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Abstract

This paper describes our experience using Dynamic Window-Constrained Scheduling (DWCS) [13,
14, 12, 11] to schedule processes (and threads) on available CPUs in a Linux system. We describe the
implementation of a kernel-loadable module that replaces the default Linux scheduler. Each process
scheduled using DWCS has a request period of T time units and a ‘window-constraint’, x/y. The end of
one request period and the start of the next denotes a deadline by which time a process must be serviced
for one quantum, of K time units. Under these constraints, DWCS attempts to guarantee that each
process receives at least (y−x)K units of CPU time every window of yT time units. That is, DWCS tries
to guarantee that each process misses no more than x deadlines every window of y requests for service,
and each time a process is serviced it receives K units of CPU time.

DWCS can produce a feasible schedule under certain constraints, when the least upper bound on
resource utilization [8] does not exceed 100% and each process is serviced in fixed size time slots [12].
We show that DWCS is capable of successfully scheduling CPU- and I/O-bound processes in Linux
more than 99% of the time, when a feasible schedule is theoretically possible. Unlike in the theoretical
case, interrupt handling, context-switching, scheduling latency and unpredictable management of other
resources besides the CPU affect the predictable scheduling of processes. We discuss several approaches
that we are considering, to account for system overheads and provide predictable real-time scheduling to
processes in Linux.

1 Introduction

For many real-time applications, it is important that
a process (or thread) receives a guaranteed share of
the CPU over a finite window of time. Rather than
guaranteeing a process receives all its allocation of
the CPU in one instance, it is often important to
overlap the execution of multiple processes so that
each receives a “fair share” of the CPU over fixed
time intervals. This ensures that processes make
progress at guaranteed rates. Consequently, it is im-
portant for processes to be executed in time slices
over predictable time intervals. However, it is typi-
cally not practical in scalable systems, to ensure that
every process time slice is executed at predictable
times. For such systems, it is possible to allow a
finite number of process time slices to be executed
later than desired as long as: (a) most time slices
are executed at the desired rate and, (b) the entire
process receives a guaranteed share of the CPU over
a finite window of time. For example, a video server
might support thousands of client requests, and the
threads serving these requests need to compress and
transmit video frames at guaranteed rates in order to
meet client-level service constraints. If some frames

are generated later than desired and are consequently
discarded, the client might detect some dropouts in
the playback of the video stream. This might be ac-
ceptable as long as the number of consecutive losses
of video frames does not exceed a client-specified
threshold. If the threshold is exceeded it may be
impossible to interpret the received video sequence
at the client. Likewise, if frames are generated too
fast, playout buffers at the client might overflow and
some frames will again be lost.

We have developed an algorithm called Dynamic
Window-Constrained Scheduling (DWCS) [13, 14,
12] to support real-time and multimedia applications
requiring rate-based service constraints like those de-
scribed above. DWCS was originally designed as
a packet scheduler to provide (m, k)-firm deadline
guarantees [5] and fair queueing [2, 15, 3, 1, 4, 9, 10],
for loss and delay constrained traffic streams. This
was particularly useful for servicing multimedia au-
dio and video streams, which can tolerate a certain
fraction of lost information, as long as consecutive
losses are limited. DWCS was then extended to guar-
antee (m, k)-hard deadlines (or, equivalently, hard
guarantees that no more than x missed packet dead-



lines occur for every window of y consecutive packets
in a given stream). This is similar to the Rate-Based
Execution (RBE) model [6], but in that work there is
no notion of missing, or discarding service requests.
More recently, DWCS has been applied as a process
(or thread) scheduler in the Linux kernel [11].
For process scheduling, consider that each process

