
On the Integration of Real-time Asynchronous Event Handling Mechanisms with
Existing Operating System Services

Gerald Fry and Richard West
{gfry, richwest}@cs.bu.edu

Computer Science Department, Boston University

Abstract
This paper presents an asynchronous event handling

mechanism for real-time applications that leverages exist-
ing system services in COTS systems. In our implementa-
tion, event dispatching is initiated within bottom-half in-
terrupt handling routines, in order to support predictable,
safe, and efficient event handling functionality at user-level.
We compare our asynchronous I/O mechanism with existing
user-level approaches, such as the GNU C library imple-
mentation of the AIO API and the Linux signal abstraction.
Using a user-level sandboxing scheme for asynchronous
event handling, results show that network receive events
can be dispatched in less than 15 microseconds using com-
modity hardware components. We show that the proposed
architecture significantly outperforms the above mentioned
user-level asynchronous I/O mechanisms and provides more
flexibility than available hard real-time extensions.

Keywords: real-time, COTS, asynchronous I/O, event
dispatching

1. Introduction
Recent research in real-time systems seeks to extend

COTS systems with support for predictable and efficient re-
source allocation for real-time and best-effort tasks. Tra-
ditionally, operating systems supporting execution of tasks
with hard deadlines are developed in a fashion that trades
overall system throughput for a desirable degree of pre-
dictability. Although such systems work well in specific
scenarios in which the set of real-time tasks and their ex-
ecution characteristics are known a priori, the concurrent
execution of best-effort tasks along with real-time activities
is not well supported by these systems.

Typical general purpose operating systems, such as
Linux, do not support predictable resource allocation for
real-time tasks. Real-time tasks that are posted in response
to I/O events on file or socket descriptors, for example, are
delayed until the original requesting process is dispatched
by a best-effort scheduler, resulting in a non-deterministic
worst-case execution time of the real-time event handler.

In addition, when responding to I/O requests in the form
of system calls, the kernel may disable local interrupts to
perform necessary actions on behalf of the calling appli-
cations. In this scenario, interrupt processing for real-time
tasks may be delayed due to execution of kernel code on
behalf of other applications. However, in order to provide
deadline-based execution guarantees, it is necessary to dis-
patch event handlers associated with real-time tasks asyn-
chronously, without interference from the (non-real-time)
system scheduler or other tasks with lower or best-effort
priority.

Solutions are available for integrating real-time task ex-
ecution with general purpose COTS systems, including
RTLinux, RTAI, and Montavista [7, 9, 3]. Standards such
as the POSIX real-time signal API describe mechanisms for
integrating real-time IPC support into compliant operating
systems [5]. Many such solutions approach the problem of
real-time integration into existing general purpose systems
by deferring interrupt handling for best-effort tasks until all
outstanding events are processed by real-time applications.
IRQs associated with real-time tasks are vectored directly
to interrupt handling routines that respond within the time
necessary to dispatch the interrupt service routine, and real-
time code is executed in interrupt context.

Although this method results in low event dispatching
latency, executing real-time event handling code within an
interrupt context comes with several disadvantages, includ-
ing (1) the inability to isolate tasks using traditional process
protection mechanisms, (2) lack of support for shared user-
level libraries and system calls in event-handling code, and
(3) poor integration of real-time task scheduling with best-
effort resource allocation policies, possibly resulting in de-
graded performance for co-existing best-effort processes.

Most modern operating systems divide interrupt process-
ing into top-half and bottom-half interrupt handling rou-
tines. Device drivers typically implement an interrupt ser-
vice routine that is dispatched directly upon receipt of an
associated IRQ. This procedure performs only the opera-
tions necessary to communicate with the controller on the
corresponding device that initiated the interrupt, as well as



acknowledging the interrupt and posting a pending event to
indicate subsequent “deferrable” processing. The rest of the
processing associated with the interrupt can then take place
at a later time in a bottom-half handler. In Linux, for ex-
ample, “soft irqs” are implemented to perform deferrable
interrupt handling functions. † Such functions may be exe-
cuted with interrupts enabled and are invoked when a hard-
ware interrupt handler exits, or when a system call is about
to return to user-space.

