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Abstract—This paper addresses the problem of guaranteeing
performance and predictability of NAND flash memory in a
real-time storage system. Our approach implements a new flash
translation layer scheme that exploits internal parallelism within
solid state storage devices. We describe the Partitioned Real-Time
Flash Translation Layer (PaRT-FTL), which splits a set of flash
chips into separate read and write sets. This ensures reads and
writes to separate chips proceed in parallel. However, PaRT-FTL
is also able to rebuild the data for a read request from a flash
chip that is busy servicing a write request or performing garbage
collection. Consequently, reads are never blocked by writes or
storage space reclamation. PaRT-FTL is compared to previous
real-time approaches including scheduling, over-provisioning and
partial garbage collection. We show that by isolating read and
write requests using encoding techniques, PaRT-FTL provides
better latency guarantees for real-time applications.

I. INTRODUCTION

With the advent of autonomous vehicles, from driverless

cars to unmanned aerial vehicles (UAVs), there is a growing

need to store, retrieve and process large volumes of sensor

data [11]. Autonomous vehicles rely on the real-time pro-

cessing of sensor data to perform collision avoidance, path

planning, object detection, 3D scene reconstruction, simulta-

neous localization and mapping (SLAM), and other mission

tasks. 3D cameras, laser range finders, radar, sonar and inertial

sensors provide numerous data streams, from high definition

images to point clouds. Google’s self-driving car is already

reported to generate on the order of 1GB/s of data from its var-

ious onboard sensors [1]. As autonomous vehicle technology

advances, we can expect the quantity of sensor data produced

per unit time to be even greater, requiring local as well as cloud

storage. The sheer volume of sensor data dictates the need

for real-time information storage and retrieval, to accomplish

machine learning and mission objectives.

NAND flash memory has desirable characteristics for real-

time information storage and retrieval, such as non-volatility,

shock resistance, low power consumption and fast access time.

However, NAND flash memory management is complicated by

the fact that in-place updates are not possible. Once a memory

location is written to, it must be erased before being written to

again. In addition, reads and writes operate at the granularity

of a flash page, while erasures operate on flash blocks spanning

multiple pages.

The need to reclaim space in NAND flash memory results

in potentially unacceptable worst-case performance for a real-

time system. When free space becomes limited, garbage

collection selects a block to reclaim. The valid pages in the

selected block are copied to another block, and the selected

block is erased. In the worst case, only one invalid page out of

P pages in a block is reclaimed. Therefore, if a write request

triggers garbage collection, it could be blocked waiting for one

block erasure and P −1 read and write operations to copy the

valid pages. Techniques that have been used for real-time flash

storage to reduce the time needed to perform garbage collec-

tion include over-provisioning and partial garbage collection

[16] [23] [7]. With over-provisioning, the logical address space

is a fraction of the physical address space, so in the worst case,

only a fraction of the number of pages in a block will need

to be copied during garbage collection. Another technique is

performing partial garbage collection, which divides garbage

collection into several small steps. This guarantees that a

request will only be blocked by a partial step.

This paper proposes a solution that significantly reduces

the latency of a flash page write and read. In an age of

data gathering and mining, there is an increasing need for

real-time systems to be able to fetch data that cannot all be

stored in memory in order to make time-critical decisions. This

paper presents a partitioned real-time flash translation layer

(PaRT-FTL) that guarantees bounded, low latency read and

write requests by taking advantage of the internal parallelism

in a solid-state storage device (SSD). Input and output (I/O)

requests are partitioned so that read requests are not blocked

by write requests or garbage collection.

The rest of the paper is as follows: Section II summa-

rizes the internal features of NAND flash storage systems.

Section III describes the FTL partitioning, followed by a

description of the real-time task model, and admission control

for a set of tasks. Related work is discussed in Section IV,

to introduce comparable approaches to PaRT-FTL, before

they are subsequently compared in the evaluation section.

Section V describes the implementation of PaRT-FTL. This

is followed by Section VI, which presents our results for

both simulations and PaRT-FTL implemented on the Cosmos

OpenSSD board. Finally, conclusions and future work are

described in Section VII.

II. NAND FLASH INTERNALS

This section explains the physical layout of NAND flash

memory, and the parallelism that exists in modern SSDs, as

shown in Figure 1.

The internal structure of flash storage is significantly dif-

ferent to that of traditional mechanical hard drives. In flash

devices, the smallest read and write unit is a page. A page

used to be standardized at 512 and 2048 bytes [13]. However,

recently much larger page sizes have been seen ranging from



4 to 16 KB [14]. In addition to data, a page also contains some

extra bytes for an out of band (OOB) area, which is used to

store bookkeeping information (e.g. error correction code) for

the corresponding page. Data in NAND flash memory cannot

be overwritten; instead, a block of pages must first be erased

before a page is eligible for reuse. In the earlier days, a flash

block contains 32 or 64 pages [13]. Nowadays, it can range

from 128 to 512 pages [14]. Multiple blocks form a plane,

and typically two to four planes form a die. The flash die is

the smallest unit that can independently execute commands

or report status. Typically, 1, 2, 4, 8 or 16 flash dies form a

flash chip. A flash chip exists on a specific way on a specific

channel. There are usually 4 to 8 ways on a channel. The

ways, also called banks, on a channel share a common flash

bus and an internal data bus. The way arbiter in the channel

controller grants access to the shared buses. This is called way

interleaving. There are usually 4 to 8 channels in the SSD as

flash controllers with 16 or 32 channels are too complex, too

big and consume too much power [10] [15]. Each channel

contains its own NAND interface block and error correction

code block, so it can operate independently. This is called

channel striping. Way interleaving and channel striping are

the two main methods of parallelization that modern flash

controllers support [6].