has service constraints in terms of a request period,
T , a ‘window-constraint’, x/y, and a service quan-
tum, C. The end of one request period and the
start of the next denotes a deadline by which time a
process must be serviced for one quantum (or time
slice), of C time units. Under these constraints,
DWCS attempts to guarantee that each process re-
ceives at least (y−x)C units of CPU time every non-
overlapping (i.e., adjacent) window of yT time units.
That is, DWCS tries to produce a feasible schedule
in which each process misses no more than x dead-
lines every window of y requests for service, and each
time a process is serviced it receives C units of CPU
time. This means that DWCS can service processes
that require execution multiple times (such as peri-
odic processes), as well as processes that only execute
once. In either case, a process is serviced at the gran-
ularity of a quantum of C time units. Moreover, a
process must be serviced for one quantum in a single
request period otherwise a deadline is missed.
As a packet scheduler, DWCS attempts to guaran-

tee that no more than x packets are serviced late,
for every y consecutive packets in the same stream
requiring service. A late packet is considered lost
since it is useless to a recipient. That said, there
are many similarities between process and packet
scheduling and DWCS has important properties per-
taining to both. Consider that a process or packet
stream, Pi, has service constraints Ti, xi/yi and Ci.
DWCS can guarantee a feasible schedule for all Pi,
where 1 ≤ i ≤ n, if the minimum utilization factor,
U , equals

∑n
i=1

(1−xi/yi)Ci

Ti
and U≤1.0. We impose

a restriction that Ci is less than or equal to K time
units, where K represents the maximum-sized ser-
vice quantum. For theoretical guarantees, we assume
that at most one packet or process time slice is ser-
viced every K time units. Moreover, the scheduler
must be invoked at least once every K time units.
To guarantee a feasible schedule, U≤1.0, Ci≤K,

and Ti = qiK for all positive integers qi,
where 1 ≤ i ≤ n. If these conditions
hold, a set of processes or streams, P =
{P1, · · ·, Pn}, can be feasibly scheduled with ser-
vice constraints (T1, x1/y1, C1)· · ·(Tn, , xn/yn, Cn),
respectively. However, these constraints may have
to be translated into their canonical form. That is,
for a process or stream Pi with service constraints
(Ti, xi/yi, Ci), where Ti = qiK, the canonical set

of constraints are (T ∗
i , x∗

i /y∗
i , C∗

i ), with T ∗
i = K,

x∗
i = yi(qi − 1) + xi, y∗

i = qiyi and C∗
i = Ci.

The generation of these equivalent constraints can
be done internally by the scheduler, although at
present this is not done so it is possible that theo-
retically feasible schedules are not always obtainable
in practice. Moreover, system overheads affect these
theoretical bounds. In any case, it is theoretically
possible to guarantee a minimum CPU utilization of
(1− xi/yi)Ci/Ti or, equivalently, (1− x∗

i /y∗
i )C

∗
i /T ∗

i

to Pi. Throughout the remainder of the text we will
assume Ci = C∗

i = K for all i, but in practice it is
acceptable for Ci (and the equivalent C∗

i ) to be less
than K at the cost of potentially reduced resource
utilization. It should also be pointed out that the
notion of generating canonical service constraints, to
guarantee feasible schedules where possible, is not
discussed in the related paper [12] but is included
here for completeness.
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FIGURE 1: An example schedule for
a process.

Figure 1 shows an example of a process that is suc-
cessfully scheduled to meet its service constraints,
where T = 2, x/y = 1/2 and the time slice is
C = K = 1 time units. The scheduler executes
once every time slot, where one time slot is K time
units. All request periods are multiples of a time
slot. Observe that the process is successfully sched-
uled according to its service constraints, since it re-
ceives one unit of service time every fixed window of
four time units. For the current version of DWCS,
sliding windows are not supported. In this example,
there is a window of four time units between time
t = 9 and t = 13 where the process is not serviced.
In the worst-case, DWCS services a process at the
beginning of one fixed window and the end of the
next fixed window. This means that for a process,
Pi, there can never be a sliding window larger than
2(Ti −Ci) where Pi is not serviced. For applications
which require bounded delay variation, or jitter, this
is an important property. In the future, we hope to
extend DWCS to support sliding windows.
Contributions: This paper describes our expe-
rience using DWCS to schedule processes (and
threads) on available CPUs in a Linux system. We
describe the implementation of a kernel-loadable