This work presents an asynchronous I/O event handling
mechanism that enables user-level code to be executed in
response to events as they are generated within the con-
text of bottom-half interrupt service routines. The mech-
anisms provided in this paper enable the predictable execu-
tion of event handling code at user-level, with acceptable
dispatch latency when compared with approaches that rely
on scheduling and dispatching process address spaces. An
API for registering real-time event handling code, that is ex-
ecuted at the user-level processor protection level upon dis-
patch of the event, is defined, implemented, and analyzed
for effectiveness. Experimental analysis includes compari-
son of the performance of network communication leverag-
ing asynchronous I/O event-handling approaches including
SIGIO, aio read/aio write, and the techniques presented in
this paper.

The next section describes our real-time event model and
reviews our prior work on “user-level sandboxing” tech-
niques. The implementation of an asynchronous real-time
event handling mechanism for processing network packets
is detailed in Section 3, followed by experimental analy-
sis comparing the effectiveness of this approach with other
methods, given in Section 4. Section 5 summarizes related
work on event-handling in real-time systems, and conclu-
sions as well as directions for future work are discussed in
Section 6.

2 Event Model
A crucial performance requirement for real-time task ex-

ecution involves event dispatch latency, or the period of
time between the occurrence of an event (as an IRQ), and
the beginning of the execution of the event handler code.
The dispatch latency, δe, of an event e is described by the
formula: δe = ID + IE + BHD, where ID refers to
the time taken for the hardware and underlying subsystem
to vector an interrupt request to a top-half interrupt service
routine, IE denotes the execution time of the the associated
ISR, and BHD is given by the time between the exit of the

†We use the term bottom-half to refer to a deferrable function that ex-
ecutes as a consequence of a prior interrupt. Linux has deprecated the
term bottom-half but nonetheless deferrable functions exist in the form of
softirqs and tasklets. We will use the term bottom half to refer to a de-
ferrable function throughout the paper unless we wish to explicitly qualify
a Linux softirq or tasklet.

ISR and the beginning of execution of an associated bottom-
half handler, including any processing that must be done to
set up a context for executing the real-time task instance.

Deterministic event dispatch latency is important for pre-
dictable real-time service, thus it is desirable to minimize
the dispatch latency, δe, for each event e. However, in sys-
tems supporting highly dynamic process sets, each of the
components of the dispatch latency, ID, IE, and BHD,
depend upon the non-deterministic state of the system at
the time of the event. Specifically, the latency of dispatch-
ing an IRQ to an interrupt service routine depends upon
the priorities of all interrupts waiting to be serviced at a
given time, since a lower priority request will be deferred
until all higher priority IRQs are serviced. Moreover, if an
ISR is currently executing and an interrupt request of higher
priority arrives at the processor, the original executing rou-
tine may be preempted to serve the higher priority request.
When an event handler is deferred for execution from within
a bottom-half context, the delay associated with dispatching
the bottom-half handler is dependent upon other pending
bottom-half functions and interrupt requests.

This paper investigates two methods of dispatching real-
time event handlers. An event hook, or an operation that
dispatches an event handler, may be called from within hard
interrupt context, or alternatively, from within soft interrupt
context, as described below. Hard interrupt context: The
event hook is placed within a top-half interrupt service rou-
tine and begins execution of the real-time task instance just
before the ISR exits, but after all necessary device opera-
tions are completed. In this scenario, the dispatch latency
of the corresponding event depends only upon the interrupt
dispatch and execution terms, ID, and IE, in the formula
for δe, that is, BHD = 0. Soft interrupt context: An
event handler is dispatched by an event hook placed within
a bottom-half handler for the corresponding event. In this
case, the total event dispatch latency is dependent upon the
delay incurred between the end of the ISR and the beginning
of the bottom-half handler execution.

Hard real-time applications require complete predictabil-
ity for executing task sets according to their associated
deadlines. Supporting such tasks requires a priori knowl-
edge of the interaction of events that may occur in the sys-
tem, thus resulting in a deterministic event dispatching la-
tency, δe for all events e. The actual dispatch latency in-
curred determines the time granularity at which real-time
parameters, such as deadlines and start times, can be spec-
ified. Execution of real-time task instances directly from
within top-half ISRs has the advantage of low dispatch la-
tency, but this method suffers disadvantages in extensibility
and system integration that become alleviated when event
handlers are executed during bottom-half (deferrable) pro-
cessing. The extensibility and functionality issues that arise



