
Predictable Communication and Migration in the Quest-V Separation Kernel

Ye Li, Richard West, Zhuoqun Cheng and Eric Missimer

Computer Science Department

Boston University

Boston, MA 02215

Email: {liye,richwest,czq,missimer}@cs.bu.edu

Abstract—Quest-V is a separation kernel, which parti-
tions a system into a collection of sandboxes. Each sandbox
encapsulates one or more processing cores, a region of
machine physical memory, and a subset of I/O devices.
Quest-V behaves like a distributed system on a chip,
using explicit communication channels to exchange data
and migrate addresses spaces between sandboxes, which
operate like traditional hosts. This design has benefits in
safety-critical systems, which require continued availability
in the presence of failures. Additionally, online faults can be
recovered without rebooting an entire system. However, the
programming model for such a system is more complicated.
Each sandbox has its own local scheduler, and threads
must communicate using message passing with those in
remote sandboxes. Similarly, address spaces may need to
be migrated between sandboxes, to ensure newly forked
processes do not violate the feasibility of existing local task
schedules. Migration may also be needed to move a thread
closer to its required resources, such as I/O devices that
are not directly available in the local sandbox. This paper
describes how Quest-V performs real-time communication
and migration without violating service guarantees for
existing threads.

Keywords—separation kernel; virtualization; real-time
communication; process migration;

I. INTRODUCTION

Multi- and many-core processors are becoming in-

creasingly popular in real-time and embedded systems.

As the number of cores per chip increases it becomes

less desirable to use a global scheduling strategy to

manage all the tasks in a system. Instead, a method that

partitions, or distributes, tasks to separate cores where

they are scheduled locally is preferable. This makes

sense in situations where a single global scheduling

queue would have a high probability of contention from

threads running on separate cores. Taking this further,

it would appear that partitioning a system into logically

separate domains spanning separate cores, I/O devices

and memory regions would help reduce resource con-

tention, and increase both isolation and scalability.

Several systems already adopt the idea of partitioning

resources into logically separate domains on many- and

multi-core architectures, including Corey [1], FOS [2],

and Barrelfish [3]. These systems focus on scalability

rather than timeliness. However, separation of resources

and system components into logically isolated domains

has the potential to increase system predictability: tasks

in one domain can avoid resource contention from tasks

in another separate domain. The principle of separation

has been around for a long time in the design of systems.

Rushby [4] introduced the idea of a separation kernel as

appearing indistinguishable from a physically distributed

system, involving explicit communication channels be-

tween separate domains.

Separation kernels have gained popularity in recent

years on multi- and many-core platforms, to support

tasks of different criticality levels in automotive and

avionics applications. PikeOS [5], for example, is a sepa-

ration micro-kernel [6] that supports multiple guest VMs,

and targets safety-critical domains such as Integrated

Modular Avionics. Other systems such as XtratuM [7],

the Wind River Hypervisor, and Mentor Graphics Em-

bedded Hypervisor all use virtualization technologies to

logically isolate and multiplex guest virtual machines on

a shared set of physical resources. In our own work, we

have been developing the Quest-V [8] separation kernel

for use in real-time and safety-critical systems.

Where available, Quest-V leverages hardware virtual-

ization features found on modern processors (e.g., Intel

VT-x, AMD-V, and ARM Cortex A15) to partition the

system into a collection of sandboxes. Each sandbox

encapsulates a region of machine physical memory, one

or more processing cores, a subset of I/O devices, and a

collection of software components and tasks. In effect,

each sandbox is like a compute node (or machine) in

a traditional distributed system. Hardware virtualization

support is not required in our system, but can be used

to enforce safe and secure isolation of sandbox domains.

This is valuable in safety-critical systems in which tasks

of different criticality and trustworthiness can co-exist

without jeopardizing overall functionality. For architec-

tures lacking hardware virtualization support, a system

using software techniques can be developed to isolate

components in separate domains.

Unlike in a traditional distributed system, Quest-V

uses shared memory channels for communication. In

all other fundamental respects, Quest-V is a distributed

system, with each sandbox domain having its own lo-

cal clock and scheduling queue. The lack of a global

scheduler and the distributed nature of Quest-V does,

however, impose some challenges of the design of appli-

cations, particularly those with real-time constraints. For

example, a multi-threaded application might need to be

assigned to multiple sandbox domains, because a single

sandbox might otherwise be overloaded. Application

threads in separate sandboxes might, in turn, need to

communicate with one another. Consequently, the pro-

gramming model for a distributed Quest-V application

needs to support the assignment and migration of threads

and address spaces to specific sandboxes and, hence,

cores. It also needs to support a method for timely

communication between threads in separate sandboxes.

In this paper, we describe how communication and

migration are performed predictably in Quest-V. In par-

ticular, we show how threads and their address spaces

can be dynamically created and migrated between sepa-

rate sandbox domains without violating the timing guar-

antees of existing threads. Given that threads in separate

sandboxes are scheduled independently, we analyze the

worst-case communication delays between groups of

sandboxes, and determine the conditions under which

an address space can be migrated to a remote sandbox

without affecting the schedulability of existing tasks.

