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Abstract
Current research on Internet-based distributed systems

emphasizes the scalability of overlay topologies for effi-
cient search and retrieval of data items, as well as routing
amongst peers. However, most existing approaches fail to
address the transport of data across these logical networks
in accordance with quality of service (QoS) constraints.
Consequently, this paper investigates the use of scalable
overlay topologies for routing real-time media streams be-
tween publishers and potentially many thousands of sub-
scribers. Specifically, we analyze the costs of using k-
ary n-cubes for QoS-constrained routing. Given a num-
ber of nodes in a distributed system, we calculate the op-
timal k-ary n-cube structure for minimizing the average
distance between any pair of nodes. Using this structure,
we describe a greedy algorithm that selects paths between
nodes in accordance with the real-time delays along physi-
cal links. We show this method improves the routing laten-
cies by as much as 40%, compared to approaches that do
not consider physical link costs. Additionally, we discuss
an approach that dynamically repositions nodes in logical
space, to improve the likelihood of meeting service require-
ments on data routed between publishers and subscribers.

1. Introduction

Recent work in the area of Internet-scale distributed sys-
tems suggests that a carefully constructed overlay topol-
ogy is beneficial for routing application-specific data. The
NARADA protocol, for instance, provides strong evidence
that implementing multicast functionality at the end-host
level results in advantages that outweigh the delay penal-
ties incurred over implementation in the network core [8].
Such advantages include: (1) the ability to scale to larger
topologies without requiring that group state be kept at core
network routers, (2) flexibility to adapt routing behavior to
application-specific events, and (3) reliance only on unicast

functionality implemented at the network layer, permitting
the use of COTS-based systems on existing IP networks.

Although NARADA gives a convincing argument for the
usefulness of end-system multicast routing, the protocol it-
self fails to scale as group sizes increase beyond a few hun-
dred hosts, partly due to communication overheads intro-
duced by random probe messages. In contrast, there have
been efforts to generate more scalable overlays [15] for stor-
age and retrieval as well as routing of data items among
peers using consistent hashing techniques. Such work in-
cludes Pastry [17], Scribe [4], CHORD [20], CAN [16] and
Tapestry [22]. There has also been work in the domain of
distributed computing involving k-ary n-cube structures for
communication in parallel processing architectures [9, 6, 7].
However, unlike NARADA, these systems make no explicit
attempt to route data in accordance with latency and band-
width requirements.
Contributions: This work focuses on the scalable delivery
of real-time media streams (e.g., as part of a nationwide dig-
ital broadcast system on the scale of Shoutcast [19] but sup-
porting live video feeds). We present an analysis of k-ary
n-cube graphs as structures for overlay topologies [13]. In
particular, we develop a method for determining the optimal
values of k and n, to represent a logical topology support-
ing m physical hosts. We describe a greedy algorithm for
routing over the overlay structure while taking physical net-
work proximity measures into account. Additionally, we in-
vestigate methods for dynamic subscriber relocation in log-
ical space based on network proximity and per-subscriber
latency constraints. Simulation results show a significant
reduction in delay penalties relative to unicast delays when
using the greedy routing algorithm as opposed to random
and ordered dimensional routing.

Sections 2 and 3 present an analysis of adaptive k-ary n-
cube overlay topologies for use in QoS-aware P2P systems.
In Section 4, we compare several algorithms for routing
data over a k-ary n-cube topology. This is followed by Sec-
tion 5 that discusses adaptive algorithms for re-assignment
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Figure 1. A sample overlay network

of hosts in logical space, in order to increase the probability
of satisfying real-time latency constraints. Section 6 inves-
tigates the relationship between link stress and average late-
ness for routed messages. Finally, related work is described
in Section 7, followed by conclusions and future work in
Section 8.

2. Analysis of k-ary n-cube Topologies

Scalable peer-to-peer (P2P) systems such as CHORD,
CAN and Pastry use distributed hashing techniques for lo-
cating objects (and nodes) in logical space. These systems
route in as little as O(lg M) hops along the overlay topol-
ogy, where M denotes the number of logical hosts commu-
nicating in the system [4, 20, 16]. Furthermore, the lookup
services associated with these systems require that hosts
maintain up to O(lg M) sized routing tables.

