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Abstract
This paper describes an algorithm, called Dynamic
Window-Constrained Scheduling (DWCS), designed to
meet the service constraints on packets from multi-
ple, network-bound media streams with different per-
formance objectives. Using only two attributes, a dead-
line and a loss-tolerance per packet stream, DWCS: (1)
can limit the number of late packets over finite num-
bers of consecutive packets in loss-tolerant or delay-
constrained, heterogeneous traffic streams, (2) does not
require a-priori knowledge of the worst-case loading
from multiple streams to establish the necessary band-
width allocations to meet per-stream delay and loss-
constraints, and (3) can exhibit both fairness and un-
fairness properties when necessary. In fact, DWCS can
perform fair-bandwidth allocation, static priority (SP)
and earliest-deadline first (EDF) scheduling. We show
the effectiveness of DWCS using a streaming video ap-
plication, running over ATM.

1 Introduction
This paper describes a novel packet scheduling algo-

rithm, called Dynamic Window-Constrained Schedul-
ing (DWCS), that resides at the base of an end-system
quality of service (QoS) architecture. DWCS is de-
signed to maximize network bandwidth usage in the
presence of multiple packets each with their own delay
constraints and loss-tolerances. The algorithm requires
two attributes per packet stream, as follows:
• Deadline – this is the latest time a packet can com-
mence service. The deadline is determined from a
specification of the maximum allowable time be-
tween servicing consecutive packets in the same
stream.

• Loss-tolerance – this is specified as a value xi/yi,
where xi is the number of packets that can be
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lost or transmitted late for every window, yi, of
consecutive packet arrivals in the same stream, i.
Hence, for every yi packet arrivals in stream i, a
minimum of yi −xi packets must be scheduled for
service by their deadlines.

At any time, all packets in the same stream have the
same loss-tolerance, while each successive packet in a
stream has a deadline that is offset by a fixed amount
from its predecessor.

DWCS has the ability to share bandwidth among
competing clients in strict proportion to their dead-
lines and loss-tolerances. This is similar to (weighted)
fair scheduling[1, 2, 3, 4], which attempts to allocate
bandwidth in proportion to stream weights. Similar
proportional share algorithms have been targeted at
CPU scheduling[5, 6]. However, the idea of ‘window-
ing’ in DWCS is closer to the work of Hamdaoui and
Ramanathan[7] who have simulated an algorithm that
services multiple streams, in an attempt to ensure at
least m customers (packets or threads) in a stream
(or process) meet their deadlines for every k consec-
utive customers from the same stream (or process).
In comparison, DWCS can also perform static priority
and earliest-deadline first scheduling, supporting both
deadline and non-deadline constrained traffic. Further-
more, DWCS can meet explicit delay and ‘windowed’
loss constraints, using only two attributes that enable a
diverse range of service specifications. We now discuss
the DWCS algorithm in more detail.

2 The DWCS Algorithm
Dynamic Window-Constrained Scheduling (DWCS)

orders packets for transmission based on the current
values of their loss-tolerances and deadlines. Prece-
dence is given to the packet at the head of the stream
with the lowest loss-tolerance. Packets in the same
stream all have the same original and current loss-
tolerances, and are scheduled in their order of ar-
rival. Whenever a packet misses its deadline, the loss-
tolerance for all packets in the same stream, s, is re-



duced to reflect the increased importance of transmit-
ting a packet from s. This approach avoids starv-
ing the service granted to a given packet stream, and
attempts to increase the importance of servicing any
packet in a stream likely to violate its original loss
constraints. Conversely, any packet serviced before its
deadline causes the loss-tolerance of other packets (yet
to be serviced) in the same stream to be increased,
thereby reducing their priority.