module that replaces the default Linux scheduler.
We have taken the approach of modifying an off-
the-shelf version of Linux rather than using a cus-
tom real-time system, or an approach such as
RTLinux [7], to measure the delay guarantees that
are possible by simply changing the kernel sched-
uler. Using DWCS, processes are scheduled to meet
their service constraints over finite windows of time.
By contrast, the default kernel scheduler does not
consider explicit time-constraints on the execution
of processes.
We show that DWCS is capable of successfully

scheduling CPU- and I/O-bound processes in Linux
more than 99% of the time, when a feasible sched-
ule is theoretically possible. Unlike in the theo-
retical case, interrupt handling, context-switching,
scheduling latency and unpredictable management
of other resources besides the CPU affect the pre-
dictable scheduling of processes. We discuss several
approaches that we are considering, to account for
system overheads and provide predictable real-time
scheduling to processes in Linux.
The next section describes process scheduling in

Linux using DWCS. A description of the implemen-
tation of DWCS in Linux is included. Section 3 de-
scribes some of the experiments we have conducted
and the results we have obtained so far. Some of
the issues needed to be addressed to guarantee pre-
dictable real-time scheduling in Linux are discussed
in Section 4. Finally, conclusions and future work
are described in Section 5.

2 Process Scheduling Using
DWCS

We have implemented an (m, k)-hard version of
DWCS for Linux [12]. The Linux DWCS scheduler
compares the service constraints of pairs of processes
(or, equivalently, threads) and selects the next pro-
cess with the earliest deadline for execution. The
current deadline of a process refers to the time by
which the next time slice of that process must com-
plete execution. The deadline di, of a process Pi,
is derived from the current time t, and the request
period Ti. That is, di = t + Ti, where t is a multi-
ple of the slot time K. In other words, t represents
the time when a scheduling decision is made and all
decisions must be made on slot boundaries.
For two or more processes with the earliest dead-

line, the process with the lowest current window-
constraint is chosen. Intuitively, this means that
a process can tolerate fewer deadline misses over a
given period of time. If there is a tie between dead-
lines and window-constraints, the process Pi with the

lowest window-numerator, xi is selected. Essentially,
this means that one process can tolerate the same
fraction of missed deadlines as some other process
but over a smaller window of deadlines. The window-
constraints of processes are adjusted over time, so
it may be possible that two or more processes have
zero-valued window constraints and the same dead-
lines at some time instant. In this case, the process
with the highest window-denominator, yi, is chosen
for execution, since it can tolerate no missed dead-
lines over a larger window of consecutive deadlines.
All other cases are scheduled first-come-first-serve.
For each process Pi, serviced for a time slice be-

fore its deadline (i.e., a process that is serviced in its
current request period), the window-constraint xi/yi

is adjusted dynamically to, in effect, reduce the ur-
gency of servicing the same process again when an-
other more “critical” process requires service.
Let xi be Pi’s original window-numerator, while yi

is its original window-denominator. These are the
values first set for a DWCS process. Let x′

i and y′
i

denote the current window-numerator and current
window-denominator as the process is executed. Be-
fore Pi is serviced, xi = x′

i and yi = y′
i. Then, if Pi

is serviced before its deadline, the current window-
constraint, x′

i/y′
i, is adjusted as follows:

Rule (A) – Window-constraint adjustment
when Pi is serviced in its current request pe-
riod:

if (y′
i > x′

i) then y′
i = y′

i − 1;
else if (y′

i == x′
i) and (x′

i > 0) then
x′

i = x′
i − 1; y′

i = y′
i − 1;

if (x′
i == y′

i == 0) or (Pi is tagged) then
x′

i = xi; y′
i = yi;

if (Pi is tagged) then reset tag;

At this point in time the current window-constraint,
x′

j/y′
j , of any other process, Pj | j �=i, having missed

its deadline, is adjusted as follows:
Rule (B) – Window-constraint adjustment
when Pj | j �= i is not serviced in its current
request period:

if (x′
j > 0) then
x′

j = x′
j − 1; y′

j = y′
j − 1;

if (x′
j == y′

j == 0) then x′
j = xj ; y′

j = yj ;
else if (x′

j == 0) and (yj > 0) then
y′

j = y′
j + ε;

Tag Pj with a violation;

If a process violates its original window-constraint,
it is tagged for when it is next serviced. A tagged
process has a DWCS VIOLATION flag set. This ensures
that the process is never starved of service even in
overload. In fact, we have shown in prior work the
worst-case delay bound for overload situations [12].