when deciding the context for event handler execution in-
clude the following:
System integration: Much of the processing related to de-
vice I/O event handling is executed within the bottom-half
interrupt handlers implemented in device driver modules.
In Linux, for example, a bottom-half routine is responsible
for such tasks as analyzing the header of an incoming net-
work packet, determining the destination socket for which
the packet data is buffered, and signaling to wake up pro-
cesses waiting on network requests when data is available.
In this case, the network driver code is complex, but has
been optimized over time for good performance. Real-time
application developers may benefit significantly from hav-
ing access to the services of the existing system, such as an
operational and efficient network stack. Although executing
real-time event handlers in hard interrupt context reduces
overall dispatch latency, the programmer cannot assume, in
this case, that the existing device driver architecture and in-
terfaces will be available for predictable service. Instead, an
event that is handled in hard irq context may only be bound
to a specific interrupt request line that cannot be shared with
other non-real-time tasks or services. In contrast, deferring
event handling to a bottom-half context allows for a more
sophisticated mapping between events and their associated
handler tasks.
Programming convenience: It is assumed that a program-
mer implementing real-time event handling tasks is com-
fortable with the services and APIs provided by the system
and would like to leverage these services in writing real-
time code. The development process is more efficient if the
programmer can use existing I/O abstractions, such as sock-
ets and file descriptors, instead of being required to import
or write specialized device controlling code to program I/O
activities. This sort of API integration is easily obtained if
tasks’ event handlers are activated from a bottom-half ISR,
since an event can be defined as a condition on a system ab-
straction (i.e., a socket) rather than be limited to association
with a specific interrupt request line.
Event scheduling: Real-time tasks executing in top-half
ISR context may arbitrarily delay execution of bottom-half
procedures, and the same applies to event handler execution
from soft interrupt context. However, the IRQ priority and
execution relationship are (at least partially) controlled by
the hardware IRQ scheduling mechanisms, whereas soft in-
terrupt execution is fully controllable in software, allowing
synchronization of bottom-half routines based upon a wide
variety of scheduling policies and priority models.

A series of timing measurements were collected in order
to indicate possible relationships between the various com-
ponents of event dispatching latency. Modifications were
made to a Linux 2.6.15 kernel running on a 2.4 GHz Pen-
tium 4 processor. The first experiment records the value

Mean Median Stdev
ID 6311.16 6060 559.94
IE 10958.15 10740 779.26

BHD 308.04 252 1233.26
δe 17577.35 17048 1628.05

Figure 1. Statistical measurements of values
for ID, IE, BHD, and δe (in processor cycles)
for timer events.

of the time stamp counter just after a timer IRQ is raised
and subtracts this value from the next time stamp counter
read, just after the actual top-half handler function begins
execution. The computed difference measures the number
of cycles required to dispatch the IRQ request to an appro-
priate ISR for processing, and is thus an estimate of the
interrupt dispatch latency term, ID, in the formula for δe.
The value of IE, or the interrupt execution latency, is de-
termined by subtracting the previous counter value from the
value recorded after the ISR exits. The next time stamp
counter read is performed just after the timer bottom-half
handler function begins execution, allowing for the calcula-
tion of the bottom-half delay term, BHD.

The data in Figure 1 indicate the mean, median, and stan-
dard deviation over one thousand trials of the experiment
described above (one trial per timer interrupt). Each statis-
tical value is given for each of the terms ID, IE, and BHD

as estimated in the above discussion. Results are also shown
for the total event dispatch latency, δe, incurred. The aver-
age event dispatch latency in the experiment is calculated
based on the processor clock speed and the cycles recorded
in Figure 1, and the resulting time to dispatch a timer event
handler from soft interrupt context is approximately 7.3 mi-
croseconds.

The latencies shown in Figure 1 infer that the time be-
tween the exit of the top-half ISR and the beginning of ex-
ecution of the timer bottom-half is typically much smaller
than the combined time needed to dispatch and execute the
top-half. Since the timer bottom-half runs at higher priority
than other soft irq functions, and since the timer soft irq is
scheduled to run just after the ISR returns, most values for
BHD in this case are only a fraction of the total event dis-
patching latency, δe. Thus, the experiment described above
is a measure of the best case delays for dispatching events
from within soft interrupt context. However, it should be
noted that the variance of bottom-half dispatching delay is
still higher than that of the hard interrupt dispatch latency
and execution time, since the bottom-half handler may be
delayed when top-half handler instances are executing.