We use undirected k-ary n-cube graphs to model logical
overlays in a similar manner to the P2P systems described
above. These graphs are specified using n as the dimen-
sionality parameter and k as the radix (or base) in each di-
mension. Figure 1 shows an example of an overlay network
structured as a 2-ary 3-cube graph and a corresponding un-
derlying physical network. A cost is associated with each
edge in the physical network, and each edge in the logi-
cal overlay maps to the shortest path between the respective
end-point nodes in the physical topology. The costs associ-
ated with logical edges are derived as the sum of the costs
along the corresponding path taken in the physical network.
Note that the physical topology may contain router nodes
that do not participate explicitly within the context of the
overlay network (i.e., R1 and R2).

The following properties of k-ary n-cube graphs are rel-
evant to this work:

• M = kn, where M is the number of nodes in the
graph. Therefore, n = lgk M .

• Each node is of the same degree, with n neighbors if
k = 2, or 2n neighbors if k > 2.

• The minimum distance between any pair of nodes in

the graph is no more than nb k
2 c hops.

• The average routing path length between nodes in the

graph is A(k, n) = nb k2

4 c 1
k hops.

• The optimal dimensionality of the graph is n = ln m.
• Each node in the graph can be associated with a logi-

cal identifier consisting of n digits, where the ith digit
(given 1≤i≤n) is a base-k integer representing the off-
set in dimension i.

• Two nodes are connected by an edge iff their identifiers
have n − 1 identical digits, except for the ith digit in
both identifiers, which differ by exactly 1 modulo k.

The routing complexity in k-ary n-cubes is a logarithmic
function of M . Moreover, both the average and maximum
distances between nodes depend on k and n. Given the im-
portance of these distances in QoS-constrained routing, we
now show how the average hop count is derived. Note that
we omit deriving the maximum hop count due to space con-
straints.

Lemma 1. For an undirected k-ary 1-cube graph, where k
denotes the number of nodes in the first dimension, the sum
of the distances, H(k, 1), from any one node to every other
node in the graph is given by:

H(k, 1) = b
k2

4
c (1)

Proof. A k-ary 1-cube can be represented as an undirected
cycle of k nodes. There are two cases to consider:

(i) If k is even, H(k, 1) is given by:

H(k, 1) =

k/2
∑

i=1

i +

k/2−1
∑

i=1

i =
k2

4
(2)

(ii) If k is odd, H(k, 1) is given by:

H(k, 1) =

(k−1)/2
∑

i=1

2i =
k2 − 1

4
(3)

Thus, by Equations 2 and 3, for all k ≥ 2, H(k, 1) =

bk2

4 c.

Lemma 2. For an undirected k-ary n-cube graph, the fol-
lowing recursive identity holds:

H(k, n) = H(k, n − 1) · k + kn−1b
k2

4
c (4)

Where H(k, n) denotes the sum of the distances from any
one node to every other node in a k-ary n-cube graph, k
denotes the radix in each dimension, and n the number of
dimensions.

Proof. A k-ary n-cube can be divided into k k-ary (n-1)-
cubes. Each subcube of n − 1 dimensions is connected to
one or two neighboring subcubes by kn−1 edges. Consider
a reference node in a subcube. The sum of the distances be-
tween the reference node and every other node in the same



subcube is H(k, n − 1). The sum of distances between
the reference node and each node in an adjacent subcube
is H(k, n − 1) + kn−1. Similarly, the sum of the distances
between the reference node and each node in a subcube that
is i cubes away from the subcube containing the reference
node is given by H(k, n−1)+i ·kn−1. There are two cases
to consider:

(i) if k is odd, H(k, n) is given by:
H(k, n) = H(k, n − 1) +

+

k−1

2
∑

i=1

2(H(k, n − 1) + ikn−1)

= H(k, n − 1) · k + kn−1 k2 − 1

4
(5)

(ii) if k is even, H(k, n) is given by:
H(k, n) = H(k, n − 1) +

+

k−2

2
∑

i=1

2(H(k, n − 1) + ikn−1) +

+ H(k, n − 1) + kn−1 k

2

= H(k, n − 1) · k + kn−1 k2

4
(6)

By Equations 5 and 6,

H(k, n) = H(k, n − 1) · k + kn−1bk2

4 c.