The value of ε is 1 in the current Linux DWCS im-
plementation. In general, this value can be set to
higher positive values to increase the urgency of ser-
vicing a process that violates its window-constraints.
Window-constraint violations occur during overload,
but it is also possible for violations to occur in other
situations. The include situations when service con-
straints are not translated into their canonical form,
or when there is a mix of static and dynamic priority
processes. Observe that processes with finite dead-
lines are dynamic priority processes, while those with
‘infinite’ deadlines (i.e., they have request periods
of −1) are static priority processes. A static prior-
ity process is non-time-constrained and its window-
constraint is used as the priority: the lower the
window-constraint the higher the priority. If we take
the approach that static priority processes are only
serviced when no time-constrained processes need
servicing in their current request periods, it is possi-
ble to produce feasible schedules when U≤1.0 [12].
As well as supporting a mixture of static and

dynamic priority processes, DWCS also supports
pure earliest-deadline-first (EDF) scheduling. In this
mode all processes have original window-constraints
equal to 0/0 and finite deadlines (i.e, positive-valued
request periods). This means that each and every
Pi has a corresponding xi = 0 and yi = 0 for the
scheduler to operate in EDF mode.
Although DWCS can support different schedul-

ing modes, it is primarily intended to support
window-constrained processes. To provide window-
constrained guarantees, each and every process, Pi,
must have an original window-constraint, xi/yi that
is not 0/0 , and a finite deadline derived from a
positive-valued request period, Ti. These constraints
may then need to be translated into their canonical
form to produce a feasible schedule. We can now
show how DWCS works, using the following pseudo-
code:

Let Pi = process i

di = current deadline of Pi

Ti = request period of Pi

Wi’= current window-constraint of Pi

while (TRUE) {

for (each ready process)

find process, Pi, with the earliest

deadline; if two or more processes

have the same deadline, resolve ties

by comparing window-constraints, as

described earlier;

service Pi for one time slice;

adjust Wi’ according to Rule (A);

/* Adjust deadline of next time slice */

/* or instance of Pi. */

di = di + Ti;

for (each process Pj, other than Pi,

missing its deadline) {

while (deadline missed) {

adjust Wj’ according to Rule (B);

/* Adjust deadline of next time slice */

/* or instance of Pj. */

dj = dj + Tj;

}

}

}

A process is ready when the current time is greater
than or equal to the start time of the current re-
quest period for the process. All request periods be-
gin on scheduling point boundaries. Once a process
has been serviced in the current request period, it
is not ready for further execution until the start of
the next request period. This forces the scheduler
to operate in non-work-conserving mode, thereby de-
laying the execution of a process even if there are no
other processes to execute. The non-work-conserving
mode is necessary to (a) guarantee that a process is
not granted more than its required share of CPU
time at the cost of other processes and, (b) guar-
antee tighter bounds on the delay variation between
servicing consecutive process time slices. However,
to allow some processes to continue when there are
no other processes to execute, Linux DWCS sup-
ports a work-conserving mode of operation. If the
DWCS WORK CONS flag is set, then potentially multi-
ple time slices of a given process can execute in a
single request period. This will only happen if all
other time-constrained processes have been serviced
in their current request periods.