The second timing experiment measures dispatching and
execution latencies related to network processing. The ta-
ble in Figure 2 summarizes 1000 measurements of the com-
bined top-half interrupt and execution latencies resulting



Mean Median Stdev
ID + IE 9489.14 9108 1229.95

BHD 17769.23 13320 24705.58
δe 27258.37 22692 24883.65

Figure 2. Statistical measurements of values
for ID+IE, BHD, and δe (in processor cycles)
for network events.

from processing small incoming packets on an Ethernet de-
vice, as well as the associated delays in dispatching the net-
work receive bottom-half. The endpoint measurements for
the bottom-half associated delays are taken at the beginning
of the execution of a callback function, which is automati-
cally called by the network subsystem upon arrival of data
at the socket. The callback function is executed in soft inter-
rupt context and is called from within a bottom-half handler
associated with network receive events.

As seen in the results, the values for BHD are some-
what greater than ID + IE, which is partially due to the
fact that the network soft irq function may be delayed by
timer interrupts and associated timer soft irq instances. An
extra delay is also incurred by computation in the network
stack, including maintenance of the socket data structures
and protocol processing. Furthermore, the variance of the
network soft irq dispatching delays is high in comparison to
the hard irq case, for similar priority-related reasons. How-
ever, the total delay between the start of IRQ dispatching
and the beginning of the socket callback function execu-
tion is approximately 11.4 microseconds on average, which
may be acceptable for many real-time applications that are
dependent upon statistical delay guarantees.

The above results provide evidence that delaying
real-time event handling to soft interrupt context may be
feasible from a performance perspective, while providing
the ability to leverage the infrastructure of existing system
services (i.e., the network stack). In this example, an
event is defined with respect to a particular socket data
structure, which requires information that is not available
until some bottom-half processing is completed by the
underlying network subsystem. Consequently, the same
mapping between events associated with individual sockets
and corresponding real-time code is not possible when
dispatching directly from hard interrupt context unless an
independent and specialized network subsystem is written
specifically for use by real-time event handlers.

User-level Sandboxing: Although executing events in soft
interrupt context may result in desirable integration with ex-
isting system services, as well as an acceptable dispatch la-
tency, direct execution of real-time extension code at the
highest processor protection level circumvents the usual
protection semantics of application address spaces. In or-

der to protect memory associated with real-time tasks, a
user-level sandbox abstraction is leveraged for setting up a
user-space context in which to safely execute event handling
extensions [21].

The user-level sandboxing mechanism allows applica-
tion or system extension code to be loaded into a 4MB page
frame. All data associated with such extensions, includ-
ing a user-level stack for each module, is maintained within
an additional super-page in memory. The sandbox virtual
pages are pinned in memory and the associated virtual ad-
dresses are mapped into the address spaces of each process.

Page table entries mapping the sandbox regions are ini-
tially set to be accessible only when the processor is execut-
ing in kernel mode. Upon arrival of an event that is associ-
ated with a registered sandbox thread, the permissions asso-
ciated with the sandbox page mappings are modified by the
kernel to allow access at user-level. Control is subsequently
transferred from within the kernel to code within the appro-
priate sandbox page via an upcall to user space. The regis-
tered event handling extension is executed in the context of
the process that is running at the time the event is raised as
an IRQ, but a separate stack is maintained within the sand-
box data region for use by the event handling thread. Af-
ter completion of the thread, the access permissions for the
sandbox pages are reset to supervisor mode and the corre-
sponding page translations are flushed from the TLB. The
kernel then resumes execution just after the point at which
the upcall is initiated.

Hardware protection mechanisms may be used to protect
memory associated with sandbox threads from code run-
ning in the context of process-private address spaces, but
in this scheme sandbox code may arbitrarily access mem-
ory reserved for a process that just happens to be running
during dispatch of the event handling extension. To alle-
viate the resulting protection problem, the sandbox mecha-
nism may require event handling threads to be implemented
using a type-safe language, thus leveraging language-level
protection domains for ensuring that traditional process ad-
dress spaces are protected from the activities of real-time
event handlers.

In addition to the protection features mentioned above,
user-level sandbox event processing has the advantage of
allowing use of shared library routines in programming ex-
tension threads. For instance, a small version of the stan-
dard C library may be loaded into the sandbox region and
shared among various event handlers requiring access to
functions such as system call wrapper routines. The re-
sulting functionality greatly simplifies the development of
real-time event handlers that need access to typical system
APIs and widely used application-level library functions.



3 Implementation

This section describes the implementation of an asyn-
chronous real-time I/O event handling mechanism designed
to efficiently dispatch application code. Although the fo-
cus of this paper is predictable execution of real-time event
handling functions, the proposed mechanism is also appli-
cable to best-effort applications that need to service events
in an asynchronous manner. The following subsections pro-
vide background information on currently available asyn-
chronous I/O mechanisms and detail the implementation of
an alternative method for safe, low-latency event handler
registration and dispatching.

3.1 Background

There are several existing methods that allow an applica-
tion thread to overlap I/O operations with computation. One
such method leverages an implementation of the POSIX
AIO interface for efficient asynchronous I/O access. As the
standard relates only to the API semantics, the implemen-
tations among various systems may differ in performance.
For example, as of version 2.6, the Linux kernel supports a
subset of the AIO interface by using pinned pages and wait
queues associated with completion ports. In systems that
do not include direct kernel support for AIO, a user level
library may implement the API by spawning new threads or
registering signal handlers, each of which responds to I/O
events on a separate file descriptor. The AIO interface in-
cludes the following functions:
aio read()/aio write() - submit an I/O request to read/write
to/from a file descriptor.
aio return() - obtain the return status of a pending I/O op-
eration.
aio suspend() - block until an I/O operation has completed.
Multiple I/O requests may be passed to this function and
the process is placed on a wait queue until at least one has
completed.

A thread that unblocks after a call to aio suspend() may
need to wait until it is next scheduled before an application-
level response to the completion event can be initiated.
Due to the nature of scheduling in Linux, multiple con-
text switches (and consequent TLB flushes) may occur be-
tween the occurrence of an I/O event and the execution of
the event handling code. Alternatively, a Linux thread may
asynchronously call aio return() at strategic points within
its execution to test the status of pending operations, requir-
ing the process to trap to the kernel each time a request on
I/O status is invoked.

An alternative to the AIO mechanism described above
involves the registration of a signal handler that is to be in-
voked upon the occurrence of an event on a file descriptor
(i.e., new connection, data ready, etc.). After initialization

register_upcall_event()
sock->sk_data_ready = 

sb_sock_def_readable

User-space

Sandbox region

Kernel-space

Process Private
Address Space

sb_sock_def_readable()
-packet received
-softirq context

upcall_thread() - event handler

Time 

Figure 3. Event handling control flow.

of the file descriptor, the process issues system calls to in-
form the kernel that requests pertaining to the file descriptor
should not block the process, but rather wake up the process
and invoke the signal handler whenever the I/O operation is
at least partially completed.

In order to support predictable event handling service
for hard real-time applications, best-effort associated inter-
rupts may be virtualized so that events destined for real-time
tasks can be processed in hard interrupt context. This is the
method used by systems such as RTLinux and RTAI. Al-
though this mechanism provides very predictable and low-
latency event handling functionality, a real-time task is exe-
cuted at the most privileged processor protection mode, thus
making it possible for buggy real-time code to undermine
the integrity of the system. Furthermore, I/O processing in
real-time for a given IRQ cannot co-exist with best-effort
services that must use the same interrupt request line.

3.2 Asynchronous I/O Implementation

The asynchronous I/O mechanism proposed in this work
attempts to provide event handling services that are pre-
dictable and well-integrated with existing system services
available in Linux. The API includes a function, regis-
ter upcall event(int fd, char *upcall module), which first
loads a compiled upcall module specified by the filename
parameter upcall module into a sandbox memory area. The
function then places an event hook in the kernel to invoke
the module upon the occurrence of events associated with
an open file descriptor, fd. When an event occurs on the file
descriptor (i.e., data ready), control is transferred directly
from softirq context to user-space for event processing. The
sandbox code may be statically linked with a lightweight
libc implementation, such as dietlibc, to allow the user-
space event handling function to execute system calls and
user-space library routines [1].

An event handling function is placed within a separate
source file. The implementation ensures that this function
is passed the file descriptor of interest and the number of



0 1 2 3 4
0

50

100

150

200

250

300
AIO
SIGIO
UPCALL

CPU-bound Processes

E
ff

ec
ti

ve
 B

an
dw

id
th

 (
M

b
p

s)

Figure 4. Effective bandwidth achieved in
UDP stream transmission.

bytes available for reading† from a socket descriptor. The
function is compiled to an object file and loaded into the
sandbox code page for later invocation, and memory is allo-
cated within the sandbox data page for storing the contents
of a stack associated with the sandbox routine. Figure 3
illustrates the control flow associated with dispatching an
event handler in response to a network packet arrival.