Theorem 1. For an undirected k-ary n-cube, where k ≥ 2
denotes the radix of each dimension, the sum of the dis-
tances, H(k, n), from any one node to every other node in
the graph is given by:

H(k, n) = kn · nb
k2

4
c
1

k
(7)

Proof. The proof proceeds by induction on the number of
dimensions, n. By Lemma 1,

H(k, 1) = b
k2

4
c = k1 · 1b

k2

4
c
1

k
(8)

Therefore, the formula holds for n = 1 and establishes a
basis for the inductive argument. Next, suppose that the
result holds for n − 1 dimensions:

H(k, n − 1) = kn−1 · (n − 1)b
k2

4
c
1

k
(9)

Substituting the right side of the above equation for
H(k, n − 1) in Equation 4 yields:

H(k, n) = (kn−1 · (n − 1)b
k2

4
c
1

k
)k + kn−1b

k2

4
c

= kn · nb
k2

4
c
1

k

(10)

By induction, the result holds for all n > 0.

Corollary 1. In a k-ary n-cube graph, where n denotes the
number of dimensions and k the radix in each dimension,

the average hop count along a path between two nodes,
A(k, n), is given by the following:

A(k, n) = nb
k2

4
c
1

k
(11)

Proof. The result is obtained by dividing the right side of
Equation 7 by the number of nodes, kn, and thus follows
directly from Theorem 1 and the symmetry of the k-ary n-
cube structure.

The function A(k, n) is defined over the domain
{(k, n)|k, n ∈ Z ∧ k ≥ 2 ∧ n ≥ 1}, where Z denotes
the set of integers. Consider an extension of this function,
Aext(k, n), with domain {(k, n)|k, n ∈ R∧k ≥ 2∧n ≥ 1},
where R denotes the set of real numbers. Assuming non-
integer values are possible for parameters k and n, the fol-
lowing optimization problem can be solved to find the op-
timal dimensionality, nopt, with respect to the cost function
Aext(k, n):

Problem 1. Find n = nopt which minimizes Aext(k, n) =

nk
4 , given constraints k ≥ 2, n ≥ 1, and M = kn, where

M is constant.

By the constraint M = kn, it follows that k = M
1

n .
Substituting for k, the cost function becomes:

Aext(n) = n
M

1

n

4
(12)

Since M is held constant, taking the derivative of
Aext(n) with respect to the single variable n yields:

Aext
′(n) =

M
1

n · (n − ln M)

4n
(13)

As a result of the constraint n ≥ 1, the only relevant
critical point occurs when n = ln M . To see that this point
is indeed a minimum, the second derivative with respect to
n is examined:

Aext
′′(n) =

M
1

n (ln M)2

4n3
(14)

For all n ≥ 1, Aext
′′(n) > 0. In particular, Aext

′′(n) >

0 for n = ln M . Therefore, the function Aext(k, n) is
minimized with respect to the constraints exactly when
n = nopt = ln M , giving Aext(k, n) = 1

4M
1

ln M ln M .
The above analysis suggests that the number of dimensions,
n, of a k-ary n-cube graph with M nodes should be chosen
as close as possible to nopt = ln M , in order to minimize
the average path length between pairs of nodes.

3. M-region Analysis

In practice, using n = ln M as the number of dimensions
in a k-ary n-cube graph is not feasible, since n must be a
positive integer. This section introduces an integer-based
analysis of parameters k and n, to construct a k-ary n-cube
that is optimal with respect to average path length.



