
Analysis of a Window-Constrained Scheduler for Real-Time and Best-Effort
Packet Streams

Richard West and Christian Poellabauer

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
{west,chris}@cc.gatech.edu

Abstract

This paper describes how Dynamic Window-
Constrained Scheduling (DWCS) can guarantee real-time
service to packets from multiple streams with different
performance objectives. We show that: (1) DWCS can
guarantee that no more than x packets miss their deadlines
for every y consecutive packets requiring service, as long
as the minimum aggregate bandwidth requirement of all
real-time packet streams does not exceed the available
bandwidth, (2) using DWCS, the delay of service to real-
time packet streams is bounded even when the scheduler
is overloaded, (3) DWCS can ensure that the delay bound
of any given stream is independent of other streams, and
(4) a fast response time for best-effort packet streams,
in the presence of real-time packet streams, is possible.
Furthermore, if a feasible schedule exists, each stream is
guaranteed a minimum fraction of available bandwidth
over a finite window of time.

1. Introduction

Many real-time, distributed applications, such as tele-
medicine, virtual environments, video-on-demand and
streaming audio, can tolerate the loss of a certain fraction
of all information transferred across a network to one or
more clients. Information is lost if it is either received later
than desired or not received at all by a client. For many
such ’loss-tolerant’ applications, there is usually a restric-
tion on the number ofconsecutive packets of information
that can be lost. For example, losing too many consecu-
tive packets from an audio stream might result in the loss
of a complete section of audio, rather than merely a reduc-
tion in the signal-to-noise ratio. More precisely, an applica-
tion might toleratex packet losses for everyy arrivals at the
various service points across a network. A suitable service

discipline, for scheduling the transmission of packets from
‘loss-tolerant’ applications, must attempt to guarantee that
no more thanx packets are serviced late for everyy packets
requiring service.

This paper analyzes the real-time properties of Dynamic
Window-Constrained Scheduling (DWCS) [18, 19], an al-
gorithm that is suitable for packet scheduling in real-time
communications. DWCS is designed to explicitly service
packet streams in accordance with their loss and delay con-
straints, using just two attributes per packet stream. Fur-
thermore, DWCS has the desirable property of support-
ing ‘fair’ allocation of bandwidth to packet streams, in
proportion to their loss-constraints and per-packet dead-
lines [18]. In fact, DWCS can behave as a static-priority
(SP), earliest-deadline-first (EDF), and fair scheduling al-
gorithm [6, 20, 7, 2, 8, 15, 16]. Moreover, DWCS is in-
tended to support multimedia traffic streams in the same
manner as the SMART scheduler [14], but DWCS is less
complex and requires maintenance of less state information
than SMART.

Although DWCS has a lot in common with fair schedul-
ing algorithms, it is more closely related to algorithms
which attempt to guarantee service to packet streams,
whereby at leastm out of k packet deadlines are met for
each and every stream. Hamdaoui and Ramanathan [9] were
the first to introduce the notion of(m, k)-firm deadlines,
which is similar to the concept of ‘Skip-Over’ by Koren and
Shasha [12]. However, in some cases, skip over algorithms
unnecessarily skip service to one or more activities (such as
periodic tasks or packet streams), even if it is possible to
meet the deadlines of those activities.

The (m, k)-firm deadline algorithm of Hamdaoui and
Ramanathan guarantees that a statistical number of dead-
lines will be met, by using a ‘distance-based’ priority
scheme to increase the priority of an activity in danger of
missing more thanm deadlines over a window ofk re-
quests for service. By contrast, Bernat and Burns [3] sched-

ule activities with(m, k)-hard deadlines, but their approach
requires such hard temporal constraints to be guaranteed
by off-line feasibility tests. Moreover, Bernat and Burns
work focuses less on the issue of providing a solution to
on-line scheduling of activities with(m, k)-hard deadlines,
but more on the support for fast response time to best-effort
activities, in the presence of activities with hard deadline
constraints.

Pinwheel scheduling [10, 4, 1] is also similar to DWCS.
In essence, the generalized pinwheel scheduling problem
is equivalent to determining a schedule for a set ofn ac-
tivities {ai | 1≤i≤n}, each requiring at leastmi deadlines
are met inany window of ki deadlines, given that the time
between consecutive deadlines is a multiple of some fixed-
size time slot, and resources are allocated at the granular-
ity of one time slot. DWCS can be thought of as a special
case of pinwheel scheduling, whereby DWCS guarantees
a minimum ofmi deadlines are met everyfixed (i.e., non-
overlapping) window ofki deadlines, for a given activityai.
In fact, DWCS is capable of producing a feasible schedule,
independent of an activity’s window size ki, when 100%
of available resources (such as bandwidth) are utilized. By
comparison, Baruah and Lin [1] have developed a pinwheel
scheduling algorithm, that is capable of producing a feasible
schedule when all resources are utilized, given thatk → ∞.

Other notable work includes Jeffay and Goddard’s Rate-
Based Execution (RBE) model [11]. As will be seen in this
paper, DWCS uses similar service parameters to those de-
scribed in the RBE model. However, in the RBE model, ac-
tivities are expected to be serviced with an average rate ofx
times everyy time units, and there is no notion of missing,
or discarding, service requests.

In contrast to the related work described above, the sig-
nificant contributions of this work are: (1) the description
and analysis of anon-line version of DWCS that can guar-
antee(m, k)-hard deadlines (or, equivalently, no more than
x missed packet deadlines for every fixed window ofy con-
secutive packets in a given stream), (2) an approach to en-
sure fast response time to best-effort packet streams in the
presence of real-time packet streams, and (3) a proof that
DWCS ensures the delay of service to packets in any given
stream is bounded, even in overload situations. In fact,
DWCS can ensure the delay bound of any given stream is
independent of other streams.