Fig. 1: SSD internal architecture.

A. Flash Parallelism Observations

We measured the effects of way interleaving and channel

striping for page-based reads and writes, and block-based

erasures, using the OpenSSD Cosmos Board [20]. The way

arbiter in the Cosmos Board grants access to the shared buses

in a round-robin manner. Detailed hardware specifications are

in Section VI. While our focus is on Micron Technology’s

Min Max Avg Stddev

4 same die writes 0.844 9.70 5.18 2.50

4 way writes 0.826 2.90 1.87 0.645

4 channel writes 0.598 2.37 1.33 0.631

4 same die reads 0.856 1.44 1.04 0.040

4 way reads 0.833 1.25 1.23 0.081

4 channel reads 0.369 0.382 0.375 0.004

4 same die erasures 4.51 16.2 12.6 3.05

4 way erasures 2.58 4.06 3.84 0.111

4 channel erasures 2.77 4.06 3.84 0.114

TABLE I: Latency in milliseconds for flash operations on an SSD with
4 channels and 4 ways per channel, showing the effects of way interleaving
and channel striping. Read, write, and erase operations are parallelizable by
channel striping. However, read operations do not show any performance
benefits under way interleaving while write and erasure operations do.

MLC NAND flash, way interleaving and channel striping are

common characteristics found in other modern NAND flash

technologies. Parallelism within a flash chip (i.e. die and plane)

is not explored due to hardware limitations. Each Micron

Technology NAND flash chip contains one flash die, and plane

parallelism could not be exploited due to limitations of the

OpenSSD FPGA implementation. For the rest of the paper,

we therefore use flash chip and flash die interchangeably.

For each flash operation (read, write and erasure), the

latency of the operation is measured when performed four

times on the same flash die, on different flash chips that exist

in the same channel (way interleaving), or on different flash

chips that exist in different channels (channel striping). Table I

shows the results.

The maximum and average latency for page writes are

reduced by both way interleaving and channel striping. The

slight slowdown in the way interleaving compared to channel

striping is most likely due to accessing the page buffer, which

is shared among all the flash chips in a channel.

For page read operations, while the maximum and aver-

age latency are reduced by channel striping, no significant

improvements are seen for way interleaving. Read operations

do not show any performance benefits under way interleaving

because the majority of the time is spent accessing the

page buffer, which cannot be performed in parallel during

way interleaving. On average, reads with way interleaving

actually perform worse than reads on the same flash die. We

hypothesize that the extra time comes from performing status

checks on the different flash chips.

For block erasures, the maximum and average latency are

reduced by both channel striping and way interleaving.

In summary, we observe that read, write, and erase oper-

ations are parallelizable by channel striping. However, read

operations do not show any performance benefits under way

interleaving while write and erasure operations do.

B. Flash Translation Layer

The flash translation layer (FTL) is the firmware on the SSD

that addresses challenges in flash memory such as the lack

of in-place updates and block endurance. By taking care of

garbage collection and wear-leveling, in addition to providing

a logical to physical address mapping, the FTL allows flash



memory to appear as a block device. This permits file systems

to interact with an SSD transparently, similar to how a file

system would interact with a mechanical hard drive. Although

wear-leveling is important for increased block endurance, it is

not the focus of this work and will not be discussed in detail.

One of the address mapping algorithms commonly used is

page-level mapping, where there is a one-to-one translation of

a logical address to a physical page. This scheme efficiently

utilizes blocks in flash, but it requires a large SRAM to be

able to store the mapping table. When garbage collection is

invoked, a block is selected to be erased. All valid pages in

that block are copied to a clean block, and the mappings are

updated. Figure 2 shows an example of page-level mapping

and block reclamation.

Fig. 2: Page-level mapping and block reclamation. Every logical page
number (LPN) is mapped to a physical page number (PPN). When overwriting
LPN=0, the updated data x’ will be written to a different physical page since
in-place updates cannot be performed; the mapping is updated accordingly.
When the SSD fills up, garbage collection is triggered and valid pages in a
victim block are copied to a free block and the victim block is erased.

III. DESIGN

PaRT-FTL is designed for real-time systems with hard

deadlines associated with the storage and retrieval of persis-

tent data. For example, an autonomous vehicle management

system might require the processing, storage and retrieval of

multiple data-intensive sensor streams, including video images

and point clouds to render a 3D map of its surroundings

as it performs simultaneous localization and mapping. We

envision scenarios for next-generation real-time applications

where main memory has insufficient capacity to store all the

data needed for information processing, machine learning, path

planning, decision making and other mission-critical tasks. In

particular, having low-latency access to stored data that can

be processed and augmented with updated sensor information

is particularly relevant to our intended usage of PaRT-FTL.