2.1 Linux DWCS Implementation

DWCS is currently implemented as a kernel-loadable
module in Linux. We chose this approach to be
able to easily modify the algorithm without contin-
ually recompiling the kernel. However, some mod-
ifications were necessary to the core kernel, includ-
ing exporting additional symbols for module linkage
via kernel/ksyms.c. Due to the kernel modifica-
tions, we have so far only implemented DWCS for
kernel versions 2.2.7 and 2.2.13. Future releases will
no doubt work with the latest kernels. A patch file
for the appropriate kernel version is available from
the DWCS website [11].
To redirect the schedule() routine in

kernel/sched.c to invoke the DWCS scheduler,
a flag called DWCS module loaded is set. This flag is
set by first loading the DWCS module (dwcs.o) and
then invoking a new system call, load scheduler()
from within a program. A command-line executable
(load scheduler) is included with the distribution



available from the website that activates the DWCS
scheduler using this system call. A correspond-
ing unload scheduler() system call deactivates
DWCS and reverts back to the default scheduler.
In the future, we are considering using ioctl calls
to replace the system calls that we have added to
the kernel. A third and final ‘dummy’ system call
(DWCS scheduler()) is used to redirect control to
the DWCS scheduler when activated. This is not a
system call that should be used by user-level pro-
grams but is instead used as a way to redirect con-
trol to the module code for the DWCS scheduler()
function. It is a function that is registered in the
system call table and declared as a dummy function
in the core kernel (see kernel/sys.c after applying
the DWCS patch). Upon loading the module, the
init module() redirects the function pointers for
the new system call entries in the syscall table to
the actual functions in the module. This procedure
allows functionality to be added to a running kernel
while ensuring the core kernel can be re-linked with-
out experiencing unresolved symbols. Although this
is not really what modules are designed for, it is a
useful way to extend the behavior of the kernel and
is a property we are exploiting to build an extensible
real-time system known as ‘Dionisys’.
A /proc/dwcs file entry can be established by

selecting CONFIG PROC DWCS when configuring a
DWCS-patched kernel. This provides access to
various status information, including service con-
straints, deadlines missed and window-constraint vi-
olations for processes currently in the run queue.
The sched setscheduler() function can be used
to set scheduling parameters for processes once the
DWCS scheduler is activated. The scheduling pol-
icy should be set to SCHED DWCS and a pointer to
a struct sched param structure, passed as an ar-
gument to sched setscheduler(), should include
the process’s service constraints. The revised struct
sched param structure, in linux/sched.h is as fol-
lows:

struct sched_param {

int sched_priority; /* Original member. */

unsigned long period; /* Request period. */

unsigned int own; /* Window numerator. */

unsigned int owd; /* Window denominator.*/

unsigned int flags; /* {See below} */

unsigned long service_time; /* Time quantum.*/

};

The default values of these constraints are assigned
to every process, regardless of whether or not DWCS
is active or even resident in the kernel. Changes to
kernel/fork.c establish default service constraints
for newly-created processes (and threads). These
values are stored in the process descriptor, so mod-
ifications to the struct task struct structure in

linux/sched.h were required. These values en-
sure all processes are initially non-time-constrained
and work-conservative (i.e., the DWCS WORK CONS
flag is set). By overriding these values using
sched setscheduler() it is possible to make a pro-
cess time-constrained, by assigning it a positive re-
quest period. The window-constraints, service quan-
tum and flags can be changed accordingly. To date,
the flags member of struct sched param can be 0
or a logical OR combination of DWCS WORK CONS and
DWCS NON PREEMPTIVE. The latter flag is used for sit-
uations where a process’s service quantum is greater
than the scheduling granularity. If it is required that
the scheduler does not preempt a process (in favor of
another process) until its time slice has expired then
DWCS NON PREEMPTIVE must be set. This is similar
to the behavior of the default scheduler.
The majority of the scheduler code is in

kernel/dwcs.c. Upon each invocation, the sched-
uler compares all processes in the run queue accord-
ing to the DWCS selection rules, and updates ser-
vice constraints as necessary. The current implemen-
tation queues processes on the default run queue,
which is a doubly-linked list. For future versions of
Linux DWCS, we are considering using heaps [14]
for queueing real-time processes. Moreover, by us-
ing two run queues: one for real-time processes and
another for all other processes, we can reduce the
scheduling latency for time-critical processes. Only
when there are no real-time processes waiting in the
corresponding run queue can we select other pro-
cesses.