Note that, for the above service guarantees to be made
with DWCS, resources are allocated at the granularity of
one time slot (see Figure 1), where the size of a time slot
is typically determined by the (worst-case) service time of
the largest packet in any stream requiring service. There-
fore, it is assumed that when scheduling packets from a
given stream, at least one packet in a stream is serviced in
a time slot, and no other packet (or packets) from any other
stream can be serviced until the start of the next time slot.

Unless stated otherwise, we assume throughout this paper
that at most one packet from any given stream is serviced
in a single time slot but, in general, it is possible for multi-
ple packets from the same stream to be aggregated together
and serviced in a single time slot, as if they were one large
packet.

The remainder of this paper is organized as follows: Sec-
tion 2 describes a version of DWCS that provides(m, k)-
hard service guarantees. Section 3 analyzes the perfor-
mance of DWCS, while Section 4 describes an approach to
effectively servicing best-effort packet streams without vi-
olating the service constraints of real-time packet streams.
Finally, conclusions are described in Section 5.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

S1 S2

2T = 2K

1T = 3K

τ 1

Time Slot, K

time, t

Figure 1. Example of two packets from differ-
ent streams, S1 and S2 being serviced in their
respective time slots. Each time slot is of
constant size K. Observe that the packet in
S1 requires K− τ1 service time, thereby wast-
ing τ1 time units before the packet in S2 is
serviced.

2. Dynamic Window-Constrained
Scheduling

We begin this section by defining the problem of guar-
anteeing a feasible schedule for real-time packet streams,
which can tolerate at mostx missed deadlines every fixed
window of y requests. We then describe how the DWCS
algorithm works, so that it can produce a feasible schedule
on-line.

2.1. Problem Definition

In order to define the real-time scheduling problem ad-
dressed as part of this paper, we introduce the following
definitions:
Bandwidth Utilization. This is a measure of the frac-
tion (or percentage) of available bandwidth used by packet
streams to meet their service constraints. A series of packet
streams is said tofully utilize [13] available bandwidth,B, if

all packet streams usingB satisfy their service constraints,
and any increase in the use ofB violates the service con-
straints of one or more packet streams.
Dynamic Window-Constrained Scheduling (DWCS).
DWCS is an algorithm for scheduling packet streams, each
having the following pair of service attributes, which are
used to define each stream’s delay and loss constraints:

• Request Period – A request period,Ti, for a packet
stream,Si, is the interval between the deadlines of con-
secutive pairs of packets inSi. Observe that the end of
a request period,Ti, determines adeadline by which a
packet in streamSi must be serviced. In this paper, all
request periods are assumed to be multiples of a time
slot, as shown in Figure 1.

• Window-Constraint – this is specified as a valuexi/yi,
where the window-numerator,xi, is the number of
packets that can be lost or transmitted late for every
fixed window, yi (the window-denominator), of con-
secutive packet arrivals in the same stream,Si. Hence,
for everyyi packet arrivals in streamSi, a minimum of
yi − xi packets must be scheduled for service by their
deadlines. At any time, all packets in the same stream,
Si, have the same window-constraint,Wi, while each
successive packet in a stream,Si, has a deadline that
is offset by a fixed amount,Ti, from its predecessor.
After servicing a packet fromSi, the scheduler ad-
justs the window-constraint ofSi and all other streams
whose head packets have just missed their deadlines
due to servicingSi. Consequently, a streamSi’s orig-
inal window-constraint,Wi, can differ from itscur-
rent window-constraint,W ′

i . Observe that a stream’s
window-constraint can also be thought of as aloss-
tolerance.

Feasibility. A schedule, comprising a sequence of packet
streams, is feasible if no original window-constraint of any
packet stream is ever violated. DWCS attempts to schedule
all packet streams to meet as many window-constraints as
possible.
Problem Statement. The problem is to produce a feasi-
ble schedule using an on-line algorithm. The algorithm
should attempt to maximize network bandwidth. In fact, we
show in Section 3 that, under certain conditions, Dynamic
Window-Constrained Scheduling can guarantee a feasible
schedule as long as theminimum aggregate bandwidth uti-
lization of a set of packet streams does not exceed 100%
of available bandwidth. Before we analyze DWCS, we first
describe the algorithm in more detail.

2.2. The DWCS Algorithm

This section describes a revised version of Dynamic
Window-Constrained Scheduling (DWCS) from that de-
scribed in [18, 19], so thatdeterministic real-time guaran-

tees can be made for packet streams toleratingx missed
deadlines everyy requests. The original algorithm is work-
conserving and only guarantees a statistical number of real-
time service constraints. Moreover, the work-conserving
nature of the original algorithm can sometimes cause a
stream to be serviced earlier than necessary. This has the ef-
fect of reducing the likelihood of servicing the same stream
at some time in the future, when it is actually more impor-
tant to be serviced. However, the revised algorithm can op-
erate in a non-work-conserving mode, to guarantee that no
stream will be granted more than its minimum required ser-
vice, when it is otherwise impossible to produce a feasible
schedule (see Section 3.2).

The revised DWCS algorithm works as follows: pack-
ets are ordered for service based on the values of theircur-
rent window-constraints and deadlines (where each dead-
line is derived from the current time and the request period).
Precedence is given to packets in streams according to the
rules shown in Table 1. Whenever a packet inSi misses
its deadline, the window-constraint forSi is modified in
a way that reflects the increased importance of servicing
Si in the future. Conversely, any packet in a stream ser-
viced before its deadline causes the corresponding stream’s
window-constraint to be modified in a manner that effec-
tively reduces the priority of servicing subsequent packets
in the same stream.

The window-constraint of a packet stream changes over
time, depending on whether or not another (earlier) packet
from the same stream has been serviced by its deadline. If a
packet cannot be serviced by its deadline, it is either trans-
mitted late or it is dropped and the next packet in the stream
is assigned a deadline corresponding to the latest time it
must complete service.