The design of PaRT-FTL is motivated by our observations

of the behavior of NAND flash memory, as described in

Table I. To achieve predictable read performance for real-

time workloads, read and write requests are partitioned onto

different flash chips and parity pages are calculated using

XORs. Read requests of pages on flash chips that are servicing

write requests are rebuilt using the parity page. In this way,

read requests are never blocked by write requests or garbage

collection. PaRT-FTL was designed with the following goals:

• an FTL design that takes advantage of internal parallelism

in SSDs;

• a real-time task model for read and write requests on

multiple flash chips;

• bounded and low-latency read requests that are not

blocked by write requests or garbage collection.

A. FTL Data Layout

PaRT-FTL partitions the set of flash chips into write flash

chips Fw and read flash chips Fr. Table II contains symbol

definitions. Fw is the set of flash chips servicing only write

requests and performing garbage collection, and Fr is the set

of flash chips servicing only read requests. These two sets

are mutually exclusive. When servicing a read request, if the

physical page exists on a write flash chip, the page is rebuilt

by reading the associated encoding page and data pages in

Fr. Given the observations from Table I, Fw should contain

flash chips from different channels in order to maximize

read performance since read operations do not show any

performance benefits under way interleaving. For example,

in the SSD layout depicted by Figure 3, 4 flash chips are

servicing write requests and 12 flash chips are servicing read

requests. Fw contains flash chips on Way 1 of each channel.

Read requests for pages in Ways 2 and 3 are handled normally

while read requests for pages in Way 1 will be rebuilt by

reading and decoding the corresponding pages in Ways 2,

3 and 4. Data is encoded and decoded using XORs. In the

example in Figure 3, each parity page is the XOR of its

corresponding data pages in the same channel.

Fig. 3: Flash chip layout. In this example, there are 12 flash chips storing
data and 4 flash chips storing encoding pages. Flash chips being written to are
on Way 1 of each channel, while other flash chips are servicing read requests.

After a block of data is written to each write chip, Fw rotates

to a different set of flash chips. For example, in Figure 4, Fw

rotates to be the flash chips in Way 2, and flash chips in Ways

1, 3 and 4 will be used to service read requests.

Fig. 4: The set of write flash chips rotates to a different way after a block
of data is written to each write flash chip.



B. Real-Time Task Model

Let {τ1, τ2, ..., τn} be a set of n periodic tasks. Each task

τi guarantees that an application can perform ri page reads

every T r
i time units and wi page writes every Tw

i time units.

Note that τi, which has parameters [(ri, T
r
i ), (wi, T

w
i )], does

not account for the CPU computation time. These tasks exist

on the FTL and utilize the NAND bus. A task is assumed to

be scheduled on the CPU in a way that is able to guarantee

the above read and write request rates on the SSD.

For a read request, the worst-case scenario is that the page

exists on a flash chip being written to and the page needs

to be rebuilt. To rebuild the page, all the associated data and

encoding pages have to be read. For scheduling purposes, we

set the read capacity Cr
i for task τi as follows:

Cr
i = ri · (tr + tdc) (1)

where tr is the time it takes to read a flash page on every read

flash chip, and tdc is the time it takes to decode a page.

A write request is first written to a buffer and later written

to flash chips in Fw. Since there are no in-place updates in

flash memory, a write request consisting of multiple pages

can be distributed to different flash chips. Recall that page

writes are parallelizable through both channel striping and way

interleaving, and thus, parallelizable across every flash chip in

|F |. Since only |Fw| flash chips are servicing write requests,

the write capacity Cw
i for task τi is the following:

Cw
i = ⌈

wi

|Fw|
⌉·tw (2)

where tw is the time it takes to write a flash page on

every write flash chip. Note that tr and tw depends on the

configuration of Fr and Fw, which determines how much way

and channel parallelism exists.

1) Updating Encoding Pages: When a block of new data

has been written to each of the data flash chips, a block of

encoding has to be written to each of the encoding flash chips.

Let k be the number of flash chips storing data, m be the

number of flash chips storing encoding information, and P be

the number of pages in a block. The write granularity is k/m
pages so that each write operation to the SSD results in one

page written to each way and the corresponding parity page

is updated. After k·P pages of new data has been written,

m·P encoding pages are updated. For a task τi, if wi = k·P ,

then m·P encoding pages are updated every write period Tw
i ,

so the period for the encoding task is the same as the write

period. If wi 6=k·P , then the period for the encoding task is the

write period multiplied by k·P
wi

to ensure that all the encoding

pages can be written. For each task τi, if wi > 0, then an

encoding task with the following encoding capacity Ce
i and

period T e
i exists:

Ce
i = m·P ·tec + ⌈

m·P

|Fw|
⌉·tw

T e
i = Tw

i ·
k·P

wi

(3)

where tec is the time it takes to compute an encoding page.

Symbol Definition

Fw Set of flash chips servicing write requests

Fr Set of flash chips servicing read requests

k Number of flash chips storing data

m Number of flash chips storing encoding info

P Number of flash pages in a flash block

τi A periodic task

ri Number of page read requests from τi
Cr

i Read capacity for τi
T r
i Period for read requests from τi

wi Number of page write requests from τi
Cw

i Write capacity for τi
Tw
i Period for write requests from τi

Ce
i Encoding capacity for τi

T e
i Encoding period for τi

C
g
i Garbage collection capacity for τi

T
g
i Garbage collection period for τi
tr Time to read a page on every flash chip in Fr

tw Time to write a page on every flash chip in Fw

te Time to erase a block on every flash chip in Fw

tec Time to encode a parity page

tdc Time to decode a page using parity

λ Ratio of logical to physical address space

α Lower bound of reclaimed pages in a block

TABLE II: Symbol Definitions.

2) Garbage Collection: When a flash chip in Fw runs out

of free pages, garbage collection is triggered on that chip. So,

every task with wi > 0 will have a corresponding garbage

collection (GC) task to ensure that enough free pages are

reclaimed for task τi to write wi pages every period Tw
i .

When garbage collection starts, a victim block is selected

and valid pages are copied from the victim block to a free

block. Then, the victim block is erased and the number of

invalid pages that were previously in the victim block are

reclaimed. Over-provisioning provides a lower bound on the

number of invalid pages that exist. With over-provisioning,

the logical address space becomes a fraction λ of the physical

address space in the SSD.

λ =
logical address space

physical address space
(4)

When garbage collection selects a block with the smallest

number of valid pages to reclaim, at most ⌈λ·P ⌉ pages need

to be copied. This is because in the worst-case, the number

of valid pages are spread out evenly among all blocks. The

number of valid pages that need to be copied in all the data

flash chips can be upper bounded by k · ⌈λ·P ⌉. When k
blocks of data become invalid, their corresponding encoding

also becomes invalid. Therefore, m · ⌈λ·P ⌉ is the number of

valid encoding pages that need to be copied. Thus, to reclaim

k · α pages, where α = P − ⌈λ·P ⌉ is the lower bound of

reclaimed pages in a block, (k+m) · ⌈λ·P ⌉ pages need to be

copied and (k+m) blocks erased. For a task τi, if wi = k ·α,

then garbage collection needs to reclaim a block every write

period Tw
i , so the period for the GC task is the same as the

write period. If the number of pages written wi, is more than

k · α pages, then the GC task needs to guarantee that at least

wi pages are reclaimed every write period Tw
i . Since erasures

happen at the block level and not page level, the GC task needs



to upper bound the number of pages reclaimed to a multiple

of blocks. Thus, even if wi is just one more than k · α pages,

two blocks will need to be reclaimed every Tw
i . Similarly, if

the wi is only half of k ·α pages, then the GC task only needs

to reclaim a block every 2·Tw
i . However, if more than half of

k · α pages is requested, the GC task will need to guarantee

a block every Tw
i , thus, the floor is used. If wi > 0, then a

garbage collection task with the following capacity Cg
i and

period T g
i is established for task τi:

Cg
i = ⌈

k +m

|Fw|
⌉ · (⌈λ·P ⌉(t′r + tw) + te)

T g
i =

{

Tw
i /⌈ wi

k·α
⌉, if wi > k · α

Tw
i · ⌊k·α

wi

⌋, otherwise

(5)

where te and t′r are the latency for block erasure and page

read, respectively, on every write flash chip in Fw.

C. Admission Control

A schedulability test is invoked for each chip set to ensure

that all the read and write requests are schedulable. Baker’s

Stack Resource Policy (SRP) [2] with Earliest Deadline First

(EDF) is used. Under SRP with EDF, each job of a task is

assigned a priority according to its absolute deadline and a

static preemption level that is inversely proportional to its

relative deadline. Each shared resource is assigned a ceiling

which is the maximum preemption level of all the tasks that

will lock this resource. A system ceiling is defined as the

highest ceiling of all resources currently locked. A job is not

allowed to start executing until its priority is the highest among

the active tasks and its preemption level is greater than the

system ceiling. In this way, SRP guarantees that once a job

is started, it can only be preempted by higher priority tasks

and it will not be blocked for the duration of more than one

critical section of a lower priority task [17].

Since read requests are isolated from write requests and

occur on separate flash chips, a separate schedulability test is

provided for read and write requests. For the read requests that

are serviced by flash chips in Fr, the longest non-preemptive

period is the time it takes to read a flash page. All flash

operations, i.e. read, write and erasure, are non-preemptive, but

since read flash chips are not performing writes or erasures,

the longest flash operation is tr. The schedulability of the read

requests using SRP with EDF is the following [2]:

tr
min(T r)

+
n
∑

i=1

Cr
i

T r
i

≤ 1 (6)

where min(T r) is the minimum period in all T r
i .

For write requests that are serviced by flash chips in Fw,

the largest non-preemptive period is the longest flash operation

that takes place on write flash chips, which is a block erasure.

A block reclamation, for example, can be preempted many

times between reading and writing valid pages. However, once

a flash operation takes place, it cannot be preempted. The

feasibility of the real-time write requests can be verified by

the following [2]:

te
min(T )

+
n
∑

i=1

(
Cw

i

Tw
i

+
Ce

i

T e
i

+
Cg

i

T g
i

) ≤ 1 (7)

where min(T ) is the minimum period in all Tw
i , T e

i and T g
i .

At the interface level, the user specifies the number of read

and write pages per read and write period upon the open()

syscall. If the admission control fails, the open() would fail.

D. Latency Calculation

The admission control in PaRT-FTL guarantees that write

requests can always be buffered, so the worst-case write

latency is minimal. The worst-case latency for a page read

happens when the page needs to be rebuilt. The time it takes

to read all the pages needed for the rebuild and the time to

decode and rebuild the page is:

tr + tdc (8)

E. Bandwidth Calculation

We define the write bandwidth as the number of page writes

that can be performed in reclaimed blocks across all k data

flash chips divided by the time it takes to perform garbage

collection and those page writes. After garbage collection is

initialized, the block with the largest number of invalid pages

is selected as the victim block to be reclaimed. Let Bv be

the number of valid pages in the victim block and Br be the

number of invalid or reclaimed pages. To garbage collect the

victim block, Bv pages need to be copied to a free block

and the victim block is erased. At this point, Br pages are

reclaimed and garbage collection starts again after Br page

writes. The write bandwidth is defined as follows:

k·Br

(|F |/|Fw|) · [Bv(tr + tw) + te +Br·tw]
(9)

where F is the set of all flash chips and Fw is the set of

write flash chips. The worst-case theoretical bandwidth occurs

under the worst case scenario for garbage collection. Since the

victim block chosen for garbage collection is the block with

the most invalid pages, the worst case is when the invalid pages

are evenly spread out among all the blocks. Thus, Bv = ⌈λ·P ⌉
and Br = α.

The maximum read bandwidth occurs when none of the

pages need to be rebuilt. Thus, the read bandwidth equals the

number of page reads that can be performed in parallel, fr,

divided by the time it takes to perform a page read on every

read flash chip, tr:
fr
tr

(10)

The worst-case theoretical read bandwidth occurs when

every page needs to be rebuilt:

1

tr + tdc
(11)

where tr + tdc is the time to read a page on every flash chip

and the time to decode and rebuild the page.



IV. RELATED WORK

Many previous real-time FTL designs use partial garbage

collection. Guarantee Flash Translation Layer (GFTL) [7]

first introduced partial garbage collection with block-level

mapping. Partial garbage collection reduces the latency ex-

perienced by traditional garbage collection by dividing the

operation to reclaim one flash block into multiple steps.

Because block-level mapping incurs extra OOB operations to

get the real mapping information, GFTL is shown to have high

worst-case latency [23].

Real-time Flash Translation Layer (RFTL) [16] showed that

good performance is possible using a “distributed” partial

garbage collection. RFTL uses partial garbage collection, and

assumes that the request arrival rate is bounded by the block

erasure time. A logical block is mapped to three physical

blocks, and partial garbage collection is triggered when the

primary physical block is full. The two other physical blocks

serve as a buffer for write requests to the corresponding logical

block during garbage collection and for copying valid pages

from the primary block to allow block erasure. In this way,

garbage collection is managed by each logical block in a

distributed manner. Similar to GFTL, RFTL also suffers from

extra OOB operations [23] as well as low space utilization

since each logical block is mapped to three physical blocks.

WAO-GC FTL [23], which stands for worst-case and

average-case joint optimization for garbage collection, builds

upon the partial garbage collection technique. In addition to

providing ideal worst-case bounds for page read and write,

WAO-GC is able to achieve better average-case performance

than GFTL and RFTL by using over-provisioning to delay

garbage collection. When a victim block is selected, it has

at most v valid pages. This is guaranteed by the over-

provisioning. Let n be the number of partial garbage collection

steps needed to copy v pages and erase the victim block.

Since a partial garbage collection step is executed after a page

write request, n is the number of new pages that need to be

stored. Therefore, the following constraint exists: n + v≤P .

This constraint guarantees that one free block can hold both

v valid pages from the victim block and the n pages from

page write requests during the reclamation of the victim block.

Let c be the number of page copies that can be done in a

partial step. Thus, n = ⌈ v
c
⌉+1. Given that v ≤ ⌈λ·P ⌉ due to

the over-provisioning, substituting n into the constraint gives

the relationship between partial garbage collection and space

configuration [23]:

λ <
(P − 1)c

(c+ 1)P
(12)

The following equations presented will be used in Sec-

tion VI showing results of WAO-GC and PaRT-FTL imple-

mented on the Cosmos OpenSSD board.

1) Latency Calculation: The worst-case latency for a page

write occurs after a partial garbage collection step, which is

bounded by te. Thus, the worst-case latency for a page write

is the following:

tw +max(te, c(tr + tw)) (13)

The worst-case latency for a page read occurs when trying

to read a page on a flash die that is busy performing a partial

garbage collection step for a write request. Therefore, the

worst-case latency for a page read is:

tr + tw +max(te, c(tr + tw)) (14)

2) Bandwidth Calculation: The write bandwidth is the

number of page writes that can be performed in parallel, |F |,
divided by the time it takes to perform a page write. WAO-GC

guarantees that a write request will not be blocked by more

than the time it takes to perform a partial garbage collection

if the inter-arrival time of write requests does not exceed the

partial garbage collection step time. Under this restriction, the

maximum theoretical write bandwidth is the following:

|F |

tw +max(te, c(tr + tw))
(15)

The read bandwidth is the number of page reads that can be

performed in parallel divided by the time it takes to perform a

page read given way interleaving. Let fr be the number of page

reads that can be performed in parallel. The read bandwidth

is then defined as follows:

fr
tr + tw +max(te, c(tr + tw))

(16)

Chang et al. [5] proposed a real-time garbage collection

mechanism (RTGC) with a real-time task model that schedules

read and write periodic tasks with a corresponding real-time

garbage collection task. Although it is not a real-time FTL as

the scheduler exists on top of the FTL, a standard commercial

SSD with a built-in FTL cannot be used because the real-time

garbage collectors require that the FTL provides services for

block erasure and atomic page copy that can be triggered by

the garbage collection tasks. Since read and write requests are

not partitioned on separate flash dies, the admission control

for RTGC will reject more task sets that have higher read

utilization compared to the admission control for PaRT-FTL.