In the next section, we briefly describe the Quest-

V architecture. This is followed by a discussion of

mechanisms and timing guarantees on inter-sandbox

communication and migration. Experimental results are

shown in Section V. A summary of related work is

described in Section VI. Finally, conclusions and future

work are discussed in Section VII.

II. ARCHITECTURE OVERVIEW

Figure 1 shows a simplified view of the Quest-V

system as it relates to the problem in this paper. Further

details are available in related work [8].

Fig. 1. Quest-V Architecture Overview

Quest-V is designed for safety-critical systems, com-

prising one or more sandboxes into which tasks and

kernel services of different criticality levels can be

mapped. A sandbox is a hardware partition that hosts a

well-defined software environment. Each sandbox encap-

sulates one or more processor cores, a region of machine

physical memory and a subset of I/O devices. The

software environment for a sandbox consists of a monitor

layer, a guest operating system (OS), and a group of

application tasks. Collectively, this arrangement appears

like a distributed chip-level system, or separation kernel.

Each sandbox domain operates like a logically separate

host, and communicates with other sandbox domains

only through explicit channels. Failure of one sandbox

should not compromise the functionality of another.

Quest-V uses machine virtualization techniques to par-

tition hardware resources amongst separate sandboxes.

Each sandbox has a trusted monitor that manages ex-

tended page tables, which assist in the mapping of guest-

physical to machine-physical memory addresses. These

page tables are similar, but in addition, to the traditional

page table mappings in a conventional OS. In this case, a

guest OS uses page tables to map guest-virtual to guest-

physical memory addresses.

Quest-V does not use machine virtualization for

any other purpose than to partition machine resources

amongst sandboxes at boot time. Once booted, each

sandbox monitor is only needed to establish communi-

cation channels with other sandboxes, and to assist in

fault recovery. It is possible to detect a failed sandbox

and recover its state without rebooting the entire system.

Failure of part or all of a sandbox functionality can

be detected and recovered, as long as the monitor layer

remains operational 1. Although monitors are trusted

entities in Quest-V, they have small memory footprints

(typically less than a few kilobytes) and are not part

of normal sandbox execution. Instead, each guest OS is

responsible for managing the hardware resources within

a sandbox, performing scheduling, I/O, and memory

management without monitor intervention. This is pos-

sible because Quest-V does not multiplex multiple guest

virtual machines on the same set of hardware, as is

done in conventional hypervisor systems. Instead, the

hardware is statically partitioned into separate domains.

Guest OSes in Quest-V can be as simple as a library

OS [9], implementing a few basic services. Alternatively,

they can be as powerful as a full-featured Linux system.

Currently, Quest-V supports Linux guests for legacy

services, and Quest native guests for real-time tasks.

VCPU Scheduling. Quest native guests feature a novel

1Details are outside the scope of this paper.

virtual CPU (VCPU) scheduling framework [10]. Soft-

ware threads are mapped to VCPUs, which in turn are

mapped to physical CPUs (PCPUs) 2 within the scope

of a given sandbox. A VCPU is a logical abstraction,

identifying the fraction of time it is allowed to execute

on a PCPU in a specific window of real-time. By default,

all VCPUs associated with conventional tasks act like

sporadic servers [11], and are assigned static priorities.

Each VCPU, Vi, has a budget capacity, Ci, and re-

plenishment period, Ti. Rate monotonic scheduling [12]

can then be applied to determine schedulability. For

improved utilization it is possible to configure Quest-V

to schedule VCPUs according to a dynamic, deadline-

based prioritization. However, for this paper, we assume

all VCPUs are scheduled according to static priorities,

when it is necessary to make the distinction clear.

The idea of managing VCPUs as sporadic servers is

based on the observation that tasks issuing I/O requests

typically block and wakeup at times that are not guaran-

teed to be periodic. However, such tasks often have an

identifiable minimum interval between when they block

and when they need to wakeup. Similarly, interrupts

caused by I/O requests often occur at times that are

not guaranteed to be periodic. A sporadic server model

enables events with minimum inter-arrival times to be

analyzed as though they were periodic.

Inter-Sandbox Communication. Inter-sandbox commu-

nication in Quest-V relies on message passing primi-

tives built on shared memory, and asynchronous event

notification mechanisms using Inter-processor Interrupts

(IPIs). IPIs are currently used to communicate with

remote sandboxes to assist in fault recovery, and can

also be used to notify the arrival of messages exchanged

via shared memory channels. Monitors update extended

page table mappings as necessary to establish message

passing channels between specific sandboxes. Only those

sandboxes with mapped shared pages are able to commu-

nicate with one another. All other sandboxes are isolated

from these memory regions.

A mailbox data structure is set up within shared

memory by each end of a communication channel.

By default, Quest-V currently supports asynchronous

communication by polling a status bit in each relevant

mailbox to determine message arrival. In this paper, we

assume real-time communication is between sandboxes

running Quest services, and featuring VCPU scheduling

as described above. Message passing threads are bound

to VCPUs with specific parameters to control the rate

of exchange of information. Likewise, sending and re-

2We use the term “PCPU” to refer to a processor core, hardware
thread, or uniprocessor.

ceiving threads are assigned to higher priority VCPUs

to reduce the latency of transfer of information across

a communication channel. This way, shared memory

channels can be prioritized and granted higher or lower

throughput as needed, while ensuring information is

communicated in a predictable manner. Thus, Quest-

V supports real-time communication between sandboxes

without compromising the CPU shares allocated to non-

communicating tasks.