Calculate_M-Region(int m) {
i = 1
k = j = 2;
while(M[i,j] < m)

i++;
n = i;

max_M = M[i,j];
min_A = A[i,j];

inc_j = 1;
while(i > 0) {

j += inc_j;
i--;
if((A[i,j] <= min_A) && (M[i,j] > max_M)) {

inc_j = 1;
max_M = M[i,j];
min_A = A[i,j];
n = i;
k = j; }

else inc_j = 0; }
return k, n; }

Figure 2. Algorithm for calculating optimal
M-regions

Given a range of values for the number of physical hosts,
m, in the system, a corresponding pair of values (k, n) is
determined for defining an overlay network with M = kn

logical nodes. We refer to this range of sizes for the physical
network, [ml,mu], whose members correspond to the same
chosen values of k and n, as an M-region. In this paper,
the following assumptions are maintained for the purpose
of M-region analysis:

• For routing to be meaningful, we require that m≤M ,
with no two physical hosts mapped to the same logical
node.

• The overlay structure is optimized with respect to
A(k, n), calculated to floating point precision.

• Given two k-ary n-cube graphs with parameters
(k1, n1) and (k2, n2), such that k1 · n1 = k2 · n2 and
k1

n1 > k2
n2 , the graph with parameters (k1, n1) is

preferred. This is because it can support a larger num-
ber of physical hosts without increasing the average
path length, given that A(k, n) is O(nk).

In terms of this analysis, there exist some k-ary n-cube
graphs that are inherently suboptimal for all values of m.
For example, a 2-ary 11-cube has 211 = 2048 nodes, while
a 3-ary 7-cube has 2187 nodes. In the latter case, more
physical hosts can be supported while maintaining a lower
average hop count, since A(3, 7) < A(2, 11).

Problem 2. Given a value for the number of physical hosts
in the system, m, find k ∈ Z and n ∈ Z that minimize the
function A(k, n) = O(nk) while simultaneously maximiz-
ing the number of nodes, M = kn, comprising the corre-
sponding k-ary n-cube graph.

[ml, mu] k n M = kn

[2, 2] 2 1 2
[3, 4] 2 2 4
[5, 9] 3 2 9
[10, 27] 3 3 27
[28, 32] 2 5 32
[33, 81] 3 4 81
[82, 243] 3 5 243
[244, 729] 3 6 729
[730, 2187] 3 7 2187
[2188, 6561] 3 8 6561
[6562, 19683] 3 9 19683
[19684, 59049] 3 10 59049
[59050, 177147] 3 11 177147
[177148, 531441] 3 12 531441
[531442, 1594323] 3 13 1594323
[1594324, 4782969] 3 14 4782969

Figure 3. Table of M-regions

An iterative algorithm is presented in Figure 2 for solv-
ing the above problem. The number of logical nodes
is represented by M [n, k] = kn, while the average
hop distance between a pair of nodes is represented by
A[n, k] | k≥2 and n≥1.

The discussion of M-regions in this paper corresponds
roughly to realities in CAN. However, the algorithm in Fig-
ure 2 is explicit in determining overlay configurations that
are optimal with respect to network size and average path
between pairs of logical hosts. The optimal k-ary n-cube
graph can be computed each time the size of the physical
network changes, or a number of M-regions can be pre-
calculated and stored in memory, along with the state in-
formation to maintain the structures of several alternative
routing topologies.

Figure 3 lists the first sixteen M-regions as a table with
four columns, using the floating point value for average hop

count, A[n, k] = nb k2

4 c 1
k . This table is constructed by ex-

amining the output of the algorithm in Figure 2 for each
m = 2i, over the range 2≤m≤4782969.

4. Proximity-based Greedy Routing

For the purposes of QoS-constrained routing, this work
investigates the performance of three algorithms that lever-
age k-ary n-cube logical topologies, built on top of a physi-
cal network:

• Ordered Dimensional Routing: For a destination iden-
tifier, d1d2· · ·dn, a message is initially routed to a node
that matches d1 in the first digit of its logical node ID.
For each dimension i | 1≤i≤n, the message passes to
a node whose ith digit of its ID matches di. This is the
method for routing used by systems based on Pastry,
such as Scribe and PeerCQ [4, 11].