Huang et al. [9] exploited the internal parallelism in SSDs

by reserving banks for servicing read and write requests and

performing garbage collection to guarantee stable read and

write throughput. Partial garbage collection is used, where

each step is either a page copy or a block erasure, so each

page read is potentially blocked by a partial step.

There have also been many designs using redundancy on

flash storage by implementing RAID on multiple commercial

SSDs. However, depending on the FTL design in the SSDs,

latency can vary greatly when garbage collection is triggered.

Purity [8] measures the latency of each request and uses

Reed-Solomon to reconstruct the requested data whenever a

request takes longer than the 95th percentile latency. Flash

on Rails [19] and Shin et al. [18] both partition read and

write requests to different SSDs to provide predictable read

performance. Our work differs from these previous works in



that we implement our technique in the flash translation layer.

The advantage of our approach is that we are able to precisely

control each flash die. When the solution is built on top of an

existing FTL, there is no way of knowing if a flash die is busy

doing garbage collection when switching an SSD from writing

to reading. Therefore, read latency cannot be guaranteed.

Tiny-Tail Flash [22] partitions flash planes into two sets,

one for garbage collection and one for servicing read and

write requests. The garbage collection planes rotate period-

ically and parity-based redundancy is used to rebuild reads.

The configuration of the partitioning differs in our design

as we separate read and write requests onto different flash

dies. Whereas simulation results show that Tiny-Tail Flash

reduces GC-blocked I/Os to 0.003-0.7%, our real-time model

guarantees that deadlines will not be missed.

V. IMPLEMENTATION

The following section outlines implementation details for

PaRT-FTL and the over-provisioning used. Each read or write

request is split up into flash page-size requests by the device

driver and then inserted into a request circular buffer. The FTL

retrieves the requests and orders them according to Earliest

Deadline First and starts handling the request if the flash die

is not busy.

Write requests are buffered and admission control guaran-

tees that the buffer will not overflow. Write dies flush pages

in the buffer to the SSD. If garbage collection is initialized,

one flash operation for the garbage collector will be done on

that die, either reading a valid page, writing a valid page, or

erasing a block. If there is a read request for a page on a write

flash die, a rebuild operation will be initialized by adding the

pages that need to be read for the rebuild to the front of the

queue. In the beginning of the request loop, page rebuilds are

checked. If all the pages for a rebuild are read, the requested

page is decoded.

A. Over-provisioning

For PaRT-FTL, 25% of storage is reserved for parity check-

ing, which is typical for a RAID design. Of the 75% used for

data, the ratio of logical to physical address space is set to

64.3%. Thus, 48.2% of the SSD is used for data, with 26.8%

over-provisioning and 25% for parity information.

When comparing PaRT-FTL against other approaches such

as RTGC and WAO-GC, we use a matching data storage

capacity. Thus, in RTGC and WAO-GC, 48.2% of the SSD

is used for data with 51.8% over-provisioning. To ensure that

the over-provisioning for WAO-GC is enough, the upper bound

of λ is calculated. We define tr as the time it takes to read a

flash page assuming other flash dies on the same way are busy

and not idle. In our hardware, a page is 8 KB. The way arbiter

in the Cosmos Board grants access in a round-robin manner

to the common flash bus to access the NAND flash or to use

the internal data bus to access the page buffer, which stores 2

KB of data. Since a flash page is 8 KB, data transfer between

the page buffer occurs four times for each flash page. This

means that if we are measuring the latency of a page read

on a die, we have to assume that if the other dies on the

same way are also reading, tr = 1.23 ms on average for that

page read based on our observations in Table I. Similarly, a

page write takes 1.87 ms and a block erasure takes 3.84 ms,

on average. Let one partial garbage step consist of two page

copies and P = 256 pages per flash block, the upper bound

on the ratio of logical to physical address space for WAO-GC

can be calculated using equation 12 as 66.4%.

VI. EVALUATION

The experimental evaluation consists of two sections: 1)

simulation-based schedulability tests, and 2) experiments con-

ducted using two different FTL implementations on the Cos-

mos OpenSSD board. The simulations show that PaRT-FTL

has a higher feasible utilization, while the OpenSSD experi-

ments show that PaRT-FTL has lower read and write latency.

A. Simulation Experiments

Random task sets were generated with varying total uti-

lization using the UUnifast algorithm [4]. 500 task sets were

generated for each utilization value ranging from 0.05 to 0.95

with 0.05 increments. Each task set contains 10 tasks. Each

task makes read requests of one flash page, which equals 8

KB, and write requests of 3 flash pages. The periods for each

write request and read request are calculated as follows:

Tw
i =

⌈wi/|F |⌉·tw
Uw
i

(17)

T r
i =

ri·tr
Ur
i

(18)

where Uw
i and Ur

i are the write and read utilizations

generated, respectively.