The lack of both a global clock and global scheduler

for all sandboxes creates challenges for a system requir-

ing strict timing guarantees. In the next two sections we

elaborate on two such challenges, relating to predictable

communication and address space migration.

III. PREDICTABLE COMMUNICATION

For the purposes of predictable communication, we

consider a system model as follows:

• A communication channel between a pair of end-

points in separate sandboxes is half duplex and has a

single slot. A single slot has a configurable capacity,

B, but is 4KB by default.

• One endpoint acting as a sender places up to one

full slot of data in the channel when it detects the

channel is empty.

• A second endpoint acting as a receiver consumes

one slot of data from the channel when it is full.

• A transaction on a channel comprises the exchange

of one or more slots of data. A sender sets a start

flag to initiate a transaction. When the final unit of

data is submitted to the channel, the sender sets an

end of transaction flag.

• Each endpoint executes a thread mapped to a

communication VCPU. The sender VCPU, Vs has

parameters Cs and Ts, for its budget and period,

respectively. Similarly, the receiver VCPU, Vr has

parameters Cr and Tr. Both endpoints poll for the

arrival of data when not sending, unless a special

out-of-band signal is used, such as an interprocessor

interrupt (IPI).

Consider a sending thread, τs, associated with a

VCPU, Vs, which wishes to communicate with a re-

ceiving thread, τr, bound to Vr in a remote sandbox.

Suppose τs sends a message of N bytes at a cost of δs
time units per byte. Similarly, suppose τr replies with

an M byte message at a cost of δr time units per byte.

Before replying, let τr consume K units of processing

time to service the communication request. The worst-

case round-trip communication delay, ∆WC , between τs
and τr can now be calculated.

Case 1: All messages fit in one channel slot. In this

case N,M ≤ B. To calculate ∆WC , we need to account

for the time to send a request, process it, and wait for

the reply. Let S(N) be the total time taken by τs to send

a request message of size N . That is:

S(N) = ⌊
N · δs
Cs

⌋ · Ts + (N · δs) mod Cs

This accounts for multiple periods of Vs to send N

bytes. At the receiver, we calculate the time, R(N,M),
to consume a request of size N , process the request and

send a reply of size M as:

R(N,M) = ⌊
[N +M] · δr +K

Cr

⌋ · Tr+

([N +M] · δr +K) mod Cr (1)

The last stage of a communication transaction is

consuming a response at the sender, which takes S(M)
time units.

Finally, we need to factor the shifts in time between

when Vs and Vr are scheduled in their respective sand-

boxes. In the worst-case, a message is about to be sent

when Vs uses up its current budget. This causes a delay

of Ts−Cs time units until its budget is replenished. The

same situation might happen when Vs tries to consume

the response. Similarly, a message arrives at the receiver

when Vr has completed its current budget, so it will not

be processed for another Tr − Cr time. Consequently,

the worst-case round-trip communication delay is:

∆WC(N,M) = S(N) + (Ts − Cs) +R(N,M)

+ (Tr − Cr) + S(M) + (Ts − Cs) (2)

Case 2: Messages take multiple slots. In this case, N >

B and M≤N 3. For cases where the request messages

take more than one slot, we need to consider Equation 2

each time a request-response channel slot is used. Hence,

the multi-slot worst-case response time, ∆′

WC , becomes:

∆′

WC = ⌈
N

B
⌉ ·∆WC(B,min(M,B)) (3)

For the special case where communication is only one-

way (e.g., to migrate an address space) of size N , ∆′

WC

reduces to:

∆′

WC = ⌈
N

B
⌉ · (S(B) + (Ts − Cs)+

R(B, 0) + (Tr − Cr)) (4)

IV. PREDICTABLE MIGRATION

Quest-V supports the migration of VCPUs and asso-

ciated address spaces for several reasons: (1) to balance

loads across sandboxes, (2) to guarantee the schedulabil-

ity of VCPUs and threads, and (3) for closer proximity

to needed resources such as I/O devices that would

otherwise have to be accessed by remote procedure calls.

3For brevity, we omit the case where M > N > B.

Migration is initiated using the vcpu migration inter-

face shown in Listing 1. The flag is either 0, MIG_-

STRICT or MIG_RELAX. A time in milliseconds is

used to specify either a deadline or timeout, depending

on flag. The dest argument specifies the sandbox ID

of a specific destination, or DEST_ANY if the caller

wishes to allow the sandbox kernel to pick an acceptable

destination.

The migration function is non-blocking. It returns

TRUE only if the migration request is accepted, and

the caller can resume its normal operation. The actual

migration will happen at a later time decided by the

sandbox kernel. The calling thread can use a flag in its

task structure, or retrieve its current sandbox ID, to check

whether the migration succeeded or failed.