Pairwise Packet Ordering
Earliest deadline first (EDF)
Equal deadlines, order lowest

window-constraint first
Equal deadlines and zero window-constraints,

order highest window-denominator first
Equal deadlines and equal

non-zero window-constraints,
order lowest window-numerator first
All other cases: first-come-first-serve

Table 1. Precedence amongst pairs of packets
in different streams.

Table 1 shows the rules for ordering pairs of packets. It
differs slightly from the precedence rules used in the origi-
nal design of DWCS [18]. It should be noted that DWCS is
more than merely an earliest deadline first (or earliest due
date) algorithm. Observe that earliest deadline first schedul-
ing (EDF) considers that each packet’s importance (or pri-

ority) increases as the urgency of completing that packet’s
service increases. By contrast, static priority algorithms all
consider that one packet is more important to service than
another packet, based solely on each packet’s time-invariant
priority. DWCS combines both the properties of static pri-
ority and earliest deadline first scheduling by considering
each packet’s individual importance when the urgency of
servicing two or more packets is the same. That is, if two
packets have the same deadline, DWCS services the packet
which is more important. In practice it makes sense to set
packet deadlines in different streams to be some multiple
of a, possibly worst-case, packet service time. This in-
creases the likelihood of multiple head packets of differ-
ent streams having the same deadlines. In fact, using a
slotted time system, as described earlier, deadlines can be
aligned on time slot boundaries. Observe that packets are
ordinarily serviced in earliest deadline first order. However,
if at least two packet streams have head packets with equal
deadlines, the packet from streamSi with the lowestcurrent
window-constraintW ′

i is serviced first. IfW ′
i = W ′

j > 0,
and di = dj for Si and Sj , respectively,Si and Sj are
ordered such that a packet from the stream with the low-
est window-numerator is serviced first. By ordering based
on the lowest window-numerator, precedence is given to
the packet from the stream withtighter window-constraints,
since fewer consecutive late or lost packets from that stream
can be tolerated. Likewise, if two packet streams have zero
window-constraints and equal deadlines, the packet in the
stream with the highest window-denominator is serviced
first. All other situations are serviced in a first-come-first-
serve manner.

We now describe how a stream’s window-constraints are
adjusted. As part of this approach, atag is associated with
each streamSi, to denote whether or notSi has violated its
window-constraintWi at the current point in time. In what
follows, letS′

is original window-constraint beWi = xi/yi,
wherexi is the original window-numerator andyi is the
original denominator. Likewise, letW ′

i = x′
i/y

′
i denote the

current window-constraint. Before a packet inSi is ser-
viced,W ′

i = Wi. Upon servicing a packet inSi before its
deadline,W ′

i is adjusted for subsequent packets inSi, as
follows:
(A) Window-constraint adjustment when a packet in Si

is serviced before its deadline:

if (y′i > x′
i) theny′i = y′i − 1;

else if(y′i = x′
i) and(x′

i > 0) then
x′

i = x′
i − 1; y′i = y′i − 1;

if (x′
i = y′i = 0) or (Si is tagged) then
x′

i = xi; y′i = yi;
if (Si is tagged) then reset tag;

At this point in time, the window-constraint,Wj , of any
other packet stream,Sj | j 	=i, comprising one or more late

packets, is adjusted as follows:
(B) Window-constraint adjustment when a packet in
Sj | j 	= i misses its deadline:

if (x′
j > 0) then
x′

j = x′
j − 1; y′j = y′j − 1;

if (x′
j = y′j = 0) thenx′

j = xj ; y′j = yj ;
else if(x′

j = 0) and(yj > 0) then
y′j = y′j + ε;
TagSj with a violation;

Observe that with DWCS, window-constraints do not
change for streams whose packets do not have deadlines.
Streams comprising packets without deadlines arenon-
time-constrained, and their window-constraints act as static
priorities. Consequently, the pseudo-code for DWCS is
shown in Figure 2.

Let Si = Stream i
di = deadline of the next packet in Si
Ti = request period of Si
Wi’= current window-constraint of Si

while (TRUE) {
for (each packet in all streams eligible

for service at the current time)
find the next packet in stream, Si,
with the highest priority,
according to the rules in Table 1;

service next packet in Si;
adjust Wi’ according to rules in (A);
/* Adjust deadline of next

packet in Si. */
di = di + Ti;
for (each packet in Sj, other than Si,

missing its deadline) {
while (deadline missed) {
adjust Wj’ according to rules in (B);
if (current packet can be dropped)

drop current packet in Sj;
/* Adjust deadline of head packet

in Sj. */
dj = dj + Tj;

}
}

}

Figure 2. The DWCS algorithm.

Usually, a packet stream is eligible for service if a packet
in that stream has not yet been serviced in the current
request-period, which is the time between the deadline of
the previous packet and the deadline of the current packet
in the same stream. That is, no more than one packet in a
given stream can be serviced in a given request period, and
exactly one packet must be serviced by the end of its request
period to prevent a deadline being missed.

To support work-conservation, DWCS also allows
packet streams to bemarked as eligible for scheduling mul-
tiple times in the same request period. That is, the jth
packet,pi,j in a stream,Si, can be serviced before the dead-
line of a prior packet,pi,j−1 in the same stream, ifpi,j−1

has been serviced before the end of its request period. This
impliespi,j−1 is also serviced before its deadline. For the
purposes ofreal-time, as opposed to best-effort streams,
this paper assumes DWCS works as a non-work-conserving
scheduler. However, all best-effort streams can be serviced
whenever there is available time to service such streams.

In the absence of a feasibility test, it is possible that
window-constraint violations can occur. A violation actu-
ally occurs whenW ′

i = x′
i/y

′
i | x′

i = 0 and another packet
in Si then misses its deadline. BeforeSi is serviced,x′

i re-
mains zero, whiley′i is increased by a constant,ε, every time
a packet inSi misses a deadline. The exception to this rule
is whenyi = 0 (and, more specifically,Wi = 0/0). This
special case allows DWCS toalways service packet streams
in EDF order, if such a service policy is desired.