Pairwise Packet Ordering
Lowest loss-tolerance first

Same non-zero loss-tolerance, order EDF
Same non-zero loss-tolerance & deadlines,

order lowest loss-numerator first
Zero loss-tolerance & denominators,

order EDF
Zero loss-tolerance, order

highest loss-denominator first
All other cases: first-come-first-serve

Table 1: Precedence amongst pairs of packets

Table 1 shows the rules for ordering pairs of packets
in different streams. Observe that, if two packets have
the same non-zero loss-tolerance and deadline they are
ordered lowest loss-numerator xi first, where xi/yi is
the current loss-tolerance for all packets in stream i.
By ordering on the lowest loss-numerator, precedence
is given to the packet in the stream with tighter loss
constraints, since fewer consecutive packet losses can
be tolerated. If two packets have zero loss-tolerance
and their loss-denominators are both zero, they are
ordered EDF, otherwise they are ordered highest loss-
denominator first. In such a circumstance, it is pos-
sible that a stream may lose more packets than its
loss-tolerance specification allows. By increasing the
denominator in this case, the algorithm attempts to fa-
vor the adversely affected packet stream, bringing the
amortized loss for packets in that stream back to the
original loss-tolerant value.

Every time a packet in stream i is transmitted, the
loss-tolerance of i is adjusted. Likewise, other streams’
loss-tolerances are adjusted only if any of the pack-
ets in those streams miss their deadlines as a result of
queueing delay.

For streams that can lose packets, any packets in
these streams that have missed their deadlines are sim-
ply discarded. For a stream that cannot lose packets,
the deadline serves to minimize queueing delay before
eventual transmission of all packets in that stream.
The loss-tolerance value for such streams serves to
avoid transmitting too many late packets.

We now describe how loss-tolerances are adjusted.

Let xi/yi denote the original loss-tolerance for all pack-
ets in stream i. Let x′

i/y′
i denote the current loss-

tolerance for all queued packets in stream i. Let x′
i

denote the current loss-numerator, while xi is the orig-
inal loss-numerator for packets in stream i. y′

i and yi

denote current and original loss-denominators, respec-
tively. Before a packet stream is serviced, its current
and original loss-tolerances are equal. For all buffered
packets in the same stream i as the packet most re-
cently transmitted before its deadline, adjust the loss
numerators and denominators as follows:

if (y′
i > x′

i) then y′
i = y′

i − 1;
if (x′

i = y′
i = 0) then x′

i = xi; y′
i = yi;

Observe that loss-tolerances do not change for streams
without deadlines. However, for all buffered packets, if
any packet in stream j|j �= i misses its deadline:

if (x′
j > 0) then
x′

j = x′
j − 1; y′

j = y′
j − 1;

if (x′
j = y′

j = 0) then x′
j = xj ; y′

j = yj ;
else if (x′

j = 0) then
if (xj > 0) then y′

j = y′
j + �yj−xj

xj
�;

if (xj = 0) then y′
j = y′

j + yj ;

As an example, consider n = 3 streams of pack-
ets, s1, s2 and s3 (see Figure 1). Let the original
loss-tolerances of each stream be 1/2, 3/4 and 6/8,
respectively. Let the deadlines of the first packets in
each stream be 0 and let each successive packet p in
stream i, have a deadline one time unit later than
predecessor (p − 1) in the same stream i. That is,
deadline1i

= 0 and deadlinepi
= deadline(p−1)i

+ 1,
∀i, 1 ≤ i ≤ n, p ∈ Z+, where Z+ is the set of positive
integers. Assume that the service time of each packet
is one time unit. If each stream has a packet arrive
for service once every time unit, the total load on the
scheduler is 3.0 from all three streams. However, due
to the loss-tolerances of each stream, the minimum de-
mand from all streams is

∑n
i=1

(1−li)Ci

Ti
, where li is the

loss-tolerance, Ci is the service time (or transmission
delay) of each and every packet in stream i, and Ti

is the inter-arrival time for packets in stream i (which
is also the time between successive packet deadlines).
For this example, with the three streams having the
above loss-tolerances, the effective scheduler load can
be as low as 1.0 if we carefully discard (or service late)
appropriate late packets from each stream. Thus, it
may still be possible to service all three streams while
meeting the appropriate losses from each stream.