Listing 1. Predictable Migration User Interface
bool vcpu_migration(uint32_t time, int dest,

int flag);

When flag is set to MIG_STRICT, the calling thread

and its VCPU will be migrated to the destination with the

restriction that the migrating VCPU’s utilization cannot

be affected. The local sandbox kernel must find a suitable

time to perform migration to make this guarantee. An

optional timeout specified using the time argument can

be used to avoid indefinite delays before migration can

occur. A time of 0 disables the timeout deadline.

When flag is set to 0, time is used to specify a migra-

tion deadline. A sandbox kernel will try to migrate the

calling thread and its VCPU to the specified destination

within the deadline. Unlike the case with MIG_STRICT

flag, the calling thread’s VCPU utilization can potentially

be affected during migration. The worst-case down time

for the migrating VCPU would be from the time of the

request to the specified deadline.

Finally, when flag is set to MIG_RELAX, the calling

thread and its VCPU will be migrated to the destination

no matter how long it takes. As with 0 flag, calling

vcpu migration with MIG_RELAX will potentially affect

the migrating VCPU’s utilization. However, the VCPU

down time is not bounded as with 0 flag.

Notice that the use of different flags in vcpu migration

only affects the behavior of the migrating thread and its

VCPU. All the other VCPUs running in both the source

and the destination sandbox should not be affected. The

pseudo-code for vcpu migration() and its integration into

the local scheduler are shown in the appendix, in List-

ings 2 and 3. The major challenges in the implementation

are: (1) accurately accounting for migration overheads,

and (2) accurately estimating the worst-case migration

cost under all circumstances.

A. Predictable Migration Strategy

Threads in Quest-V have corresponding address

spaces and VCPUs. The current design limits one,

possibly multi-threaded, address space to be associated

with a single VCPU. This restriction avoids the problem

of migrating VCPUs and multiple address spaces be-

tween sandboxes, which could lead to arbitrary delays in

copying memory. Migration from one sandbox’s private

memory requires a copy of an address space and all

thread data structures to the destination. Each thread is

associated with a quest_tss structure that stores the

execution context and VCPU state.

Dedicated migration threads and corresponding VC-

PUs are established within each sandbox at system

initialization. A migration thread is responsible for the

actual VCPU migration operation. An inter-processor

interrupt (IPI) is used by the local sandbox kernel to

notify a remote migration thread of a migration request.

In our current implementation, only one migration thread

and VCPU can be configured for each sandbox. If

multiple migration requests occur at the same time, they

will be processed serially.

Migration using Message Passing. This approach trans-

fers a thread’s state, including its address space and

VCPU information, using a series of messages that are

passed over a communication channel. The advantage of

this approach is that it generalizes across different com-

munication links, including those where shared memory

is not available (e.g., Ethernet).

To initiate migration, an IPI is first sent to the migra-

tion thread in the destination sandbox. The destination

then waits for data on a specific channel. Since the

default communication channel size is 4KB, a stream of

messages are needed to migrate an address space, along

with its thread and VCPU state. This resembles the com-

munication scenario described in Case 2 of Section III.

The destination re-assembles the address space and state

information before adding the migrated VCPU to its

scheduler queue. An IPI or acknowledgement message

from the destination to the source is now needed to signal

the completion of migration. If successful, the migration

thread in the source sandbox will be able to reclaim the

memory of the migrated address space. Otherwise, the

migrating VCPU will be put back into the run queue in

the source sandbox.

Before a VCPU is migrated, admission control is

performed at the destination. This is used to verify the

schedulability of the migrating VCPU and all existing

VCPUs in the destination. If admission control fails, a

migration request is rejected.

At boot time, Quest-V establishes base costs for

copying memory pages without caches enabled 4. These

costs are used to determine various parameters used for

worst-case execution time estimation.

An estimate of the worst-case migration cost requires:

(1) the cost of serializing the migrated state into a

sequence of messages (∆s), (2) the communication delay

to send the messages (∆t), and (3) the cost of re-

assembling the transferred state at the destination (∆a).

We assume one migration thread is associated with a

sender VCPU, Vs, and another is associated with a

receiver VCPU, Vr.

∆s = ⌊
δs

Cs

⌋ · Ts + δs mod Cs + Ts − Cs (5)

Here, δs is the execution time of a migration thread

to produce a sequence of messages, assuming caches are

disabled. Similarly, given δa, is the execution time to re-

assemble a VCPU and address space:

∆a = ⌊
δa

Cr

⌋ · Tr + δa mod Cr + Tr − Cr (6)

In this case, ∆t is identical to ∆′

WC in Equation 3.

Hence, the the worst-case migration cost when message

passing is used is:

∆mig = ∆s +∆′

WC +∆a (7)

Migration with Direct Memory Copy. As shown in

Equation 3, the worst-case time to transfer a large

amount of state between two sandboxes can span nu-

merous migration VCPU periods. This makes it difficult

to satisfy a VCPU migration request using message

passing, with the MIG_STRICT flag set. Fortunately, for

Quest-V sandboxes that communicate via shared mem-

ory, it is possible to dramatically reduce the migration

overhead.

Figure 2 shows the general migration strategy when

direct memory copy is used. An IPI is first sent to the

destination sandbox, to initiate migration. The migration

thread handles the IPI in the destination, generating a

trap into its monitor that has access to machine physical

memory of all sandboxes. The migrating address space in

the source sandbox is temporarily mapped into the des-

tination. The address space and associated quest_tss

thread structures are then copied to the target sandbox’s

memory. At this point, the page mappings in the source

sandbox can be removed by the destination monitor.

Similar to the message passing approach, an IPI from

the destination to the source sandbox is needed to signal

the completion of migration. All IPIs are handled in

the sandbox kernels, with interrupts disabled while in

monitor mode. The migration thread in the destination

4We do not consider memory bus contention issues, which could
make worst-case estimations even larger.

can now exit its monitor and return to the sandbox kernel.

The migrated address space is attached to its VCPU and

added to the local schedule. At this point, the migration

threads in source and destination sandboxes are able to

yield execution to other VCPUs and, hence, threads.

Fig. 2. Migration Strategy

With direct memory copy, the worst-case migration

cost can simply be defined as:

∆mig = ⌊
δm

Cr

⌋ · Tr + δm mod Cr + Tr − Cr (8)

Here, Cr and Tr are the budget and period of the

migration thread’s VCPU in destination sandbox, and

δm is the execution time to copy an address space and

its quest tss data structures to the destination.

Migration Thread Preemption. The migration thread in

each sandbox is bound to a VCPU. If the VCPU depletes

its budget or a higher priority VCPU is ready to run,

the migration thread should be preempted. However, if

direct memory copy is used, migration thread preemp-

tion is complicated by the fact that the thread spends

most of its time inside the sandbox monitor, and each

sandbox scheduler runs within the local kernel (outside

the monitor).

Migration thread preemption, in this case, requires a

domain switch between a sandbox monitor and its kernel,

to access the local scheduler. This results in costly VM-

Exit and VM-Entry operations that flush the TLB of

the processor core. To avoid this cost, we limited mi-

gration thread preemption to specific preemption points.

Additionally, we associated each migration thread with a

highest priority VCPU, ensuring it would run until either

migration was completed or the VCPU budget expired.

Bookkeeping is limited to tracking budget usage at each

preemption point. Thus, within one period, a migration

thread needs only one call into its local monitor.

Preemption points are currently located: (1) imme-

diately after copying each quest_tss structure, (2)

between processing each Page Directory Entry during

address space cloning, and (3) right before binding the

migrated address space to its VCPU, for re-scheduling.

In the case of a budget overrun, the next budget replen-

ishment is adjusted according to the corrected POSIX

Sporadic Server algorithm [13]. Figure 3 describes the

migration control flow.

Fig. 3. Migration Framework Control Flow

Clock Synchronization. One extra challenge to be

considered during migration is clock synchronization

between different sandboxes in Quest-V. Quest-V sched-

ulers use Local APIC Timers and Time Stamp Counters

(TSCs) in each core as the source for all time-related

activities in the system, and these are not guaranteed

to be synchronized by hardware. Consequently, Quest-

V adjusts time for each migrating address space to

compensate for clock skew. This is necessary when

updating budget replenishment and wakeup time events

for a migrating VCPU that is sleeping on an I/O request,

or which is not yet runnable.

The source sandbox places its current TSC value in

shared memory immediately before sending a IPI migra-

tion request. This value is compared with the destination

TSC when the IPI is received. A time-adjustment, δADJ ,

for the migrating VCPU is calculated as follows:

δADJ = TSCd − TSCs − 2 ∗RDTSCcost − IPIcost
TSCd and TSCs are the destination and source TSCs,

while RDTSCcost and IPIcost are the average costs of

reading a TSC and sending an IPI, respectively. δADJ

is then added to all future budget replenishment and

wakeup time events for the migrating VCPU in the

destination sandbox.

B. Migration Criteria

Quest-V restricts migrate-able address spaces to those

associated with VCPUs that either: (1) have currently

expired budgets, or (2) are waiting in a sleep queue.

In the former case, the VCPU is not runnable at its

foreground priority until its next budget replenishment.

In the latter case, a VCPU is blocked until a wakeup

event occurs (e.g., due to an I/O request completion or a

resource becoming available). Together, these two cases

prevent migrating a VCPU when it is runnable, as the

migration delay could impact the VCPU’s utilization.

For VCPU, Vm, associated with a migrating address

space, we define Em to be the relative time 5 of the next

event, which is either a replenishment or wakeup.

If Vm issues a migration request with MIG_STRICT

flag, for the utilization of Vm to be unaffected by

migration, the following must hold:

Em ≥ ∆mig (9)

Where ∆mig can be calculated by either Equation 7

or 8. Quest-V makes sure that the migrating thread

will not be woken up by asynchronous events until the

migration is finished. The system imposes the restriction

that threads waiting on I/O events cannot be migrated.

Similarly, the migration deadline can be compared with

∆mig to make migration decisions when flag=0.

V. EXPERIMENTAL EVALUATION

We conducted a series of experiments on a Gigabyte

Mini-ITX machine with an Intel Core i5-2500K 3.3GHz

4-core processor, 8GB RAM and a Realtek 8111e NIC.

A. Predictable Communication

We first ran 5 different experiments to predict the

worst-case round-trip communication time using Equa-

tion 2. The VCPU settings of the sender and receiver,

spanning two different sandboxes, are shown in Table I.

Case # Sender VCPU Receiver VCPU

Case 1 20/100 2/10

Case 2 20/100 20/100

Case 3 20/100 20/130

Case 4 20/100 20/200

Case 5 20/100 20/230

TABLE I
VCPU PARAMETERS

We calculated the values of δs and δr by setting the

message size to 4KB for both sender and receiver (i.e.

M = N = 4KB) and disabling caching of the shared

memory communication channel on the test platform.

The message processing time K has essentially been

ignored because the receiver immediately sends the

response after receiving the message from the sender.

Both sender and receiver threads running on VC-

PUs Vs and Vr, respectively, sleep for controlled time

units, to influence phase shifts between their periods

5i.e., Relative to current time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

Case1 Case2 Case3 Case4 Case5

x
1

0
0

m
 C

P
U

 C
y
c
le

s

Observed
Predicted

Fig. 4. Worst-Case Round-trip Communication

Ts and Tr. Similarly, the sender thread adds busy-wait

delays before transmission, to affect the starting point of

communication within its VCPU’s available budget, Cs.

Figure 4 shows results after 10000 message exchanges

are performed for each of the 5 experiments. As can be

seen, the observed value is always within the prediction

bounds derived from Equation 2.

We next conducted a series of one-way communi-

cation experiments to send 4MB messages through a

4KB channel with different VCPU parameters as shown

in Table II. Figure 5 again shows that the observed

communication times are within the bounds derived from

our worst-case estimations. However, the bounds are not

as tight as for round-trip communication. We believe

this is due to the fact that we used a pessimistic worst-

case estimation, which includes leftover VCPU budgets

in each instance of the multi-slot communication. Es-

timation error is reduced when the difference between

VCPU budgets and periods is smaller.

Case # Sender VCPU Receiver VCPU

Case 1 20/50 20/50

Case 2 10/100 10/100

Case 3 10/100 10/50

Case 4 10/100 10/200

Case 5 5/100 5/130

Case 6 10/200 10/200

TABLE II
VCPU PARAMETERS

B. Predictable Migration

To verify the predictability of the Quest-V migration

framework, we constructed a task group consisting of

2 communicating threads and another CPU-intensive

thread running a Canny edge detection algorithm on a

stream of video frames. The frames were gathered from

a LogiTech QuickCam Pro9000 camera mounted on our

RacerX mobile robot, which traversed one lap of Boston

University’s indoor running track at Agganis Arena 6. To

6RacerX is a real-time robot that runs Quest-V.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

Case1 Case2 Case3 Case4 Case5 Case6

x
1

0
0

0
b

ill
io

n
 C

P
U

 C
y
c
le

s
Observed
Predicted

Fig. 5. Worst-Case One-way Multi-slot Communication

avoid variable bit rate frames affecting the results of our

experiments, we applied Canny repeatedly to the frame

shown in Figure 6 rather than a live stream of the track.

This way, we could determine the effects of migration on

a Canny thread by observing changes in processing rate

while the other threads communicated with one another.

Fig. 6. Track Image Processed by Canny

For all the experiments in this section, we have two

active sandbox kernels each with 5 VCPUs. The setup

is shown in Table III. The Canny thread is the target

for migration from sandbox 1 to sandbox 2 in all cases.

Migration is always requested at time 5. A logger thread

is used to collect the result of the experiment in a pre-

dictable manner. Data points are sampled and reported

in a one second interval. For migration with message

passing, a low priority migration VCPU (10/200) is used.

In the case of direct memory copy, the migration thread

is associated with the highest priority VCPU (10/50).

VCPU (C/T) Sandbox 1 Sandbox 2

20/100 Shell Shell

10/200 (10/50) Migration Thread Migration Thread

20/100 Canny

20/100 Logger Logger

10/100 Comms 1 Comms 2

TABLE III
MIGRATION EXPERIMENT VCPU SETUP

Figure 7 shows the behavior of Canny as it is mi-

grated using message passing in the presence of the two

communicating threads. The y-axis shows both Canny

frame rate (in frames-per-second, fps) and message pass-

ing throughput (in multiples of a 1000 Kilobytes-per-

second). Canny requested migration with the MIG_-

RELAX flag, leading to a drop in frame rate during

transfer to the remote sandbox. However, the two com-

municating threads were not affected.

 40

 80

 120

 160

 200

 240

 280

 0 5 10 15 20

fp
s
 o

r
x
1

0
0

0
 K

B
/s

Time (Seconds)

Canny
Comms 1
Comms 2

Fig. 7. Migration using Message Passing

Table IV shows the estimated worst-case and actual

migration cost. The worst-case is derived from Equa-

tion 7. Even though the actual migration cost is much

smaller than the estimation, it is still larger than Em,

forbidding migration with the MIG_STRICT flag.

Variables Em ∆mig , worst ∆mig , actual

Time (ms) 79.8 243681.02 4021.18

TABLE IV
MESSAGE PASSING MIGRATION CONDITION

In Figure 8, the same experiment was conducted with

direct memory copy and flag=MIG_STRICT. Since

the migration thread was self-preempted, the right y-

axis shows its actual CPU consumption in (millions of,

x1m) cycles. We can see from this figure that none

of the threads have been affected by migration. The

sudden spike in migration thread CPU consumption

occurs during the migration of the Canny thread.

 50

 100

 150

 200

 250

 0 5 10 15 20
 0

 2

 4

 6

fp
s
 o

r
x
1

0
0

0
 K

B
/s

M
ig

ra
ti
o

n
 O

v
e

rh
e

a
d

 (
x
1

m
 C

y
c
le

s
)

Time (Seconds)

Canny
Comms 1
Comms 2
Migration

Fig. 8. Migration using Direct Memory Copy

Table V shows the values of variables as defined in

Equation 8 and 9. δm, worst is the worst-case time to

copy a Canny address space with all caches disabled,

including the overhead of walking its page directory.

δm, actual is the actual migration thread budget con-

sumption with caches enabled. Both worst-case and ac-

tual migration costs satisfy the constraints of Equation 9.

This guarantees that all VCPUs remain unaffected in

terms of their CPU utilization during migration.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 5.4 1.7 10 50

TABLE V
DIRECT MEMORY COPY MIGRATION CONDITION

In the next experiment, we switched back to

flag=MIG_RELAX and manually increased the migra-

tion cost by adding a busy-wait of 800µs to the address

space clone procedure for each processed Page Directory

Entry (of which there were 1024 in total). This forced the

migration cost to violate Equation 9. Similar to Figure 7,

Figure 9 shows how the migration costs increase, with

only the migrating thread being affected. Here, the

preemption points within each sandbox monitor prevent

excessive budget overruns that would otherwise impact

VCPU schedulability.

 50

 100

 150

 200

 250

 0 5 10 15 20 25
 0

 20

 40

 60

fp
s
 o

r
x
1

0
0

0
 K

B
/s

M
ig

ra
ti
o

n
 O

v
e

rh
e

a
d

 (
x
1

0
m

 C
y
c
le

s
)

Time (Seconds)

Canny
Comms 1
Comms 2
Migration

Fig. 9. Migration With Added Overhead

Table VI shows the migration parameters for this

experiment. We also measured the budget utilization

of the migration thread while it was active. Results

are shown in Table VII for the interval [6s,10s] of

Figure 9. Migration thread budget consumption peaks

at 91.5% rather than 100%, because of self-preemption

and accounting overheads. We are currently working on

optimizations to reduce these overheads.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 891.4 825.1 10 50

TABLE VI
MIGRATION CONDITION WITH ADDED OVERHEAD

Time (sec) 6 7 8 9 10

Utilization 67.5% 91.5% 91.5% 91.5% 71.5%

TABLE VII
MIGRATION THREAD SELF-PREEMPTION BUDGET UTILIZATION

For comparison, the same experiment was repeated

without a dedicated migration thread. Instead, migration

was handled in the context of an IPI handler that runs

with interrupts subsequently disabled. Consequently, the

handler delays all other threads and their VCPUs during

its execution, as shown in Figure 10.

 40

 80

 120

 160

 200

 240

 280

 0 5 10 15 20

fp
s
 o

r
x
1

0
0

0
 K

B
/s

Time (Seconds)

Canny
Comms 1
Comms 2

Fig. 10. Migration Without a Dedicated Thread

Table VIII shows the values of the variables used in

Equation 8 and 9 when the migration overhead first

starts to impact the Canny frame rate. In theory, the

minimum δm that violates Equation 9 is any value

greater than 10ms. However, because δm, worst is a

worst-case estimation and the worst-case VCPU phase

shift (Tr −Cr in Equation 8) rarely happens in practice,

the first visible frame rate drop happens at 26.4ms. At

this time, the actual budget consumption of the migration

thread is 19.2ms, which is greater than 10ms.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 26.4 19.2 10 50

TABLE VIII
MIGRATION BOUNDARY CASE CONDITION

Finally, as mentioned earlier in Section IV-A, if mul-

tiple migration requests to a destination sandbox are

issued simultaneously, they will be processed serially.

Currently, parallel migration is not supported. The source

sandbox kernel has to essentially lock both its own mi-

gration thread and the migration thread in the destination

before initiating migration. To demonstrate this effect,

we conducted an experiment in which two sandboxes

issued a migration request at the same time, to the same

destination. The VCPU setup is shown in Table IX. In

addition to Canny and the 2 communicating threads, we

added another thread in sandbox 3 that repeatedly counts

prime numbers from 1 to 2500 and increments a counter

after each iteration. Canny and Prime attempt to migrate

to sandbox 2 at the same time.

VCPU (C/T) Sandbox 1 Sandbox 2 Sandbox 3

20/100 Shell Shell Shell

10/100 Mig Thread Mig Thread Mig Thread

20/100 Canny

10/100 Logger Logger Logger

10/100 Comms 1 Comms 2

10/100 Prime

TABLE IX
MIGRATION THREAD CONTENTION EXPERIMENT VCPU SETUP

The results of the experiment are shown in Figure 11.

The y-axis now also shows the Prime count in addition

to Canny frame rate and message passing throughput.

Both Prime and Canny request migration to sandbox 2 at

some time after 6 seconds. Prime acquires the locks first

and starts migration immediately. The migration request

of Canny is delayed since the try lock function returns

FALSE in Listing 3 in the appendix. Because both

requests are issued with flag=MIG_RELAX, Canny is

migrated soon after Prime finishes migration.

 0

 40

 80

 120

 160

 200

 240

 0 5 10 15 20

fp
s
,

p
ri
m

e
 c

o
u

n
t

o
r

x
1

0
0

0
 K

B
/s

Time (Seconds)

Canny
Comms 1
Comms 2

Prime

Fig. 11. Migration Thread Contention

By setting the migration start time for Prime to t0 = 0,

Table X shows the relative time of: the start of data

transfer of Prime (t1), the end of data transfer of Prime

(t2), the end of Prime migration (t3), the start of Canny

migration (t4), the start of data transfer of Canny (t5),

the end of data transfer of Canny (t6) and the end of

Canny migration (t7).

t0 t1 t2 t3
0 3.15 1903.81 1913.47

t4 t5 t6 t7
1999.82 2003.67 2402.72 2412.98

TABLE X
MIGRATION TIME SEQUENCE (MILLISECONDS)

VI. RELATED WORK

PikeOS [5] is a separation micro-kernel [6] that sup-

ports multiple guest VMs, and targets safety-critical

domains such as Integrated Modular Avionics. It uses a

virtualization layer to spatially and temporally partition

resources amongst guests. Xen [14], Linux-KVM [15],

XtratuM [7], the Wind River Hypervisor, Mentor Graph-

ics Embedded Hypervisor, and LynxSecure [16] all use

virtualization technologies to isolate and multiplex guest

virtual machines on a shared set of physical resources.

In contrast to the above approaches, Quest-V statically

partitions machine resources into separate sandboxes, al-

lowing guest OSes to directly manage hardware without

involvement of a hypervisor. Interrupts, I/O transfers and

scheduling are all directly handled by Quest-V guests

without the involvement of a virtual machine monitor.

Quest-V supports the migration of address spaces

and VCPUs to remote sandboxes for reasons such as

load balancing, or proximity to I/O devices. Quest-V’s

migration scheme is intended to maintain predictabil-

ity, even for tasks that may have started executing in

one sandbox and then resume execution in another.

Other systems that have supported migration include

MOSIX [17] and Condor [18], but these do not focus

on real-time migration.

In other work, reservation-based scheduling has been

applied to client/server interactions involving RPC [19].

This approach is based on analysis of groups of tasks in-

teracting through shared resources accessed with mutual

exclusion [20], [21]. A bandwidth inheritance protocol

is used to guarantee the server handles each request

according to scheduling requirements of the client. We

intend to investigate the use of bandwidth inheritance

protocols across sandboxes, although this is complicated

by the lack of global prioritization of VCPUs.

Finally, models such as RAD-Flows [22] attempt to

identify buffer space requirements for communicating

tasks to avoid blocking delays. Such techniques will

be considered further as we develop Quest-V to use

ring buffers for communication between sandboxes.

Currently, our work focuses on single-slot communi-

cation between pairs of sandboxes hosting bandwidth-

preserving VCPUs.

VII. CONCLUSIONS AND FUTURE WORK

This paper focuses on predictable communication and

migration in the Quest-V separation kernel. Quest-V

partitions machine resources amongst separate sand-

boxes that operate like traditional hosts in a distributed

system. However, unlike a traditional distributed system,

communication channels are built on shared memory,

which has low latency and high bandwidth.

Quest-V allows threads to migrate between sandboxes.

This might be necessary to ensure loads are balanced,

and each sandbox can guarantee the schedulability of

its virtual CPUs (VCPUs). In other cases, threads might

need to be migrated to sandboxes that have direct ac-

cess to I/O devices, thereby avoiding expensive inter-

sandbox communication. We have shown how Quest-

V’s migration mechanism between separate sandboxes is

able to ensure predictable VCPU and thread execution.

Experiments show the ability of our Canny edge detector

to maintain its frame processing rate while migrating

from one sandbox to another. This application bears

significance in our RacerX autonomous vehicle project

that uses cameras to perform real-time lane detection.

Finally, we have shown how Quest-V is able to enforce

predictable time bounds on the exchange of information

between threads mapped to different sandboxes. This

lays the foundations for real-time communication in a

distributed embedded system. Future work will inves-

tigate lazy migration of only the working set (or hot)

pages of address spaces. This will likely reduce initial

migration costs but incur page faults that will need to be

addressed predictably.

ACKNOWLEDGMENTS

This material is based upon work supported by the

National Science Foundation under Grant No. 1117025.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. hua Dai, Y. Zhang,
and Z. Zhang, “Corey: An operating system for many cores,” in
the 8th USENIX Symposium on Operating Systems Design and

Implementation, pp. 43–57, 2008.

[2] D. Wentzlaff and A. