. EVALUATION

The experimental evaluation consists of two sections: 1)

simulation-based schedulability tests, and 2) experiments

conducted using the IO-AMC implementation in the Quest

operating system. The simulations show that a system of

Sporadic Servers and PIBS has a similar but slightly lower

schedulability than a system of only Sporadic Servers.

This is due to the extra utilization requirement by PIBS

compared to Sporadic Servers. However, the Quest exper-

iments show the practical benefits of PIBS compared to

Sporadic Servers, including how to control the criticality

levels of I/O devices.

A. Simulation Experiments

In order to compare the proposed scheduling ap-

proaches, random task sets were generated with varying

total utilizations. 500 task sets were generated for each

utilization value ranging from 0.20 to 0.95 with 0.05
increments. Each task set was tested to see if it was

schedulable under the different policies. Each PIBS was

randomly assigned to a single Sporadic Server of the same

criticality level. For systems comprising only Sporadic

Servers, the PIBS were converted to Sporadic Servers of

equivalent utilization and period.4 The parameters used to

generate the task sets are outlined in Table I.

Parameter Value

Number of Tasks 20 (15 Main, 5 I/O)

Criticality Factor 2

Probability Li = HI 0.5

Period Range 1 – 100

I/O Total Utilization 0.05

Table I: Parameters Used to Generate Task Sets

The UUnifast algorithm [11] was used for task

set generation, with task periods having a log-

uniform distribution. For the mixed-criticality experi-

ments, Ci(LO)=Ui/Ti. If Li=HI, Ci(HI)=CF × Ci(LO),
where CF is the criticality factor. For our experiments, if

Li=LO, Ci(HI)=0.

The following are the different types of schedulability

tests that were used in the evaluation. This includes

schedulability tests for mixed-criticality and traditional

systems.

• SS-rta – Sporadic Server response time analysis. Due

to the nature of Sporadic Servers, this is the same as a

periodic response time analysis.

• SS+PIBS-rta – Sporadic Server and PIBS response time

analysis introduced in this paper. See Section II.

• AMC-rtb – Adaptive Mixed-Criticality response time

bound developed by Baruah et al. [2]. See Section III.

• IO-AMC-rtb – I/O Adaptive Mixed-Criticality response

time bound developed in this paper. See Section IV.

• AMC UB – This is not a schedulability test but instead

an upper bound for AMC. It consists of both the LO-

and HI-criticality level steady state tests. See Section III

for details.

• IO-AMC UB – This is not a schedulability test but

instead an upper bound for IO-AMC. It consists of both

the LO- and HI-criticality level steady state tests. See

Section IV for details.

4The PIBS period was set equal to its corresponding Sporadic Server.



1) SS+PIBS vs. SS-Only Simulations: Figure 7 shows

the results of the response time analysis and event simula-

tor for a system of Sporadic Servers and PIBS (SS+PIBS)

compared to a system of only Sporadic Servers (SS-Only).

As expected, a higher number of the Sporadic Server

only task sets are schedulable using the response time

analysis equations compared to the SS+PIBS response

time analysis. This is due to the extra interference a PIBS

can cause compared to a Sporadic Server of equivalent

utilization and period.
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Figure 7: Schedulability of SS+PIBS vs SS-Only

2) IO-AMC vs. AMC Simulations: In this section, IO-

AMC is compared to an AMC system containing only

Sporadic Servers under different mixed-criticality scenar-

ios.

Figure 8 shows the response time analysis and sim-

ulation results when LO-criticality tasks do not run in

the HI-criticality mode. Similar to Figure 7, AMC-rtb

outperforms IO-AMC-rtb. This is due to the fact that

AMC-rtb is an extension of the traditional response time

analysis and does not experience the extra interference

caused by PIBS.
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Figure 8: Schedulability of IO-AMC vs AMC

We also varied task set parameters to identify their

effects on schedulability. For each set of parameters p in

a given test y, we measured the weighted schedulabil-

ity [12], which is defined as follows:

Wy (p)=
∑

∀τ

(u (τ)× Sy (τ, p)) /
∑

∀τ

u (τ)

where Sy (τ, p) is the binary result (0 or 1) of the

schedulability test y on task set τ , and u(τ) is the

total utilization. The weighted schedulability compresses

a three-dimensional plot to two dimensions and places

higher value on task sets with higher utilization.

Figures 9, 10, and 11 show the results of varying the

probability of a HI-criticality task, the criticality factor,

and the number of tasks, respectively. In all scenarios,

LO-criticality tasks do not run in the HI-criticality mode.

As expected, the percentage of schedulable tasks for IO-

AMC is slightly lower than the percentage for traditional

AMC. This is again due to the slightly larger interference

caused by a PIBS.
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Figure 9: Weighted Schedulability vs % of HI-criticality Tasks
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Figure 10: Weighted Schedulability vs Criticality Factor
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Figure 11: Weighted Schedulability vs Number of Tasks

B. Quest Experiments

The above simulation results do not capture the practical

costs of a system of servers for tasks and interrupt bottom

halves. This section investigates the performance of our

IO-AMC policy in the Quest real-time system. We also



study the effects of mode changes on I/O throughput for

an application that collects streaming camera data. All

experiments were run on a 3.10 GHz Intel R© Core i3-2100

CPU.

1) Scheduling Overhead: We studied the scheduling

overheads for two different system implementations in

Quest. In the first system, Sporadic Servers were used for

both tasks and bottom halves (SS-Only). In the second

system, Sporadic Servers were used for tasks, and PIBS

were used to handle interrupt bottom halves (SS+PIBS).

In both cases, a task set consisted of two application

threads of different criticality levels assigned to two dif-

ferent Sporadic Servers, and one bottom half handler for

interrupts from a USB camera. The first application thread

read all the data available from the camera in a non-

blocking manner and then busy-waited for its entire budget

to simulate the time to process the data. The second appli-

cation thread simply busy-waited for its entire budget, to

simulate a CPU-bound task without any I/O requests. Both

application threads consisted of a sequence of jobs. Each

job was released once every server period or immediately

after the completion of the previous job, depending on

which was later. The experimental parameters are shown

in Table II.

Task C (LO) or U (LO) C (HI) or U (HI) T

Application 1
(HI-criticality) 23ms 40ms 100ms

Application 2
(LO-criticality) 10ms 1ms 100ms

Bottom Half
(PIBS) U (LO) = 1% U (HI) = 2% 100ms

Bottom Half
(SS) 1ms 2ms 100ms

Table II: Quest Task Set Parameters for Scheduling Overhead

The processor’s timestamp counter was recorded when

each application finished its current job. Results are shown

in Figure 12. For SS+PIBS, each application completed

its jobs at regular intervals. However, for SS-Only, the

HI-criticality server for interrupts from the USB camera

caused interference with the application tasks. This led to

the HI-criticality task depleting its budget before finishing

its job. This is due to the extra overhead added by a

Sporadic Server handling the interrupt bottom half thread.

Therefore, the system had to switch into the HI-criticality

mode to ensure the HI-criticality task completed its job,

sacrificing the performance of the LO-criticality task. This

is depicted by the larger time between completed jobs in

Figure 12. The SS+PIBS task set did not suffer from this

problem due to the lower scheduling overhead caused by

PIBS.

Figure 13 shows the additional overhead caused when

Sporadic Servers are used for bottom half threads as

opposed to PIBS. This higher scheduling overhead is the

cause for the mode change in the previous experiment.

Figure 13 depicts two different system configurations, one

involving only a single camera and another involving two

cameras. For each configuration, the scheduling overhead

for both SS-Only and SS+PIBS was measured. For the
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Figure 12: Job Completion Times for SS+PIBS vs SS-Only

single camera configuration, there is one HI-criticality

task, one LO-criticality task, and one HI-criticality server

(either PIBS or Sporadic Server) for the USB camera

interrupt bottom half thread. The scheduling overhead

for SS-Only is more erratic and higher than the system

of Sporadic Servers and PIBS. The second configuration

adds a LO-criticality camera with a 2% utilization in the

LO-criticality mode, a 1% utilization in the HI-criticality

mode, and a period of 100 microseconds when utilizing

a Sporadic Server. Figure 13 shows that the scheduling

overhead for an SS-Only system more than doubled, going

from an average of 0.21% to 0.49%, while an SS+PIBS

system experienced only a small increase of 0.03%.
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2) Mode Change for I/O Device: As mentioned in

Section IV, assigning criticality levels to bottom half

interrupt handlers is akin to assigning criticality levels

to the device associated with the bottom half. To test

this assertion, two USB cameras were assigned different

criticality levels and a mode change was caused during

the execution of the task set. The task set consisted of two

Sporadic Servers and two PIBS, as shown in Table III.

Figure 14 shows the camera data available at each

data point. At approximately 30 seconds, a mode change

occurs that causes Camera 1 to change from a utilization

of 0.1% to 1%, thereby increasing the amount of data

received. Also at the time of the mode change, Camera 2’s

utilization switches from 1% to 0.1%, causing a drop in

received data. The variance for Camera 1 after the mode



Task C (LO) or U (LO) C (HI) or U (HI) T

Application 1
(HI-criticality) 25ms 40ms 100ms

Application 2
(LO-criticality) 25ms 24ms 100ms

Camera 1 - PIBS
(HI-criticality) U (LO) = 0.1% U (HI) = 1% 100ms

Camera 2 - PIBS
(LO-criticality) U (LO) = 1% U (HI) = 0.1% 100ms

Table III: Quest Task Set Parameters for I/O Device Mode Change

change is due to extra processing of the delayed data that

is performed by the bottom half interrupt handler. Finally,

Figure 15 shows the total data processed from each camera

over time.
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Figure 15: Total Data Processed Over Time

VI. RELATED WORK

This section discusses related work in the areas of

mixed-criticality and I/O-aware scheduling, beyond that

already covered in Sections II and III.

In recent years, there have been many extensions to

the Adaptive Mixed-Criticality model. For single core

scheduling, Barauh, Burns and Davis extended their orig-

inal AMC model to allow priorities to change [13]. Burns

and Davis also introduced AMC-NPR (Non-Preemptive

Region), which improved schedulability by permitting

tasks to have a final non-preemptive region at the end

of a job [14]. Fleming and Burns extended the AMC

model to allow more than two criticality levels [15].

These variations on the mixed-critical model could be

incorporated into the IO-AMC model.

Li and Barauh [16] combined the EDF-VD [17] single-

core mixed-criticality approach with fpEDF [18], to de-

velop a multi-core mixed-criticality scheduling algorithm.

Pathan also developed a multi-core fixed priority schedul-

ing algorithm for mixed-criticality [19]. This was an

adaptation of the original single-core AMC approach

to a multi-core scheduling framework compatible with

Audsley’s algorithm [9]. The work by Pathan is more

easily incorporated into the IO-AMC model given that

both approaches use fixed priorities.

Lewandowski et al. [20] investigated the use of sporadic

servers to appropriately budget bottom half threads, as

part of an Ethernet NIC device driver. Zhang and West

developed a process-aware interrupt scheduling and ac-

countability scheme in Linux, to integrate the management

of tasks and I/O events [21]. A similar approach was

also implemented in the LITMUS kernel for GPGPUs on

multiprocessor systems [22].

VII. CONCLUSIONS

This paper builds on our scheduling framework in the

Quest real-time operating system, comprising a collec-

tion of Sporadic Servers for tasks and Priority Inheri-

tance Bandwidth-Preserving Servers (PIBS) for interrupt

handlers. We first show a response time analysis for a

collection of Sporadic Servers and PIBS in a system with-

out mixed-criticality levels. We then extend the analysis

to support an I/O Adaptive Mixed-Criticality (IO-AMC)

model in a system comprising of tasks and interrupt han-

dlers. Our IO-AMC response time bound considers a mode

change to high-criticality when insufficient resources exist

for either high-criticality tasks or interrupt handlers in low-

criticality mode. The analysis considers the interference

from low-criticality tasks and interrupt handlers before the

mode change.

Simulation results show that a system of only Sporadic

Servers for both tasks and interrupt handlers has a higher

theoretical number of schedulable task sets. However, in

practice, using PIBS to handle interrupts is shown to be

superior because of lower system overheads. This paper

also shows experimental results in the Quest real-time

operating system, where criticality levels are assigned to

devices. This enables high-criticality devices to gain more

computational time when insufficient resources exist to

service both high- and low-criticality tasks and interrupt

bottom halves. In turn, this enables high-criticality tasks

that issue I/O requests to be granted more CPU time to

meet their deadlines.

The analysis in this paper assumes that tasks and I/O

bottom half interrupt handlers are executed on separate

servers that are independent of one another. In practice,

a task may be blocked from execution until a pending

I/O request is completed. As long as the I/O request is

handled within the time that a task is waiting for its server

to have its budget replenished, and is therefore ineligible

to run, then our analysis holds. Future work will consider

more complex task models where I/O requests can lead to

blocking delays that impact the execution of tasks.



ACKNOWLEDGMENT

This material is based upon work supported by the

National Science Foundation under Grant # 1117025 and

1527050. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] S. Vestal, “Preemptive Scheduling of Multi-criticality Sys-
tems with Varying Degrees of Execution Time Assurance,”
in Proceedings of the 28th IEEE Real-Time Systems Sym-
posium, 2007, pp. 239–243.

[2] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time
Analysis for Mixed Criticality Systems,” in Proceedings of
the 32nd IEEE Real-Time Systems Symposium, 2011.

[3] “Quest,” http://www.QuestOS.org.

[4] Y. Li, R. West, and E. Missimer, “A Virtualized Separation
Kernel for Mixed Criticality Systems,” in Proceedings of
the 10th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, 2014, pp. 201–212.

[5] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling
in the Quest Operating System,” in Proceedings of the 17th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, 2011, pp. 169–179.

[6] B. Sprunt, “Aperiodic Task Scheduling for Real-time Sys-
tems,” Ph.D. dissertation, Carnegie Mellon University,
1990.

[7] C. L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-time Environment,”
Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[8] M. Stanovich, T. P. Baker, A. Wang, and M. G. Harbour,
“Defects of the POSIX Sporadic Server and How to Correct
Them,” in Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2010,
pp. 35–45.

[9] N. C. Audsley, “On Priority Assignment in Fixed Priority
Scheduling,” Information Processing Letters, vol. 79, no. 1,
pp. 39–44, 2001.

[10] A. Burns and S. Baruah, “Towards a More Practical Model
for Mixed Criticality Systems,” in The 1st Workshop on
Mixed-Criticality Systems (colocated with RTSS), 2013.

[11] E. Bini and G. C. Buttazzo, “Measuring the Performance
of Schedulability Tests,” Journal of Real-Time Systems,
vol. 30, no. 1–2, pp. 129–154, 2005.

[12] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-
related Preemption and Migration Delays: Empirical Ap-
proximation and Impact on Schedulability,” OSPERT, pp.
33–44, 2010.

[13] S. Baruah, A. Burns, and R. Davis, “An Extended Fixed
Priority Scheme for Mixed Criticality Systems,” Proc.
ReTiMiCS, RTCSA, pp. 18–24, 2013.

[14] A. Burns and R. Davis, “Adaptive Mixed Criticality
Scheduling with Deferred Preemption,” in Proceedings of
the 35th IEEE Real-Time Systems Symposium, 2014.

[15] T. Fleming and A. Burns, “Extending Mixed Criticality
Scheduling,” in The 1st Workshop on Mixed-Criticality
Systems (colocated with RTSS), 2013.

[16] H. Li and S. Baruah, “Global Mixed-Criticality Scheduling
on Multiprocessors,” in Proceedings of the 24th Euromicro
Conference on Real-Time Systems, vol. 12, 2012.

[17] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-
Spaccamela, S. Van Der Ster, and L. Stougie, “Mixed-
Criticality Scheduling of Sporadic Task Systems,” in Pro-
ceedings of the 19th Annual European Symposium on
Algorithms. Springer, 2011, pp. 555–566.

[18] S. K. Baruah, “Optimal Utilization Bounds for the Fixed-
priority Scheduling of Periodic Task Systems on Identi-
cal Multiprocessors,” IEEE Transactions on Computers,
vol. 53, no. 6, pp. 781–784, 2004.

[19] R. M. Pathan, “Schedulability Analysis of Mixed-criticality
Systems on Multiprocessors,” in Proceedings of the 24th
Euromicro Conference on Real-Time Systems, 2012, pp.
309–320.

[20] M. Lewandowski, M. J. Stanovich, T. P. Baker, K. Gopalan,
and A. Wang, “Modeling Device Driver Effects in Real-
time Schedulability Analysis: Study of a Network Driver,”
in Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium, 2007, pp. 57–68.

[21] Y. Zhang and R. West, “Process-aware Interrupt Scheduling
and Accounting,” in Proceedings of the 27th IEEE Real-
Time Systems Symposium, 2006, pp. 191–201.

[22] G. A. Elliott and J. H. Anderson, “Robust Real-time
Multiprocessor Interrupt Handling Motivated by GPUs,” in
Proceedings of the 24th Euromicro Conference on Real-
Time Systems, 2012, pp. 267–276.