• Random Ordering of Dimensions: This is similar to
ordered dimensional routing except messages are for-



warded along randomly selected dimensions towards
the destination. We make sure that messages are al-
ways routed closer to the destination at each hop.

• Greedy Routing: As a main contribution of this work,
greedy routing is performed using some measure of
physical proximity. It is assumed that each host main-
tains a measured cost (e.g., in terms of latency) to
each of its direct neighbors in the k-ary n-cube. A
message is forwarded to the neighbor along the log-
ical edge which results in the lowest cost among all
other neighbors for which forwarding reduces the dis-

tance to the destination node. Since there are nb k2

4 c 1
k

hops on average along the overlay network between
two hosts, and finding the next hop requires searching
O(n) neighbors, the resulting complexity of the greedy
algorithm is O(n2k).

Experimental Analysis: Given the above algorithms, we
compare a number of simulations using the GT-ITM soft-
ware for generating random transit-stub physical topologies
[21]. The physical topology contains 5,050 routers, and
the system is comprised of 65,536 hosts each randomly as-
signed to a router. Each experiment proceeds by choosing
one host at random to be a publisher, and all other hosts are
assumed to be subscribers. End-to-end delays are measured
for messages routed along paths of the corresponding over-
lay, between the publisher and each subscriber. For compar-
ison, unicast delays are measured for the (shortest) physical
paths between the publisher and each subscriber. The rela-
tive delay penalty for each subscriber is then calculated as
the logical end-to-end latency divided by the unicast delay.
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Figure 4. Comparison of routing algorithms

Figure 4 shows the cumulative distribution of delay
penalties for the three algorithms using two different con-
figurations of k and n. The values on the y-axis represent
the percentage of subscribers which incur a delay penalty

no more than the corresponding value on the x-axis. Sim-
ulation results indicate a significant improvement in delay
penalty for greedy routing compared with random and or-
dered dimensional routing for both structures, whereas or-
dered dimensional routing performs no better than in the
random case. We also see that the greedy algorithm per-
forms better relative to the other routing methods when the
node degree is greater, since this gives a higher probability
of finding next hops with closer proximity in the underly-
ing physical network. Additionally, the results show that
the topology in which k = 2 performs better than in the
case where k = 16, which is consistent with the analysis
of M-regions in the previous section. As can be seen from
Figure 4, there is as much as a 40% reduction in the relative
delay penalty when using the greedy algorithm compared to
the ODR or random approaches.

5. Adaptive Node ID Assignment

During system initialization, it is assumed that the k-
ary n-cube overlay is constructed by assigning logical node
identifiers, chosen uniformly at random, to all participating
physical hosts. Initially, all hosts function equally as rout-
ing agents forwarding messages across the logical topology.
Once a host has received a node identifier corresponding to
a position in the logical network, it can request to become a
publisher of a new data stream or a subscriber to an already
existing data stream. Such requests may take the form of
messages routed over the optimal k-ary n-cube structure us-
ing the greedy algorithm described in the previous section.

In the absence of information about how publisher and
subscriber hosts are associated with QoS-constrained data
streams, random placement of physical hosts in the logical
network is appropriate. This helps to minimize the aver-
age distance between nodes in an incomplete k-ary n-cube,
when the number of physical hosts, m, is less than M = kn.
However, as sets of hosts begin to specify interest in receiv-
ing particular data streams with corresponding service con-
straints, it becomes possible to re-assign such subscriber
hosts to more appropriate locations in logical space. Re-
assignment of a host to a new location in the overlay (based
on the requested service) is accomplished by swapping the
logical node identifier, as well as routing table information,
with some other host in the system.

We investigate an algorithm that swaps the positions of
joining subscribers with other hosts, in order to increase the
likelihood of satisfying QoS constraints. One such algo-
rithm works as shown in Figure 5. S represents the new
subscriber, which is assumed to advertise its interest in re-
ceiving a data stream from the publisher host, P. The nota-
tion i.cost(P ) denotes the total end-to-end cost of routing
a message between host P along the physical topology to
host i.



Subscribe(Subscriber S, Publisher P, Depth d)

If d = D return

Find a neighbor i of P such that
i.cost(P) is maximal for all neighbors

If S.cost(P) < i.cost(P)
then swap logical positions of i and S

else Subscribe(S, i, d+1)

Figure 5. Adaptive node re-assignment al-
gorithm

The algorithm checks for positions appropriate for re-
assignment of subscribers in the overlay starting from the
publisher node. Each subscriber host is swapped into a
position d logical hops away from the publisher host if
it achieves a low enough physical delay to the source of
the published data. Intuitively, the algorithm minimizes
the maximal delay along the set of direct logical links to
the publisher node by considering each subscriber host in
turn. For some constant depth, D, the algorithm recursively
checks for appropriate logical positions with increasing hop
counts from the original publisher for relocation of the sub-
scriber host. The algorithm is thus a branch-and-bound ap-
proach, and seeks to minimize a linear cost along a particu-
lar path in the search space. Since O(n) neighbors must be
examined for each time the function is called, the resulting
complexity of the adaptive algorithm is O(snD), where s

denotes the number of subscribers in the group, and D is
the maximal depth from the original publisher host.
Experimental Analysis: Using the same simulation con-
figurations as before, 65,536 hosts are randomly assigned
to routers and then organized into a 16-dimensional logical
hypercube. One host is randomly chosen to be a publisher,
while a number of other hosts are randomly chosen to be
subscribers. A uniformly distributed latency constraint is
generated for each subscriber, in the range bounded below
by the minimal physical link latency, and above by the mean
physical latency multiplied by the worst case logical hop
count (n · bk

2 c). Each subscriber is then selected in random
order for re-assignment to a new location in the logical over-
lay, using the algorithm stated in Figure 5 with D = 1 and d

initialized to 0. Before and after adaptation, the total cost of
greedy routing over the logical topology to each subscriber
host is recorded, and this cost is compared with the corre-
sponding host’s latency constraint. A success is recorded if
the achieved cost does not surpass the constraint for each
subscriber. The total successes is divided by the number of
subscribers in the group, to obtain a success ratio.

Figure 6(a) plots the success ratios for subscriber group
sizes of 512, 1024, 2048, 4096, 8192, 16384, and 65535
hosts. Results are given for groups of subscribers that are

dynamically re-assigned in the overlay topology as well as
for the case in which no adaptation is performed. Suc-
cess ratios are consistently greater when the adaptive algo-
rithm is used, and it is apparent that QoS constrained data
streams can be more successfully delivered to subscribers
when adaptive node ID assignment is leveraged.

For a given subscriber host, S, and its corresponding la-
tency constraint, c, a normalized lateness value, L(S, c), is
calculated using the following formula:

L(S, c) =

{

0 if S.cost(P ) ≤ c
S.cost(P )−c

c if S.cost(P ) > c
,

where S.cost(P ) denotes the total cost of routing a message
along the logical network from publisher host P to sub-
scriber S. The lateness values are normalized in order to
eliminate bias towards subscribers with large latency con-
straints, relative to other subscriber hosts in the group, and
all subscriber hosts with satisfied constraints are assigned a
normalized lateness of zero. Figure 6(b) compares the aver-
age normalized lateness values obtained for varying group
sizes before and after relocation of hosts in logical space.
While adaptive node relocation improves performance, it is
likely that better results will occur if the algorithm in Fig-
ure 5 is used with values of D greater than one.

6. Link Stress

The approaches considered in the preceding sections fo-
cus mainly on reducing the average total delay of routing
messages between publisher and subscriber hosts. How-
ever, it is also useful to consider the effects of such algo-
rithms on average physical link stress, which we define as
the average number of times a message must be forwarded
over each physical link, in order to multicast a distinct mes-
sage from a publisher host to each of its subscribers.

An alternative algorithm, that we call “split-based greedy
routing”, is used to further reduce average normalized late-
ness values, without unduly increasing the physical link
stress. The algorithm extends the greedy routing approach
developed in Section 4. At each hop along the path taken
by the greedy algorithm, each neighbor is checked to see if
it is already a subscriber. The path of a message through the
logical overlay is redirected via an existing subscriber, if
such a host exists that decreases the total end-to-end delay,
compared with simply routing via the greedy algorithm.

Via simulation, we investigate the effects of the split-
based greedy algorithm. A group of subscribers is formed
by selecting hosts at random positions in the logical topol-
ogy. For varying group sizes in a 16D hypercube topology,
a single message is multicast from a randomly selected pub-
lisher to each subscriber host. Each group comprises a set
of subscribers that are randomly assigned to nodes in the
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Figure 6. Effect of adaptive node relocation on (a) success ratio, and (b) normalized lateness
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Figure 7. (a) Lateness and (b) link stress versus group size

overlay. For both of the greedy and split-based routing al-
gorithms, a multicast tree is constructed using the union of
paths generated by the respective routing approaches. Av-
erage normalized lateness values are calculated using the
formula in Section 5, and average physical link stress val-
ues are obtained for each group size by counting the number
of times a a message is forwarded over a physical link and
dividing the result by the number of unique physical links
involved in multicasting the message to all subscribers.

Figure 7 shows the average normalized lateness, and av-
erage link stress, for each routing algorithm. Even though
the split-based greedy approach reduces lateness, the ba-
sic greedy algorithm performs relatively well, especially in
terms of link stress at large group sizes. Observe that link
stress increases for larger group sizes when the mapping
between physical paths and logical links results in a larger
intersection of physical links.

7. Related Work

A number of systems have been developed in recent
years that focus on methods for distributing data among

hosts participating in an overlay network. The taxonomy
of these systems lies largely along the extremities of two
dimensions: scalability and QoS awareness. For example,
systems such as Pastry/Scribe, Chord, CAN, and Tapestry
provide a lookup service that can scale to thousands of
peers. These works differ in the formulation of their over-
lay topologies (e.g., Chord arranges hosts in a logical ring
whereas CAN assumes a Cartesian coordinate space), but
none focus on adaptive node management for QoS pur-
poses. Approaches such as NARADA do attempt to meet
QoS guarantees by considering physical proximities, but
they are not particularly scalable.

While a number of other projects [1, 10, 5, 12, 2, 18,
3, 14] have implemented scalable multicast solutions at
the application-level, most have either not addressed per-
subscriber QoS requirements, or take a very different ap-
proach to ours. For example, OMNI [2] implements an
overlay multicast network infrastructure that attempts to
minimize the latency of real-time data using a two-tier ap-
proach. While facing similar objectives to our system,
OMNI differs in that it divides end-hosts into two classes:
(1) special Multicast Service Nodes (or MSNs) and, (2) sub-



scribing clients. MSNs form an overlay backbone and each
client subscribes with a single MSN. Routing trees connect-
ing MSNs are continuously adapted, based on network con-
ditions and the distribution of clients. In our approach, we
treat all end-hosts as equivalent peers, forming a unifying k-
ary n-cube overlay for the purposes of data delivery. We se-
lect paths through this overlay based on network latencies,
bandwidth availability and per-subscriber service require-
ments and adapt the overlay topology based on the number
of end-hosts present in the system. In summary, our k-ary
n-cube approach seeks to relinquish the trade-off between
scalability and QoS awareness.

8. Conclusions and Future Work

This work analyzes the use of k-ary n-cubes for rout-
ing real-time media streams between publishers and poten-
tially hundreds of thousands of subscribers, in keeping with
per-subscriber service constraints. We analyze the minimal
average hop-count between any pair of nodes in a k-ary n-
cube and use this as the basis for constructing an overlay
topology for real-time transport of data. Using our greedy
algorithm, which leverages physical proximity information,
we are able to route over such topologies with significantly
lower delay penalties than existing approaches based on
peer-to-peer routing.

We are in the process of building an overlay system for
delivery of real-time data. Future work involves the analy-
sis of system stability as we adapt M-regions based on host
joins and departures. Likewise, efficient methods of main-
taining globally consistent state to support scalable overlay
networks is under investigation.
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