Each task set was tested to see if it was schedulable under

PaRT-FTL, RTGC and WAO-GC FTL. Figure 5 shows the

simulation results for admission control with PaRT-FTL, which

is calculated with Equations 6 and 7, and the admission control

with RTGC [5]. The WAO-GC FTL has no admission control.

Each flash operation could potentially be blocked by a partial

garbage collection step from a different task. In the worst

case, a task will be blocked by all the other tasks. In our

experiments, we used a uniform probability to determine the

interference from other tasks. We also show a percentage of

the likelihood that a write operation would trigger a partial

garbage collection step. When λ is set to the maximum value

in Equation 12, partial garbage collection will occur after

every write operation. However, when λ is less, some write

operations will not trigger a partial garbage collection step.

We use a percentage to show the effects of higher over-

provisioning (WAO-GC 75 and WAO-GC 50). For example,

in our implementation, λ = 48.2%, which is 72.5% of the

maximum value for WAO-GC, so schedulable tasksets would

be close to WAO-GC 75.

We also varied the size of the read and write requests to

identify their effects on schedulability, shown in Figures 6

and 7. We measured the weighted schedulability [3], which
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Fig. 5: Admission Control Simulation.

is the sum of all the total utilizations of task sets that were

schedulable divided by the sum of all the total utilizations.

The weighted schedulability compresses a three-dimensional

plot to two dimensions and places higher value on task sets

with higher utilization.
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For various read request sizes, PaRT-FTL consistently shows

higher schedulability than RTGC and WAO-GC. When varying

the write request sizes, PaRT-FTL has lower schedulability

than RTGC in general and lower schedulability than WAO-GC

50 when wi > 10 as seen in Figure 7. This is due to PaRT-

FTL’s lower write bandwidth as writes are only occurring on

4 out of the 16 flash dies. Also, note that WAO-GC 50 has

much lower space utilization compared to our configuration

for PaRT-FTL. The peaks at write size equaling 18, 21 and

33 in Figure 7 are due to how the task sets are generated. For

example, since there are 16 flash chips in our NAND flash

memory, when wi = 18, the write period generated is twice

as large as the write period generated when wi = 15, thus

increasing schedulability.

B. Hardware Experiments

The OpenSSD Cosmos board [20] (as described in Figures 8

and 9) is used to implement the FTL. It is connected via an

external PCIe cable to a PC with an ASRock Z68 PRO3-M

Motherboard and a 3.10 GHz Intel Core i3-2100 CPU running

the Quest real-time operating system [21].

The Cosmos board includes the Zynq-7000 with dual ARM

Cortex-A9 and NEON DSP co-processor for each core. The

internal structure of a Zynq-7000 SoC has two components:

the processing system (PS) and the programmable logic (PL).

The PS component includes the dual-core ARM processor, the

memory interfaces and the I/O peripherals. The PL component

includes the FPGA fabric. The flash storage controller is

synthesized in the PL and the FTL firmware is running on

the the ARM Cortex-A9.

Fig. 8: OpenSSD Cosmos board [20].

The OpenSSD Cosmos board has two small outline dual in-

line memory modules (SO-DIMMs), each containing Micron

Technology’s MLC NAND 1 flash. A block contains 256

pages, and a page is 8 KB. The FTL sends commands to

way controllers directly, however, it cannot access the channel

controller including the way arbiter, page buffer and the BCH

error correction code (ECC) engine. The way arbiter grants

permission in a round-robin manner for the way controllers to

use the common flash bus or the internal data bus to access the

page buffer. The page buffer stores 2 KB of data, 60 bytes of

ECC parity and 90 reserved bytes. Since a flash page is 8 KB,

data transfer between the page buffer and the encoder/decoder

occurs four times for each flash page.

The FTL sends commands to the way controllers directly.

To perform a page write, when the way arbiter grants access to

the internal data bus, the command is issued and data is moved

from DRAM to the page buffer. The data is then transferred

to the ECC encoder that calculates the parity and transfers

data and parity to the page buffer. Then, data is transferred

to the way controller and finally to the NAND flash when

the way arbiter grants access to the common flash bus. To

perform a page read, data arrive from the way controller and

are transferred to the ECC decoder. If there are errors in the

1Part number MT29F256G08CMCABH2.



Fig. 9: OpenSSD Cosmos board specifications [20].

data, the ECC decoder corrects the data and transfers the data

to the page buffer. Data is then transferred to DRAM.

1) PaRT-FTL: The experimental setup is as follows in

Table III, with both random accesses and writes. Note that

in the following experiment, a task either reads or writes. The

SSD is initially only written to so that the effects of garbage

collection on write latency can be observed.

Tasks Request Size Period

Write 4 12 pages 60 ms

Read 4 3 pages 15 ms

TABLE III: Experimental setup.

The XOR implementation using NEON instructions takes

1.2 ms. We verified that the data is correct with the encoding

and decoding functions to rebuild read pages. The following

experiments, however, do not include the overhead to compute

the XORs. We assume that in a production-ready system,

computing the XORs will be built into the hardware. While

we assume this cost to be negligible in our experiments, it is

accounted for in the task model in Equations 1 and 3.