If Si violates its original window-constraint, it is tagged
for when it is next serviced. Tagging ensures that a stream is
never starved of service even in overload. Theorem 2 shows
the delay bound for a stream which is tagged with window-
constraint violations. Consequently,Si is assured of ser-
vice, since it will eventually take precedence over all packet
streams with zero-valued current window-constraints. Con-
sider the case whenSi andSj both have current window-
constraints,W ′

i andW ′
j , respectively, such thatW ′

i = 0/y′i
andW ′

j = 0/y′j . Even if both deadlines,di anddj , are
equal, precedence is given to the packet stream with the
highest window-denominator. Suppose thatSj is serviced
beforeSi, becausey′j > y′i. At some later point in time,
Si will have the highest window-denominator, since its de-
nominator is increased byε every request period,Ti, that
a packet inSi is delayed, whileSj ’s window-constraint
is reset once it is serviced. For simplicity, we assume
every stream has the same value ofε but, in practice, it
may be beneficial for each stream to have its own value,
εi, to increase its need for service at a rate independent of
other streams, even when window-constraint violations oc-
cur. Unless stated otherwise,ε = 1 is used throughout the
rest of this paper.

To complete this section, Figure 3 shows an example
schedule using both DWCS and EDF, for three streams,
S1, S2, andS3. For simplicity, assume that every time a
packet in one stream is serviced, another packet in the same
stream requires service. It is left to the reader to verify the
scheduling order for DWCS. Observe that, using DWCS, all
window-constraints are met over non-overlapping windows
of yi deadlines (for each stream,Si), and no time slots are
unused in this example. Moreover, the three streams are
serviced in proportion to their original window-constraints

and request periods. Consequently,S1 is serviced twice as
much asS2 andS3 over the intervalt = [0, 16]. By contrast,
EDF arbitrarily schedules packets with equal deadlines, ir-
respective of which packet is from the more critical stream
in terms of its window-constraint. In this example, EDF se-
lects packets with equal deadlines in strict alternation but
the window-constraints of the streams are not guaranteed.

Note that EDF scheduling is optimal in the sense that if
it is possible to produce a schedule in which all deadlines
are met, such a schedule can be produced using EDF. Con-
sequently, ifCi is the service time for a packet in stream
Si, then if

∑n
i=1

Ci

Ti
≤ 1.0 all deadlines will be met us-

ing EDF [13]. However, in this example,
∑n

i=1
Ci

Ti
= 3.0

so not all deadlines can be met. Since,
∑n

i=1
(1−Wi)Ci

Ti
=

1.0, it is possible to strategically miss deadlines for certain
packets and thereby guarantee the window-constraints of
each stream [17]. By considering window-constraints when
deadlines are tied, DWCS is able to make guarantees that
EDF cannot.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

s1 s2 s1 s1 s1 s1 s1 s1 s1s3 s2 s3 s2 s3 s2 s3

time, t

s1
s2
s3

3/4(1),2/3(2),2/2(3),1/1(4),3/4(5),2/3(6),2/2(7),1/1(8),3/4(9)...

1/2(1),1/1(2),1/2(3),1/1(4),1/2(5)...

6/8(1),5/7(2),4/6(3),3/5(4),3/4(5),2/3(6),1/2(7),0/1(8),6/8(9)...

s s s s s s s s s s s s s ss2s1 3 1 2 3 1 2 3 1 2 3 1 1 EDF

DWCS

2 3

Figure 3. Example showing the schedul-
ing of 3 streams, S1, S2, and S3, using
EDF and DWCS. All packets in each stream
have unit service times and request periods.
The window-constraints for each stream are
shown as fractions, x/y, while packet dead-
lines are shown in brackets.

2.3. DWCS Complexity

DWCS’s time complexity is divided into two parts: (1)
the cost ofselecting the next packet according to the prece-
dence rules in Table 1, and (2) the cost ofadjusting stream
window-constraints and packet deadlinesafter servicing a
packet. Using heap data structures for prioritizing pack-
ets, the cost of selecting the next packet for service is
O(log(n)), wheren is the number of streams awaiting ser-
vice. However, after servicing a packet, it may be necessary
to adjust the deadlines of the head packets, and window-
constraints, of alln queued streams. This is the case when
all n − 1 streams (other than the one just serviced) have
packets that miss their deadlines. This can lead to a worst-
case complexity for DWCS ofO(n). However, when only

aconstant number of packets in different streams miss their
deadlines after servicing some other packet, a heap data
structure can be used to determine those packet deadlines
and stream window-constraints that need to be adjusted. It
follows that a constant number of updates to service con-
straints using heaps, as described in an earlier paper [19],
requiresO(log(n)) operations. Observe that there is an
O(1) cost per stream to update the corresponding service
constraints,after servicing a packet.

An earlier paper [19] shows how DWCS can be approxi-
mated, to further reduce its scheduling latency, thereby im-
proving service scalability at the cost of potentially violat-
ing some service constraints. Moreover, it may be appro-
priate to combine multiple streams into one session, with
DWCS used to service the aggregate session. Such an ap-
proach would reduce the scheduling state requirements and
increase scalability.

Having described DWCS, we analyze the algorithm’s
performance in the following section.

3. Analysis of DWCS

In this section we show the following important char-
acteristics of the DWCS algorithm (as defined in this pa-
per):
• If a feasible schedule is known to exist, DWCS en-

sures that the maximum delay of service to a real-time
packet stream is bounded. The exact value of this max-
imum delay is characterized below.

• If window-constraint violations occur (because the
scheduler is overloaded), the maximum queueing de-
lay of a packet stream (and, hence, packet) is still
bounded. Again, the exact value of this maximum de-
lay is characterized below.