3 Experimental Evaluation

We ran a series of experiments on one CPU of
a 400Mhz Pentium II (Deschutes) machine, with
512KB L2 cache, 1GB PC100 SDRAM, one Adaptec
AIC-7860 Ultra SCSI host adapter and one SEA-
GATE ST39102LC (8GB) hard drive. The machine
was configured with Linux 2.2.13. Different num-
bers of I/O- and CPU-bound processes were sched-
uled for execution, each having different service con-
straints. For each experimental run, we recorded per-
formance information including the number of dead-
lines missed and window-constraint violations.
To ensure that all real-time processes were synchro-

nized, we took the following procedure: a parent
process forked the desired number of child processes,
then collected initial statistics from /proc/stat, and
finally loaded a special kernel module to start the ex-
perimental run. The start module’s init module()
function assigned appropriate service constraints to
each child process, overriding the default values.
Then a set of signals were sent from the module to



all child processes, which at this time were waiting
on a barrier. The start module terminated and the
child processes were able to proceed with their CPU-
and/or I/O-bound operations. The parent process
waited for the completion of all child processes and
finally logged the /proc/stat and /proc/dwcs files.
For the experimental runs, /proc/dwcs was modified
to provide more detailed output to a main memory
buffer.
Each I/O-bound process read 1000 raw bitmaps

from disk, while each CPU-bound process calculated
an FFT on a matrix of 4 million floating point num-
bers. Each process averaged about 60 seconds to
execute on a quiescent system. In each experiment,
the utilization, U , was calculated by varying the val-
ues of Ti (the request period), xi/yi (the window-
constraint), and the number of processes, n, under
the assumption that each process Pi | 1≤i≤n re-
ceived a unit quantum of service, K, equal to one jiffy
(i.e., one clock tick of about 10mS) every time it was
executed 1. That is, U =

∑n
i=1

(1−xi/yi)K
Ti

, where
parameters Ti, xi/yi and n were varied over the
ranges [2K, · · ·, 64K], [1/2, · · ·, 1/10], and [2, · · ·, 64],
respectively. Observe that U represents the mini-
mum utilization needed to guarantee a feasible sched-
ule. However, the actual demand for CPU cycles,
assuming no missed deadlines is Umax =

∑n
i=1

K
Ti
,

which can be significantly greater than 1.0.
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FIGURE 2: Average percentage of time
each process spends violating its service con-
straints.

Figure 2 shows the percentage of time a series of
I/O- and CPU-bound tasks were in violation of their
service constraints, when utilizations were varied be-
tween 0.0 and 1.2. The x-axis shows a series of sam-
ple utilizations constructed from various combina-
tions of Ti, xi/yi and n and is not a linear scale.
For these experiments, DWCS successfully schedules
CPU- and I/O-bound processes in Linux more than

99% of the time, when U≤1.0. That is, window-
constraint violations occur less than 1% of the total
execution time of all processes, when it is theoreti-
cally possible to guarantee no violations. It should be
noted that a feasible schedule is theoretically possi-
ble when U≤1.0, assuming that scheduling and other
system overheads are negligible.
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FIGURE 3: The average violations per
process, for different utilizations using DWCS
as the Linux scheduler when the system is oth-
erwise quiescent.
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FIGURE 4: The average violations per
process, for different utilizations using DWCS
as the Linux scheduler when the system is
flood-pinged.

In Figure 3, no more than 20 violations ever occur
for a single process, on average (calculated over 30
runs of each sample utilization), until the utilization
reaches 1.0. In all cases, CPU- and I/O-bound per-
formances are similar. These results are for the case
when the system is otherwise in a quiescent state,
and represent the actual number of violations for the
experiments shown in Figure 2. Note that Figure 3
only shows results for utilizations as they just reach
1.0. All sample values at or after 1.0 on the x-axis
represent utilizations of 1.0 derived from varying the

1Although a service quantum of one jiffy seems small, we wanted to see just how well Linux could perform when the system
overheads were a significant fraction of the service quantum. Having a small quantum makes overheads such as context-switching,
scheduling latency and interrupt handling more significant.