The PaRT-FTL maximum write bandwidth is 7.3 MB/s

(Eq. 9) with k = 12, |Fw| = 4 and parameters in Table IV.

The maximum read bandwidth is 76 MB/s (Eq. 10).

The write bandwidth for 4 tasks each making 12-page write

requests is plotted in Figure 10a. The read bandwidth for 4

tasks each making 12-page write requests and 4 tasks each

making 3-page read requests every 15 milliseconds is plotted

in Figure 12a. Note that the first few points are below average

because the tasks are initialized in the middle of the time slice.

The response times of write and read requests are measured

and plotted in Figure 10b and Figure 12b, respectively. This

is the time it took to complete a 12-page write request or a

3-page read request. The latency of a single page write and a

single page read is also measured and plotted in Figure 10c

and Figure 12c, respectively. The device driver inserts single-

page requests into the request buffer. Latency is measured in

the FTL as the time from when a page read or write is put

into the request buffer to when the FTL marks that request as

completed. The task set passes PaRT-FTL’s admission control,

so no deadlines are missed.

2) WAO-GC FTL: The same experimental setup shown in

Table III is run with WAO-GC FTL. The WAO-GC maximum

write bandwidth is 15.5 MB/s (Eq. 15) and read bandwidth is

13.4 MB/s (Eq. 16) with parameters in Table IV.

PaRT-FTL Fw PaRT-FTL Fr WAO-GC

|F | 16 16 16

fr - 12 16

tr 0.375 msec 1.23 msec 1.23 msec

tw 1.33 msec - 1.87 msec

te 3.84 msec - 3.84 msec

TABLE IV: Bandwidth and Latency parameters.

As in PaRT-FTL, the response times of write and read re-

quests are measured and plotted in Figure 11b and Figure 13b,

respectively. The latency of a single page write and a single

page read under WAO-GC FTL is also measured and plotted

in Figure 11c and Figure 13c, respectively. As expected from

the high read latency, some read requests using WAO-GC miss

deadlines, as shown in Figure 13b by the data above the 15

millisecond horizontal line.

C. Discussion

PaRT-FTL significantly reduces read and write latencies

compared to previous real-time FTL approaches that use

partial garbage collection (Figures 14 and 15). This is because

read requests are never blocked by a busy flash die that is

servicing a write request and potentially performing garbage

collection. As shown in Figure 15, the maximum write latency

with PaRT-FTL is 20% of the maximum write latency with

WAO-GC FTL. The maximum read latency with PaRT-FTL

is 35% of the maximum read latency with WAO-GC FTL.

We did not implement RTGC, however, as the worst-case

latency of RTGC has been measured and compared in previous

work [23].

PaRT-FTL does sacrifice being able to write at a higher

bandwidth since it partitions flash dies into read and write

dies. Whereas WAO-GC FTL could write in parallel to all 16

flash dies, PaRT-FTL could only write to 4 dies in parallel

since the other dies are servicing read requests. WAO-GC

guarantees that a request will not be blocked by more than

a partial garbage collection step given that the inter-arrival

time of write requests does not exceed the time it takes to do a

partial garbage collection step. However, there is no admission

control, so the effects of garbage collection can be seen in

Figure 16. The workload consists of two streams, each sending

requests of 24 pages as fast as possible. Initially, writes occur

at 27 MB/s. After 7 seconds, garbage collection starts and

bandwidth fluctuates down to 14 MB/s.

PaRT-FTL is suited to time-critical systems that require low

latency guarantees, whereas other approaches may be more

suitable for tasks that need high bandwidth and can tolerate

some missed deadlines. Our experiments are also limited by

our hardware. Modern SSDs have much higher bandwidth and

more parallelism such as more channels, ways per channel, and

flash dies per flash chip. All these features would improve the

bandwidth in PaRT-FTL.
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Fig. 10: Write bandwidth, request response time, and page latency with PaRT-FTL.
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Fig. 11: Write bandwidth, request response time, and page latency with WAO-GC FTL.
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Fig. 12: Read bandwidth, request response time, and page latency with PaRT-FTL.
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Fig. 13: Read bandwidth, request response time, and page latency with WAO-GC FTL.

VII. CONCLUSIONS AND FUTURE WORK

PaRT-FTL is motivated by the emerging need for bounded

and low latency access to solid state storage in time-critical

systems. We present a flash translation layer design that

partitions read and write requests onto different flash chips,

based on the parallelism in the SSD. We demonstrate the

performance of PaRT-FTL by comparison to previous work

in real-time FTL design. Empirical results show that we are

able to significantly reduce read and write latency.

Future work includes improving the bandwidth of PaRT-

FTL by exploring different hardware configurations. We are
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Fig. 16: The effects of garbage collection on write bandwidth with WAO-
GC. Garbage collection is initialized after 7 seconds.

also interested in adding fault tolerance to PaRT-FTL. Each

flash page contains error correction codes, and when blocks

of flash cells are deemed unreliable for further use, the SSD

controller discards them to avoid the risk of encountering

an uncorrectable error [12]. With PaRT-FTL, a page can be

reconstructed, providing further fault tolerance to errors that

may occur as flash cells degrade over time.
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