• If the minimum aggregate bandwidth requirement of
all real-time packet streams does not exceed the total
available bandwidth, then a feasible schedule is guar-
anteed using DWCS. Moreover, if it is possible to im-
pose an upper bound on the worst-case service time of
each and every packet, then DWCS can guarantee that
no more thanx packet deadlines are missed everyy
requests.

3.1. Delay Characteristics

Theorem 1 If a feasible schedule exists, the maximum de-
lay of service to a stream, Si | 1 ≤ i ≤ n, is at most
(xi +1)Ti −Ci, where Ci is the service time for one packet
in Si

1.

1For simplicity, we assume all packets in the same stream have the
same service time. However, unless stated otherwise, this constraint is not
binding and the properties of DWCS should still hold.

Proof Every time a packet inSi misses its deadline,x′
i is de-

creased by 1 untilx′
i reaches 0. A packet misses its deadline

if it is delayed byTi time units without service. Observe
that, at all times,x′

i ≤ xi. Therefore, service toSi can be
delayed by at mostxiTi until W ′

i = 0. If Si is delayed more
than anotherTi − Ci time units, a window-constraint vio-
lation will occur, since service of the next packet inSi will
not complete by the end of its request period,Ti. Hence,
Si must be delayed at most(xi + 1)Ti − Ci if a feasible
schedule exists.✷

We now characterize the delay bound for a packet stream
when window-constraint violations occur, assuming all re-
quest periods are greater than or equal to each and every
packet’s service time. That is,Ti ≥ Ci, xi ≥ 0, yi >
0,∀i | 1 ≤ i ≤ n.

Theorem 2 If window-constraint violations occur, the
maximum delay of service to Si is no more than Ti(xi +
ymax + n − 1) + Cmax, where ymax = max[y1, · · ·, yn]
and Cmax is the maximum packet service time amongst all
queued packets.

Proof The details of this proof are shown in the Appendix.
If Ti → ∞, thenSi experiences unbounded delay in the

worst-case. This is the same problem with static-priority
scheduling, since a higher priority packet stream will al-
ways be serviced before a lower priority packet stream. Ob-
serve that in calculating the worst-case delay experienced
by Si, it is assumed thatdy′i/dt = ε/Ti | ε = 1 (see Fig-
ure 5). If ε>1 or there is a unique value,εi>1 for each
streamSi, then the worst-case delay experienced bySi is
Ti(xi+ymax+n−1)

εi
+ Cmax. If εi = (xi + ymax + n − 1)

then the worst-case delay ofSi isTi +Cmax, which is inde-
pendent of the number of streams. Consequently, the worst-
case delay of service to each stream can be made to be in-
dependent of all other streams, even in overload situations.

3.2. Bandwidth Utilization

As stated earlier,Wi = xi/yi for streamSi. Therefore,
a minimum ofyi − xi packets inSi must be serviced ‘on
time’ every window ofyi consecutive packets, forSi to sat-
isfy its window-constraints. Since one packet is required
to be serviced every request period,Ti, to avoid any pack-
ets inSi being late, a minimum ofyi − xi packets must be
serviced everyyiTi time units. Therefore, if each packet
takesCi time units to be serviced, thenyi packets inSi re-
quire at least(yi − xi)Ci units of service time everyyiTi

time units. For a packet stream,Si, with request period,
Ti, theminimum utilization factor isUi = (yi−xi)Ci

yiTi
, which

is the minimum required fraction of available service ca-
pacity and, hence, bandwidth by consecutive packets inSi.
Hence, the utilization factor forn packet streams is at least

U =
∑n

i=1
(1−Wi)Ci

Ti
. Furthermore, theleast upper bound

on the utilization factor is the minimum of the utilization
factors for all packet streams that fully utilize all avail-
able bandwidth [13]. IfU exceeds the least upper bound
on bandwidth utilization, a feasible schedule is not guaran-
teed. In fact, it is necessary thatU≤1.0 is true for a feasible
schedule, using any scheduling policy.

We now characterize the least upper bound on bandwidth
utilization, assuming that at most one packet from any given
stream is serviced in a single, fixed-sized time slot of size
K, and all request periods are multiples of such a time slot.
That is,Ci≤K,Ti = qiK,xi ≥ 0, yi > 0,∀i | 1 ≤ i ≤ n,
K is a constant, andqi is a positive integer.

Theorem 3 Using DWCS, the least upper bound on the uti-
lization factor is 1.0, if all streams comprise packets with
the same service times, and all request periods are multiples
of the packet service times. That is, DWCS is optimal in the
sense that a feasible schedule exists if

∑n
i=1

(1−Wi)Ci

Ti
≤1.0,

given Ci = K and Ti = qiK for qi ∈ Z+, where Z+ is the
set of positive integers.

Proof The details of this proof are given in a full-length
Technical Report [17]. Observe that, in Theorem 3, each
packet is serviced for exactlyK time units, which is the
size of one time slot. This is a necessary condition, because
packets are indivisible entities and, hence, cannot be pre-
empted.

3.3. Supporting Packets with Variable
Service Times

For variable rate servers, or in networks where packets
have variable lengths, the service times can vary for differ-
ent packets. In such circumstances, if it is possible to im-
pose an upper bound on theworst-case service time of each
and every packet, then DWCS can still guarantee that no
more thanx packet deadlines are missed everyy requests.
This implies that the scheduling granularity,K (i.e., one
time slot), should be set to the worst-case service time of
any packet scheduled for transmission. For situations where
a packet’s service time,Ci, is less thanK (see Figure 1),
then a feasible schedule is still possible using DWCS, but
the least upper bound on the utilization factor is less than
1.0. That is, ifτi = K −Ci, then, the least upper bound on
the utilization factor is1.0 − ∑n

i=1
(1−Wi)τi

Ti
.

Alternatively, if it is possible to fragment variable-length
packets and later reassemble them at the destination, per-
stream service requirements can be translated and applied to
fixed-length packet fragments with constant service times.
This is similar to CPU scheduling, in which variable-length
threads (or processes) can be preempted at fixed intervals
(e.g., every10mS timeslice). Moreover, ATM networks

have fixed-length (53 byte) cells and the SAR component
of the ATM Adaptation Layer segments application-level
packets into cells, which are later reassembled. Conse-
quently, the scheduling granularity,K, can be set to a time
which is less than the worst-case service time of a packet.

For fragmented packets, the per-stream service con-
straints are translated as follows. LetCi be theworst-case
service time of a packet in streamSi before fragmentation,
and letci = K be the constant service time of each and
every fragment. Likewise, letWi andTi be the window-
constraint and request period, respectively, for a stream
before fragmentation, whilewi and ti are the translated
window-constraint and request period, respectively, after
fragmentation. Then:

ci = K, ti = � Ti

Ci
�K andwi = ai/bi, whereai andbi

are the smallest values satisfyingai/bi = Tici−Ci(1−Wi)ti

Tici
.

Example. Consider three streams,S1, S2 andS3 with the
following constraints: (C1 = 3,W1 = 2/3, T1 = 5),
(C2 = 4,W2 = 23/35, T2 = 6) and (C3 = 5,W3 =
1/5, T3 = 7). The total utilization factor is1.0 in this ex-
ample, but due to the non-preemptive nature of the variable-
length packets, a feasible schedule cannot be constructed.
However, if the packets are fragmented and the per-stream
service constraints are translated to be(c1 = 1, w1 =
4/5, t1 = 1), (c2 = 1, w2 = 27/35, t2 = 1) and (c3 =
1, w3 = 3/7, t3 = 1), then a feasible schedule exists.
In the latter case, all fragments are serviced so that their
corresponding stream’s window-constraints are met. These
translated window-constraints are equivalent to the original
window-constraints, thereby guaranteeing each stream its
exact share of bandwidth. Observe thatci = ti = 1 is
the normalized time to service one fragment of a packet.
This fragment could be a single cell in an ATM network
but, more realistically, it makes sense for one fragment to
map to multiple ATM cells, thereby reducing the schedul-
ing overheads per fragment. Similarly, a fragment might
correspond to a maximum transmission unit in an Ethernet-
based network.

3.4. Simulated Results

To show that it is possible to feasibly schedule a set of
packet streams when the demand for bandwidth is no more
than 100% of available bandwidth, we simulated the num-
ber of missed deadlines and window-constraint violations
for a number of streams, comprising fixed (unit) length
packets, with different request periods and original window-
constraints. The following scenario was considered (other
scenarios are described in a detailed Technical Report [17]):

There were 8 scheduling classes,ρ1· · ·ρ8, for packet
streams. The original window-constraints for the
classes of packet streams, fromρ1 to ρ8, were
1/10, 1/20, 1/30, 1/40, 1/50, 1/60, 1/70, and 1/80, re-

spectively. Packets in streams belonging toρ1 andρ2 had
request periods of 400 time units, while those inρ3 andρ4

had request periods of 480 time units. Remaining packets
in streams belonging toρ5 andρ6 had request periods of
560 time units, while those inρ7 andρ8 had request pe-
riods of 640 time units. The number of packet streams in
each case was uniformly distributed between each schedul-
ing class, and a total of a million packets across all streams
were serviced.

Table 2 shows the results of the above scenario.n is the
total number of packet streams,D is the number of missed
deadlines,V is the number of window-constraint violations,
U is theminimum total utilization factor (as defined in Sec-
tion 3.2) andn

8 .
∑8

i=1
Ci

Ti
is the utilization factor for all 8

classeswhen all window-constraints are zero. Observe that
some packets miss their deadlines whenU is less than1.0,
but only whenn

8 .
∑8

i=1
Ci

Ti
is greater than1.0. However,

there are no window-constraint violations for any streams
until U exceeds1.0.

n D V U n
8 .

∑8
i=1

Ci

Ti

480 0 0 0.9156 0.9518
496 0 0 0.9461 0.9835
504 0 0 0.9613 0.9994
512 15152 0 0.9766 1.0152
520 30990 0 0.9919 1.0311
528 46828 7038 1.0071 1.0470
544 78528 31873 1.0376 1.0787
560 110240 53455 1.0681 1.1104
640 268800 148143 1.2207 1.2690

Table 2. Simulated results for 8 scheduling
classes.

4. Heterogeneous Packet Streams

In many situations, it is desirable, or even necessary, to
service a mixture of both real-time and best-effort packet
streams. Many researchers have proposed that best-effort,
or non-time-constrained packet streams are only scheduled
when all real-time packet streams have been serviced. Other
researchers [5, 3], have attempted to reduce the mean delay
of non-time-constrained activities (such as threads or pack-
ets) by giving them precedence over real-time activities un-
til it is essential to service the real-time activities.

One way to minimize the delay of best-effort packet
streams is to calculate apseudo request period,TBE , and
window-constraint,WBE , so that1 − ∑n

i=1
(1−Wi)Ci

Ti
=

(1−WBE)CBE

TBE
, when there aren real-time, window-

constrained packet streams. However, with this approach,
there can be cases where real-time packet streams miss
deadlines due to best-effort packet streams being serviced.
In some cases, this may be acceptable, since each real-time

stream only violates a tolerable number of packet dead-
lines, and does not violate its window-constraint. In other
cases, we want to ensure real-time packet streamsnever
miss deadlines when best-effort packet streams are ser-
viced. Hence, our alternative approach is to service best-
effort packet streams only when a packet from each and ev-
ery window-constrained packet stream has been serviced in
each real-time stream’s current request period. This guaran-
tees packets in real-time streams do not miss any deadlines
due to servicing best-effort packet streams. Results have
shown that best-effort packet streams typically experience
close to their minimum possible delay with this latter ap-
proach [17].