4 Experimental Analysis
A series of experiments were conducted to compare

the effectiveness of initiating I/O completion operations
from within soft interrupt context with other approaches.
All experiments were conducted using Intel Pentium 4
2.4GHz platforms running Linux 2.6.15, patched for user-
level sandboxing support (unless otherwise stated).

The first experiment measures the bandwidth of trans-
mitting and receiving a UDP stream between two hosts, via
Gigabit Ethernet. In each trial, a 4MB file is transmitted as
a series of 512B messages from the client host to the server
host. Each message is then returned from the server to the
client. In the implementation, the client host uses blocking
I/O, while the server host uses one of the following methods
of asynchronous I/O:
SIGIO: The server application registers a signal handler

for response to the SIGIO signal that is delivered upon ar-
rival of each message. The actual invocation of the signal
handler may occur after a call to the system scheduler. A
return message is transmitted within the SIGIO signal han-
dling routine.
GLIBC AIO: An implementation of the AIO POSIX stan-
dard API is leveraged from the GLIBC library to perform
asynchronous I/O operations [2]. The server application
submits a read request for each message with the option
SIGEV SIGNAL. A signal handler is registered to be in-
voked upon signal delivery.
Softirq Upcall: The server application registers a sandbox

†Without loss of generality, we focus on asynchronous read events in
this paper, but our approach is applicable to asynchronous writes as well.

0 1 2 3 4
0

4000

8000

12000

16000

20000
AIO
SIGIO
UPCALL

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

CPU-bound Processes

Figure 5. UDP message transmission round-
trip latencies.

code module to be executed from within the network re-
ceive softirq handler. A callback function is registered with
a UDP socket created by the initial server process, such that
each arrival of a message on the network triggers the invoca-
tion of an upcall from within soft interrupt context. Within
the soft interrupt context, a message is transmitted back to
the client. Although the softirq may be preempted by in-
terrupts, there is no possibility of scheduling between the
arrival of the message and the return transmission.

The experiment measures the effective bandwidth
achieved when transmitting and receiving the stream as de-
scribed above. All measurements are recorded at the client
side, and the raw data collected represents the time includ-
ing the first send and the last receipt of a message (including
system call latencies). 100 trials are run and median values
are reported, for each of the asynchronous I/O mechanisms
stated above. The trials are repeated after starting 0 to 4 con-
current CPU-bound processes. The results are illustrated in
Figure 4, in which the horizontal axis specifies the num-
ber of CPU-bound processes running in the system and the
vertical axis represents the effective round-trip bandwidth
achieved during the stream transmission.

A second experiment compares the round-trip latencies
incurred in transmitting a 512B message between the client
and server when using each of the I/O mechanisms men-
tioned above. For each asynchronous I/O method, and for
background CPU-bound processes numbering from 0 to 4,
the measurements are recorded from 1000 trials of the mes-
sage round-trip transmission and mean values are calcu-
lated. The results are reported in Figure 5, in which the
horizontal axis depicts the number of competing processes,
and the vertical access specifies the round-trip latency mea-
sured in microseconds. Additionally, the standard deviation
of each set of 1000 trials is calculated, and the resulting data
is shown in Figure 6.

As shown in the results, the upcall method achieves sig-
nificantly higher bandwidth for the UDP stream transmis-
sion in comparison to the SIGIO and AIO mechanisms.
Moreover, the bandwidth in the case of upcall from softirq
context depends much less on the number of CPU-bound



0 1 2 3 4
1

10

100

1000

10000

100000
AIO
SIGIO
UPCALL

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
m

ic
ro

se
co

n
d

s)

CPU-bound Processes

Figure 6. UDP message transmission jitter.

processes running in the system than in the case of AIO or
SIGIO. However, there is a slight drop in effective band-
width during transmission when at least one CPU-bound
process is running, due to increased scheduling latency
when the system scheduler is invoked as a result of timer
interrupts, but the addition of more background processes
has relatively little effect beyond one task. In the case of
SIGIO and AIO, there is a significant decrease in effective
bandwidth with the presence of each new background pro-
cess, since the associated signal handlers may not be exe-
cuted until the time quanta for other processes have expired.
Processes that use the SIGIO or AIO techniques rely on the
scheduler for invocation of I/O event handling procedures,
and thus an increase in CPU contention causes an increase
in event handling latency. It should be noted that whether
or not the processes involved in the experiments described
above are classified as real-time by the Linux scheduler has
little effect on the overall results. Since the softirq upcall
approach effectively bypasses the task scheduler in order
to dispatch events from softirq context, even in the case
where CPU-bound processes are set to high priority, the dis-
patch latencies for I/O events remain unchanged. Although
such experimental results are not given here, prior work
shows that the softirq upcall mechanism achieves lower la-
tency than the signal-based approaches when the associated
event-handling tasks are given real-time priorities under the
Linux scheduler [21].

Comparison of the softirq upcall mechanism with tech-
niques such as RTAI/RTNet [12] real-time extensions is cur-
rently underway, but the difficulty in producing such re-
sults is related to the lack of support for various network
interfaces in RTNet. For this reason, the ability to use ex-
tensions such as RTAI and RTNet for real-time commu-
nication is limited to very particular hardware configura-
tions. However, any network interface card that is sup-
ported by Linux is usable in the upcall-based asynchronous
I/O mechanism, since in this case existing drivers are used
to perform top-half operations. Alternative asynchronous
I/O techniques include implementations of the select() and
poll() interfaces [6]. However, we omit comparison with

these approaches as they are known to incur relatively high
latency.

5 Related Work

A number of real time operating systems have been
designed with the goal of providing hard real-time guar-
antees to applications. Among others, VxWorks and the
QNX Neutrino kernel provide a variety of features sup-
porting the implementation of real-time tasks, such as real-
time scheduling policies, synchronization mechanisms, and
IPC [4, 11, 20]. For instance, the Neutrino kernel supports
a sporadic task model in which a task may be assigned two
priority levels. At strategic points in the execution of the
application, the task may be promoted to its highest priority
level, in order to obtain resources necessary to complete a
portion of processing before a specified deadline. Such sys-
tems are dedicated to servicing real-time applications, but
are not designed to handle a mixture of concurrent real-time
and non-real-time tasks.

There are several extensions to COTS systems, such as
RTLinux, RTAI, and Montavista, that attempt to enable sup-
port for real-time tasks [7, 9, 19, 8]. These systems per-
form well and allow for best-effort tasks to coexist with real
time applications. Disadvantages to the approaches taken
in the case of RTAI and RTLinux include the inability for
tasks to share interrupt request vectors and poor integra-
tion with existing driver code. Although I/O events can be
handled in real time using special driver modules (i.e., RT-
Net [12] for processing network events), implementations
of such extensions currently do not support many common
devices. For example, the RTNet driver suite does not sup-
port Intel-based 1Gb Ethernet cards. Additionally, some
researchers have focused on the structure of systems and
the use of micro-kernels in real-time application domains,
showing how the communication costs between separate
address spaces is often less than the overheads associated
with interrupt processing [16].

Several asynchronous I/O methods have been proposed
and implemented in the research community. The select()
and poll() system calls allow application programmers to
efficiently multiplex network events to handlers [6]. Sig-
nals also provide a generic mechanism for event handling
in most modern systems and are used as a means of im-
plementing a variety of asynchronous I/O interfaces, such
as in the GLibc AIO implementation. Additionally, the
kevent()/kqueue() system calls in FreeBSD allow a user ap-
plication to register a set of kevents, each of which includes
a filter condition and an identifier, that are placed into a
kqueue by the kernel when the condition becomes true [14].
A process may issue system calls to traverse and manipulate
the queue of pending events.

The scheduling of real-time tasks concurrently with
best-effort tasks is studied in several projects, including



the Rialto system and Borrowed Virtual-Time Scheduling
(BVT) [15, 10, 13]. Hierarchical scheduling research also
contributes to the need for predictable and efficient service
for multiple co-existing execution contexts [18]. Also, sys-
tems such as the Linux Resource Kernel focus on proper
accounting of resource consumption in order to accurately
schedule tasks [17]. Such efforts are complimentary to
the contributions of this paper, since effective scheduling
policies are necessary for deciding when to dispatch event
handlers. The methods we propose for asynchronous I/O
provide the framework upon which well-designed real-time
scheduling algorithms may be implemented and tested.

6 Conclusion
This work focuses on extending existing general pur-

pose systems with support for real-time asynchronous I/O.
We propose a method of dispatching events from within
soft interrupt context, in order to provide reliable service
for soft real-time applications. In our analysis, it is shown
that events associated with real-time device I/O, specifically
network communication, can be handled with a total dis-
patch latency in the 10’s of microseconds range when us-
ing typical COTS components. We present and analyze an
asynchronous I/O mechanism for handling network socket
events that exhibits message transfer latencies that are inde-
pendent of the number of background processes competing
for system resources. Results indicate that our method sig-
nificantly out-performs the implementations of the GLibc
AIO and Linux signal APIs.

Insights from this work are being considered in the de-
sign of new system abstractions for safe, predictable and ef-
ficient service execution. Specifically, future work involves
the study of composable real-time service modules, with the
ability to define scheduling and dispatching hooks along
both synchronous and asynchronous control flow paths.
Hardware and software techniques will also be investigated,
for use in the isolation of various application-specific and
system service extensions.

References

[1] Diet Libc: http://www.fefe.de/dietlibc.
[2] GNU C library: http://www.gnu.org/software/libc.
[3] Montavista Software - Powering the embedded revolution:

http://www.mvista.com.
[4] VxWorks Programmers Guide. Technical report, Wind

River Systems, Alameda, CA, 1995.
[5] The Open Group Base Specifications Issue 6:

http://www.opengroup.org/onlinepubs/009695399, 2004.
[6] G. Banga, J. Mogul, and P. Druschel. A Scalable and Ex-

plicit Event Delivery Mechanism for UNIX. In USENIX An-
nual Technical Conference, Monterey California, June 1999.

[7] M. Barabanov. A Linux-based Real-Time Operating Sys-
tem. Master’s thesis, New Mexico Institute of Mining and
Technology, June 1997.

[8] L. E. L. del Foyo, P. MejiaAlvarez, and D. de Niz. Pre-
dictable interrupt management for real time kernels over
conventional PC hardware. In IEEE Real-Time and Embed-
ded Technology and Applications Symposium, San Jose, CA,
USA, April 2006.

[9] L. Dozio and P. Mantegazza. Real-Time Distributed Control
Systems Using RTAI. In Sixth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing,
May 2003.

[10] K. Duda and D. Cheriton. Borrowed-Virtual-Time (BVT)
scheduling: supporting latency-sensitive threads in a
general-purpose scheduler. In Symposium on Operating Sys-
tems Principles, pages 261–276, 1999.

[11] D. Hildebrand. An Architectural Overview of QNX. In
USENIX Workshop on Micro-kernels and Other Kernel Ar-
chitectures, pages 113–126, Seattle, WA, April 1992.

[12] Jan Kiszka, Bernardo Wagner, Yuchen Zhang, and Jan
Broenink. RTnet - A Flexible Hard Real-Time Network-
ing Framework. In 10th IEEE International Conference on
Emerging Technologies and Factory Automation, September
2005.

[13] K. Jeffay and D. L. Stone. Accounting for interrupt handling
costs in dynamic priority task systems. In Proceedings of the
14th IEEE Real-Time Systems Symposium, December 1993.

[14] Jonathan Lemon. Kqueue: A Generic and Scalable Event
Notification Facility. In FREENIX Track (USENIX-01),
pages 141–154, Berkeley, California, June 2001.

[15] M. Jones, J. Barrera, A. Forin, P. Leach, D. Rosu, and
M. Rosu. An Overview of the Rialto Real-Time Architec-
ture. In Seventh ACM SIGOPS European Workshop, Con-
nemara, Ireland, September 1996.

[16] F. Mehnert, M. Hohmuth, and H. Hartig. Cost and benefit
of separate address spaces in real-time operating systems.
In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS), Austin, Texas, December 2002.

[17] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource
kernel in Linux. In Proceedings of the 4th IEEE Real-
Time Technology and Applications Symposium (RTAS), June
1998.

[18] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau.
Evolving real-time systems using hierarchical scheduling
and concurrency analysis. In 24th IEEE Real-Time Systems
Symposium (RTSS), Cancun, Mexico, December 2003.

[19] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus.
A firm real-time system implementation using commercial
off-the-shelf hardware and free software. In Proceedings of
the 4th IEEE Real-Time Technology and Applications Sym-
posium (RTAS), June 1998.

[20] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: To-
wards a predictable real-time system. In Proceedings of
USENIX Mach Workshop, pages 73–82, 1990.

[21] R. West and G. Parmer. Application-specific service tech-
nologies for commodity operating systems in real-time en-
vironments. In Proceedings of the IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
San Jose, California, April 2006.