From Figure 1, the first packet to be scheduled in
this case will be from s1, because s1 has the lowest
loss-tolerance. Since the serviced packet does not miss
its deadline, the new (current) loss-tolerance of s1 will
be set to 1/1. As a result, we can still allow the loss of



the next packet in s1 and not violate the original loss
tolerance. Hence, the rationale for adjusting the loss-
tolerance in this way. At time t = 1, the first packet
in s1 has been serviced but the first packets in s2 and
s3 have each missed their deadlines. As a result, the
first packet in each of these streams is dropped and
the new loss-tolerances for s2 and s3 are set to 2/3
and 5/7, respectively. This change in loss-tolerance
compensates for one less allowable packet loss over a
range of one fewer packets than in the original loss-
tolerance specification. At time t = 1, the packet at
the head of s2 with deadline = 1 has the highest pri-
ority, so it is serviced next. This causes the packets
with deadline = 1 from s1 and s3 to miss their dead-
lines. Observe that s1’s loss-tolerance is set back to its
original value at this point, because it was temporarily
set to 0/0, which is meaningless. Notice that at time
t = 5, a packet in s2 gets serviced. When two pack-
ets have the same non-zero loss-tolerance and deadline,
and their loss-numerators are the same, ties can be
broken arbitrarily. Every four time units, the schedule
repeats itself. Observe that over the first eight pack-
ets serviced, s1 transmits four packets and loses four,
consuming 50% of the bandwidth, and both s2 and
s3 transmit two packets and lose six, each consuming
25% of the bandwidth. Furthermore, one packet from
s1 is serviced every two time units (or packet service
times), one packet from s2 is serviced every four time
units, and two packets from s3 are serviced every eight
time units. Hence, the loss-tolerances from all three
streams are met.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

s1 s2 s1 s1 s1 s1 s1 s1 s1s3 s2 s3 s2 s3 s2 s3

s1
s2
s3

time, t

1/2(0), 1/1(1),1/2(2),1/1(3),1/2(4)...

3/4(0),2/3(1),2/2(2),1/1(3),3/4(4),2/3(5),2/2(6),1/1(7),3/4(8)...

6/8(0),5/7(1),4/6(2),3/5(3),3/4(4),2/3(5),1/2(6),0/1(7),6/8(8)...

Figure 1: Example DWCS scheduling of 3 streams, s1,
s2 and s3. Deadlines are shown in brackets and loss-
tolerances are shown as x/y.

We now describe some features that show the flexi-
bility of DWCS.
Earliest-Deadline First Scheduling using DWCS

When the loss-tolerances of all packets in each
stream are set to 0/0, packets are scheduled in EDF
order. Intuitively, this makes sense, since all streams
have the same importance so their corresponding pack-
ets are serviced based upon the time remaining to their
deadlines. It can be shown that if all deadlines can be
met, EDF guarantees to meet all deadlines. If packets

are dropped after missing their deadlines, EDF is op-
timal with respect to loss-rate in discrete-time G/D/1
and continuous-time M/D/1 queues[8].
Static Priority Scheduling using DWCS

If no packets in any streams have deadlines (ie.,
they effectively have infinite deadlines), DWCS de-
grades to static priority (SP). Static-priority schedul-
ing is optimal for a weighted mean delay objective,
where weighted mean delay is a linear combination of
the delays experienced by all packets[9]. In DWCS,
the current loss-tolerances associated with each packet
in every stream are always equal to their original loss-
tolerances, and each packet’s loss-tolerance serves as
its static priority. Namely, for packets with infinite
deadlines, the term “loss-tolerance” is really a mis-
nomer, since no packets are actually lost. As expected,
precedence is given to the packet with the lowest “loss-
tolerance” (i.e., highest priority). For packets with
infinite deadlines, DWCS has the ability to service
non-time-constrained packets in static priority order
to minimize weighted mean delay.
Fair Scheduling using DWCS

Fair Queueing derivatives such as SFQ[4] have the
ability to share bandwidth among n message streams
such that each stream receives a weighted fair-share of
available bandwidth. Specifically, let wi be the weight
of message stream i and Bi(t1, t2) be the aggregate ser-
vice (in bits) of i in the interval [t1, t2]. If we consider
two message streams, i and j, the normalized service
(by weight) received by each stream will be Bi(t1,t2)

wi

and Bj(t1,t2)
wj

, respectively. The aim is to ensure that

|Bi(t1,t2)
wi

− Bj(t1,t2)
wj

| is as close to zero as possible, con-
sidering that packets are indivisible entities and an in-
teger number of packets might not be serviced during
the interval [t1, t2].