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000

B
es

t-
E

ffo
rt

 P
ac

ke
ts

 S
er

vi
ce

d
(x

10
00

)

Total Packets Serviced (x1000)

Min. Utilization of Window-Constrained Streams:
15.3%
30.5%
45.8%
61.0%
76.3%
91.5%

Figure 4. The number of best-effort packets
serviced, as a function of all packets serviced
from both best-effort and real-time streams.

Figure 4 shows the number of best-effort packet streams
serviced, as a function of all packets serviced from both
best-effort and real-time streams. Each set of real-time
packet streams has a differentminimum utilization factor
(hence, the six different lines in the graph). In all cases,
the service constraints of real-time packet streams were the
same as in the simulated scenario in Section 3.4. The uti-
lization factor of these real-time packet streams was in-
creased, by increasing the number of packet streams in each
of the 8 different scheduling classes, from 10 to 60 packet
streams per class. From the figure, it can be seen that there
is a constant rate of service to best-effort packet streams at
each of the different loads from real-time packet streams.
This is useful, in that best-effort packet streams will not ex-
perience large variations in delay (and, hence, jitter) in the
presence of real-time packet streams.

5. Conclusions

This paper describes a modified version of Dynamic
Window-Constrained Scheduling (DWCS) [18, 19]. DWCS

was originally designed as a packet scheduler to provide
(m, k)-firm deadline guarantees [9] and fair queueing [6,
20, 7, 2, 8, 15, 16] properties, for loss and delay constrained
traffic streams such as multimedia audio and video streams.
In this paper, we have shown: (1) a version of DWCS that
can guarantee(m, k)-hard deadlines (or, equivalently, no
more thanx missed packet deadlines for every fixed win-
dow of y consecutive packets in a given stream), (2) using
DWCS, the delay of service to real-time packet streams is
bounded even when the scheduler is overloaded, (3) DWCS
can ensure the delay bound of any given stream is indepen-
dent of other streams, and (4) a fast response time for best-
effort packet streams, in the presence of real-time packet
streams, is possible.

A Appendix

A.1. Proof of Theorem 2

The worst-case delay experienced bySi can be broken
down into three parts: (1) the time for the next packet inSi

to have the earliest deadline amongst all packets queued for
service, (2) the time taken forW ′

i to become the minimum
amongst all current window-constraints,W ′

k | 1 ≤ k ≤ n,
when the head packets in alln streams have the same (ear-
liest) deadline, and (3) the time fory′i to be larger than any
other current denominator,y′j | j 	=i, 1 ≤ j ≤ n, amongst
each packet stream,Sj , with the minimum current window-
constraint and earliest packet deadline. At this point,Si

may be delayed a furtherCmax due to another packet cur-
rently in service.

Part (1): The next packet inSi is never more thanTi

away from its deadline. Consequently,Si will have a packet
with the earliest deadline after a delay of at mostTi.

Part (2): W ′
i = 0 is the minimum possible current

window-constraint. From Theorem 1,W ′
i = 0 after a delay

of at mostxiTi.
Parts (1) and (2) contribute a maximum delay of:

(xi + 1)Ti (1)

Part (3): Assuming all packet streams have the min-
imum current window-constraint and comprise a head
packet with the earliest deadline, the next stream chosen
for service is the one with the highest current window-
denominator. Moreover, the worst-case scenario is when
all other packet streams have the same or higher cur-
rent window-denominators thanSi and every time another
stream,Sj is serviced, deadlinedj≤di. To show thatdj≤di

holds, all deadlines must be at the same time,t, when some
streamSj is serviced in preference toSi. After servicing a
packet inSj for Cj time units, all packet deadlinesdk that
are earlier thant + Cj are incremented by a multiple of the

corresponding request periods,Tk | 1 ≤ k ≤ n, depending
on how many request periods have elapsed while servicing
Sj . The worst-case is thatTj≤Ti,∀j 	= i. Furthermore, ev-
ery time a stream,Sj , other thanSi is serviced,W ′

j = 0.
This is true regardless of whether or notSj is tagged with a
violation, if Wj = 0, which is the case whenxj = 0.

Hence, the worst-case delay incurred bySi whenW ′
i =

0 isTi + δi, whereδi is the maximum time fory′i to become
larger than any other current denominator,y′j | j 	=i, 1 ≤
j ≤ n, amongst all packet streams with the minimum cur-
rent window-constraint and earliest packet deadline. Now,
let stateφ be when each stream,Sk, hasW ′

k = 0 for the first
time. Moreover,W ′

k = 0/y′kφ
, andy′kφ

> 0 is the current
window-denominator forSk when in stateφ.

SupposeTj≤Ti,∀j 	= i andTj is finite. Forn packet
streams, the worst-caseδi is whenTj = K andTi >> K,
for some constant,K, equal to the largest packet service
time, Cmax. Without loss of generality, it can be assumed
in what follows that all packet service times equalCmax.
Now, it should be clear that, ifTi tends to infinity, then the
rate of increase ofy′i approaches0. Moreover, if each and
every packet stream,Sj | j 	= i, has a request period,Tj =
K, thenSi will experience its worst delay beforey′i ≥ y′j .
This is becausey′j rises at a rate of1/K for each streamSj

experiencing a delay ofK time units without service, while
y′i increases at a rate of1/Ti, which is less than or equal to
1/K.

Figure 5 shows the worst-case situation for three packet
streams,Si, Sl, andSm, which causesSi the largest de-
lay, δi, beforey′i is the largest current window-denominator.
From the figure,y′lφ = y′mφ

, and y′i increases at a rate
dy′i/dt = ε/Ti | ε = 1, untilSi is serviced. WhenSm is ser-
viced,y′m decreases at a rate of1/K, whiley′l increases at a
rate of1/K. Conversely, whenSl is serviced,y′l decreases
at a rate of1/K, while y′m increases at a rate of1/K. Only
wheny′m = 0 is W ′

m reset. Likewise, only wheny′l = 0
is W ′

l reset. Consequently,y′i≥max[y′l, y
′
m] is true when

y′i = y′lφ + 1 = y′mφ
+ 1.