request periods, window-constraints and number of
processes. The CPU-bound processes suddenly incur
a large number of violations when the utilization is
1.0 and the number of processes reaches 64. This is
due to the greater demand for CPU cycles by these
processes, whereas the I/O-bound processes tend to
block before using their entire time slice of K = 1
jiffy. Consequently, I/O-bound processes don’t show
the sudden increase in violations around the overload
point.
By contrast, Figure 4 shows the number of window-

constraint violations when the host scheduling the
CPU- and I/O-bound processes is flood-pinged by a
remote host. This causes thousands of interrupts to
be generated during the execution of each process,
thereby causing significant system overheads. How-
ever, the number of violations still remains below 20
for utilizations below 1.0.
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FIGURE 5: Average latency of the stan-
dard Linux scheduler and DWCS for CPU-
and I/O-bound processes under varying uti-
lizations.

Finally, Figure 5 shows the scheduling latency for
DWCS versus the standard Linux scheduler under
varying utilizations. Both DWCS and the standard
scheduler incur linear time penalties due to the run
queue implementation. However, DWCS is not opti-
mized and there is more state manipulation required,
to update service constraints for processes on a regu-
lar basis. From past experience [14], we believe that
by implementing a separate (possibly heap-based)
run queue for real-time processes we can significantly
reduce the scheduling overheads when using DWCS.
Moreover, DWCS has shown to be fairly insensitive
to slight variability in the intervals between which
the scheduler is invoked. This means that we can
reduce the rate of invocation of the scheduler, and
consequently its overhead, and still achieve minimal
service violations. Naturally, there is a limit on the

time we can delay the scheduler otherwise all service
guarantees will be void.

4 Providing Better Service
Guarantees

Although the results for the Linux implementation
of DWCS look encouraging, there are still some ser-
vice violations when it is theoretically possible to
eliminate them. Even if system overheads are ac-
counted for in the utilization calculations, there can
still be violations. This is a direct consequence of sev-
eral factors concerning the Linux operating system.
Linux does not support fixed preemption points, so
the scheduler is not guaranteed to execute after fixed
intervals of time. Also, the resource management fea-
tures of Linux are, in general, not predictable. That
is, even if DWCS is used as a real-time scheduler,
acquisition of resources such as memory, semaphores
and locks can take an arbitrary amount of time.
Moreover, paging activity can incur large delays that
affect predictable scheduling, which is one reason
why many real-time systems do not support virtual
memory.
Rather than attempting to rewrite a major part

of the kernel, we intend to compensate for the lack
of predictable resource management. For example,
we have tried to compensate for variability in the
time between scheduler invocations. Observe that
the standard scheduler is typically called when a pro-
cess either terminates, blocks or completes its current
service quantum 2. The scheduler is activated by
calling schedule() in kernel/sched.c, but this is
only possible upon return from a kernel control path
to user-level. In other words, the scheduler is acti-
vated only if the last saved context was executing in
user-mode (see ret from intr in kernel/entry.S).
All these conditions make it possible for the sched-
uler to be called multiple times per jiffy or just once
every few jiffies. Such variability is problematic for
real-time scheduling.
To deal with the variability in the time between

scheduler invocations, a flag (DWCS reschedule) is
set every time do timer() is called, which is once
every clock tick, or jiffy. A check is then performed
in kernel/entry.S to see if this flag is set and, if so,
the scheduler is called:

ret_with_reschedule:
movl SYMBOL_NAME(DWCS_reschedule),%eax
cmpl $0,%eax
jne reschedule