DWCS also has the ability to meet weighted fair al-
location of bandwidth, as shown in Figure 1. Given
stream weights, wi, in a fair bandwidth-allocating al-
gorithm, we can calculate the loss-tolerances and dead-
lines that must be assigned to streams in DWCS to give
the equivalent bandwidth allocations. This is done as
follows:

1. Determine the minimum time window, ∆min, over
which bandwidth is shared proportionally among
n streams, each with weight wi|1 ≤ i ≤ n,wi ∈
Z+: First, let Ci be the service time of each packet
in stream i. (This assumes all packets in any one
stream are the same length). Let ω =

∑n
i=1 wi

and let ηi be the number of packets from stream i
serviced in some arbitrary time window ∆. (Note
that ηiCi is the total service time of stream i over
the interval ∆, and

∑n
i=1 ηiCi = ∆. Furthermore,



∆ is assumed sufficiently large to ensure band-
width allocations amongst all n streams in exact
proportions to their weights). This implies that
ηiCi

∆ = wi

ω . If wi is a factor of ωCi, let γi = ωCi

wi
,

else let γi = ωCi. Then ∆min = lcm(γ1, ..., γn),
where lcm(a, b) is the lowest-common-multiple of
a and b.

2. For DWCS, set deadline1i
= 0, and deadlinepi

=
deadline(p−1)i

+ Ci, for each packet pi in stream
i, where p ∈ Z+.

3. To calculate the loss-tolerance, li, of packets in
stream i, let li = xi

yi
, where: yi = ∆min

Ci
, xi =

∆min

Ci
− η′

i, and η′
i =

ηi∆min

∆ = wi∆min

ωCi
.

If deadlines are assigned as in step 2, we can trans-
late packet loss-tolerances back into stream weights,
wi, as follows: wi =

yn(yi−xi)
yi(yn−xn) , where 0 < xi

yi
< 1.

3 Experimental Evaluation
All experiments were performed on a cluster of

SparcStation Ultra II Model 2148s. Streams of MPEG-
1 video frames are placed into shared memory queues,
ready for packetization and scheduling. At any point
in time there are between one and n active streams
si|1 ≤ i ≤ n, each with their own service attributes.
Fair-Bandwidth Allocation

The first experiment compares DWCS to SFQ in
its ability to achieve fair-bandwidth allocation (link
sharing) amongst n streams in the shortest time-frame
possible. Weights are assigned to the streams in SFQ,
and the corresponding loss-tolerances and deadlines,
for DWCS, are computed using the method in Sec-
tion 2.

Four streams requiring service, comprise bursts of
150 frames with an average arrival rate of 30 frames
per second, followed by idle periods with a mean inter-
burst gap of 1 second. The burst periods average 5
seconds and these bursts are repeated 10 times per
stream, for a total of 1500 frame (or packet) arrivals
per stream. All packets are eventually transmitted,
even if they are late. The scheduler interval is 40mS,
so 25 frames can be serviced in 1 second. For these
experiments, the packet service times are assumed to
be equal to the scheduler period, since the scheduler
services at most one packetized frame each time it exe-
cutes. This scenario overloads the scheduler and forces
a build-up of back-logged arrivals.

Figure 2 shows the bandwidths (bit service rates) of
the four streams over a 50 second period, for SFQ and
DWCS. The weights for streams s1, ..., s4 are 1, 1, 2
and 4, respectively. The corresponding loss-tolerances
are 7/8, 14/16, 6/8 and 4/8. In the steady-state, SFQ
and DWCS behave almost identically, each servicing

s1 and s2 at about 110 Kbps, s3 at about 220 Kbps,
and s4 at about 440 Kbps.
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Figure 2: Bandwidth allocations for 4 streams,
s1, ..., s4, with weights, 1, 1, 2 and 4, respectively. The
corresponding loss-tolerances are 7/8, 14/16, 6/8 and
4/8.

By minimizing the window of time over which band-
width is allocated in proportion to weights of streams
in SFQ, SFQ actually manages to meet the loss-
tolerances and deadlines of packets almost as success-
fully as DWCS. However, DWCS explicitly uses dead-
lines and loss-tolerances for packet streams. Hence,
bandwidth can be allocated to streams to meet these
constraints, independent of the constraints on other
streams, assuming enough bandwidth is available,
which is the case when

∑n
i=1

(1−li)Ci

Ti
≤ 1.0. Note that

in the experiments above, at no time did DWCS violate
the loss-tolerances on any of its streams even though
the scheduler was overloaded and had to service some
packets late.
Out-of-Band Traffic

Consider the scenario where stream s1 requires twice
as much bandwidth as s2 when both streams are ac-
tive. However, suppose stream s3 is carrying time-
critical (out-of-band) traffic that must be delivered to
its destination with the shortest possible delay. In this
case, we always want to grant service to s3 when s3

has packets for service, but when s3 is not active, the
bandwidth must be shared between s1 and s2.

Fair-scheduling algorithms cannot handle the above
scenario but DWCS can, because for the duration of
a burst of packets from s3, that burst must be ser-
viced exclusively. This violates the fairness properties
of fair schedulers. In contrast, with DWCS, by care-
fully choosing a loss-tolerance that reflects the high-
est priority for s3, and by setting the packet dead-
lines to infinity, DWCS gives exclusive service to s3

when it is active. However, as s1 and s2 are starved
of service, their loss-tolerances dynamically decrease,
thereby raising their priorities until it is possible that
they have precedence over s3. The loss-tolerance of



0

100000

200000

300000

400000

500000

600000

700000

800000

0 50000 100000 150000 200000 250000

Ba
nd

wi
dt

h 
(b

ps
)

Time (mS)

(a) s1
s2
s3

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50000 100000 150000 200000 250000

Ba
nd

wi
dt

h 
(b

ps
)

Time (mS)

(b) s1
s2
s3

Figure 3: Bandwidth versus time for two dynamic pri-
ority streams, s1 and s2, and a static priority stream,
s3. (a) Loss-tolerances for s1, s2 and s3 are 1/3, 2/3
and 0/100, respectively. (b) Loss-tolerances for s1, s2

and s3 are 1/3, 2/3 and 0/1500, respectively.

s3 traffic must be set so that the maximum burst size
from s3 does not require a longer uninterrupted service
duration than the time to raise the priority of either
s1 or s2 above that of s3.

Figure 3(a) shows the results of servicing 3 streams,
in which the first two, s1 and s2, are assigned dynamic
priorities (ie., loss-tolerances of 1/3 and 2/3, respec-
tively) that reflect their bandwidth shares, while s3 is
assigned a static priority of 0/100. Initially, s3 receives
a greater service rate than either s1 or s2, but as s1 and
s2 are neglected, their loss-tolerances decrease.

If the loss-tolerance for s3 is reduced even further, by
increasing its denominator, larger durations of service
time are granted to consecutive packet arrivals from s3

(as shown in Figure 3(b) where the loss-tolerance of s3

is 0/1500). Observe that 0/y1 is higher priority than
0/y2 if y1 > y2. This is one of the precedence rules de-
scribed in Table 1. Hence, we can fine-tune stream at-
tributes, so that the loss-tolerance of out-of-band data
reflects the time to service the largest traffic burst with-
out interruption. Observe that in Figures 3(a) and (b),
when the bandwidth curve for s3 decreases, it is actu-
ally not being serviced. Meanwhile, s1 and s2 approach
their steady-states, close to 2 : 1 bandwidth shares.

4 Conclusions
DWCS has the ability to limit the number of late

packets over finite numbers of consecutive packets in
loss-tolerant or delay-constrained, heterogeneous traf-

fic streams. DWCS can support a combination of static
priority and dynamic priority (bandwidth-allocated)
traffic. In fact, DWCS can perform fair-bandwidth al-
location, static priority (SP) and earliest-deadline first
(EDF) scheduling. However, unlike fair-scheduling al-
gorithms, DWCS can be unfair when necessary, as
well as showing all the fairness characteristics of fair-
schedulers such as SFQ. By being unfair when nec-
essary, DWCS can schedule out-of-band data in the
presence of other loss-tolerant and delay-constrained
traffic.

DWCS can meet explicit delay and ‘windowed’ loss
constraints, using only two attributes that enable a di-
verse range of service specifications. Further details
of the algorithm are described in an accompanying
paper[10].
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