Suppose now, another stream,So (with y′oφ
= y′lφ =

y′mφ
andTo = K), is serviced before eitherSl or Sm when

in stateφ. Then,y′l = y′m = y′lφ + 1 = y′mφ
+ 1 afterK

time units. IfSl is now serviced, theny′m = y′mφ
+ 2 after

a furtherK time units. In this case,y′i≥max[y′l, y
′
m, y′o]

is true wheny′i = y′lφ + 2 = y′mφ
+ 2 = y′oφ

+
2. By induction, for each of then − 1 packet streams,
Sj | j 	=i, 1≤j≤n, other thanSi, each withTj = K
andy′jφ

≥y′iφ
, y′i≥max[y′1, y

′
i−1, · · · , y′i+1, y

′
n] is true when

y′i = y′1φ
+(n−2) = · · · = y′nφ

+(n−2). Therefore, since
dy′i/dt = 1/Ti, it follows thatδi≤Ti(y′jφ

− y′iφ
+ (n− 2)).

Now observe thaty′jφ
≤yj for each and every stream,

Sj | j 	=i, since stateφ is the first timeW ′
j is 0. Furthermore,

we have the constraints thatyj = max[y1, yi−1, yi+1, yn],

φ

φφ

Service
Order

Time, t

y

k
y

Fastest rate of increase
is 1/K

l

1

1

K

Gradient 1/T <=1/Ki

Path of yi’

δ

Possible path of y

Possible path of y
l’

m’

i

m m

y

S S S

l ’, m ’

i ’

y

Figure 5. The change in current window-
denominators, y′i, y′l and y′m for three packet
streams, Si, Sl and Sm, respectively, when
all request periods, except possibly Ti, are
finite. The initial state, φ, is when all cur-
rent window-constraints first equal 0, and the
current window-denominators are all greater
than 0.

yi≤yj , andy′iφ
≥1. Therefore,

δi≤Ti(yj + (n− 2)) (2)

If Tj > Ti,∀j 	= i and bothTj andTi are finite, theny′i
andy′j converge more quickly than in the case above, when
Tj ≤ Ti. Therefore, if window-constraint violations occur,
the maximum delay of service toSi (from Equations 1 and
2) is no more than(xi +1)Ti +Ti(ymax +n−2)+Cmax =
Ti(xi + ymax +n− 1)+Cmax, whereyj = ymax in Equa-
tion 2, andCmax is the worst-case additional delay due to
another packet in service when a packet inSi reaches the
highest priority.✷

References

[1] S. K. Baruah and S.-S. Lin. PFair scheduling of generalized
pinwheel task systems.IEEE Transactions on Computers,
47(7), July 1998.

[2] J. C. Bennett and H. Zhang.WF 2Q: Worst-case fair
weighted fair queueing. InIEEE INFOCOMM’96, pages
120–128. IEEE, March 1996.

[3] G. Bernat and A.Burns. Combining (n/m)-hard deadlines
and dual priority scheduling. InProceedings of the 18th
IEEE Real-Time Systems Symposium, pages 46–57, San
Francisco, December 1997. IEEE.

[4] M. Chan and F. Chin. Schedulers for the pinwheel problem
based on double-integer reduction.IEEE Transactions on
Computers, 41(6):755–768, June 1992.

[5] R. Davis and A.Wellings. Dual priority scheduling. InPro-
ceedings of the 16th IEEE Real-Time Systems Symposium,
pages 100–109. IEEE, 1995.

[6] A. Demers, S. Keshav, and S. Schenker. Analysis and simu-
lation of a fair-queueing algorithm.Journal of Internetwork-
ing Research and Experience, pages 3–26, October 1990.

[7] S. Golestani. A self-clocked fair queueing scheme for broad-
band applications. InINFOCOMM’94, pages 636–646.
IEEE, April 1994.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queue-
ing: A scheduling algorithm for integrated services packet
switching networks. InIEEE SIGCOMM’96. IEEE, 1996.

[9] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computers, April 1995.

[10] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel.
The pinwheel: A a real-time scheduling problem. InPro-
ceedings of the 22nd Hawaii International Conference of
System Science, pages 693–702, Jan 1989.

[11] K. Jeffay and S. Goddard. A theory of rate-based execution.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS), December 1999.

[12] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. InProceed-
ings of the 16th IEEE Real-Time Systems Symposium, pages
110–117. IEEE, December 1995.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal of
the ACM, 20(1):46–61, January 1973.

[14] J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: A scheduler for multimedia applica-
tions. InProceedings of the Sixteenth ACM Symposium on
Operating Systems Principles. ACM, October 1997.

[15] X. G. Pawan Goyal and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. In2nd Sym-
posium on Operating Systems Design and Implementation,
pages 107–121. USENIX, 1996.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Real-Time Systems Symposium. IEEE, December 1996.

[17] R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams. Technical Report GIT-CC-00-20, Georgia Institute
of Technology, College of Computing, 2000.

[18] R. West and K. Schwan. Dynamic window-constrained
scheduling for multimedia applications. In6th Interna-
tional Conference on Multimedia Computing and Systems,
ICMCS’99. IEEE, June 1999.

[19] R. West, K. Schwan, and C. Poellabauer. Scalable schedul-
ing support for loss and delay constrained media streams.
In Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium. IEEE, June 1999.

[20] H. Zhang and S. Keshav. Comparison of rate-based service
disciplines. InProceedings of ACM SIGCOMM, pages 113–
121. ACM, August 1991.