## The remaining code is unchanged ##
2The default quantum is about 210mS.



...
## End of entry.S ##

Finally, the DWCS reschedule flag is reset in
schedule().
The DWCS code also checks to see that the value of

jiffies has been incremented before updating ser-
vice constraints. This is to ensure that service con-
straints are not incorrectly updated if the scheduler
is invoked multiple times in the same clock tick.
Our modifications make the calls to the scheduler

more regular. Unfortunately, there still might be
multiple clock ticks between calls to the scheduler,
because (as stated above) the scheduler cannot be
called from within nested kernel control paths. To
compensate further, we are considering a way to ad-
just a process’s service constraints by some function
of the time between scheduler invocations. However,
this is something we are still investigating at this
time.
Observe that in the experiments described in the

previous section all utilizations, U , were calculated
under the assumption that a process quantum was
K time units. In fact, we assumed it to be K = 1
jiffies but the actual value of K depends on the rate
at which the scheduler runs. Due to the variabil-
ity of scheduler invocations, one process might re-
ceive more than K units of CPU time at the cost of
other processes that suffer delayed execution. This
means that even though two or more processes have
the same service constraints, they may actually ex-
perience different CPU utilizations over finite win-
dows of time. Consequently, two processes with the
same service constraints might complete at signifi-
cantly different times even though they are initially
ready to execute at the same time. Although no re-
sults are shown in this paper, we observed that the
CPU-bound processes are more prone to large vari-
ations in their completion times, even when they all
have the same service constraints. This is primar-
ily because they need a lot more CPU cycles than
I/O-bound processes in order to complete their exe-
cution. Observe that the scheduler does not differ-
entiate between time spent in interrupts and time
spent executing processes, so a process’s quantum
can be consumed by interrupt processing. This af-
fects the progress of CPU-bound processes more than
I/O-bound processes, which may actually be blocked
while interrupt processing is taking place. Interest-
ingly enough, I/O-bound processes might block be-
fore completing their service quanta but this seems
to have less effect on the overall schedule than vari-
ability in the scheduling points.
We are also considering the use of logical time for

all scheduling decisions. This will ensure that the
schedule order is the same as the theoretical order

but the processes may actually start and end in real-
time later than desired. We are currently looking at
measuring the delays between scheduling points and
compensating for these, while using logical time to
make scheduling decisions. Since significant schedul-
ing delays are due to processing interrupts (partic-
ularly those issued by I/O devices) we are consid-
ering modification to do IRQ(), to account for the
time spent in interrupts. By accounting for inter-
rupt overheads in this way, we can determine how
much progress a process makes in a given time slice.
If a process has lost a lot of time in its current time
slice to processing interrupts, we can continue its ex-
ecution beyond the time at which its time slice would
otherwise expire. When a process has exhausted its
time slice by executing at user-level, we can then
schedule another process. This will ensure that all
processes make progress according to their service
constraints.

5 Conclusions and Future
Work

This paper describes our experience using DWCS to
schedule processes (and threads) on available CPUs
in a Linux system. We have shown how to imple-
ment a kernel-loadable module that replaces the de-
fault Linux scheduler. We have taken the approach
of modifying an off-the-shelf version of Linux rather
than using a custom real-time system, to measure the
delay guarantees that are possible by simply chang-
ing the kernel scheduler. Using DWCS, processes are
scheduled to meet their explicit delay and window
constraints. By contrast, the default kernel sched-
uler does not consider explicit delay constraints on
the execution of processes.
We have shown that DWCS is capable of success-

fully scheduling CPU- and I/O-bound processes in
Linux more than 99% of the time, when a feasible
schedule is theoretically possible. Unlike in the the-
oretical case, interrupt handling, context-switching,
scheduling latency and unpredictable management
of other resources besides the CPU affect the pre-
dictable scheduling of processes.
Several approaches to account for system over-

heads and provide predictable real-time scheduling
have been discussed. One such approach attempts
to guarantee that the scheduler is invoked at fixed
points in time (e.g., once per jiffy, or every K time
units). However, the scheduler cannot be invoked if
there are nested kernel control paths, so it is still pos-
sible for multiple clock ticks to pass between calls to
the scheduler. To compensate for this, we are con-
sidering ways to measure the delay between sched-



uler invocations, and adjust the service constraints
for processes accordingly. Finally, we intend to mea-
sure the time spent in interrupts, to compensate for
these overheads and guarantee progress of processes
in proportion to their service constraints.
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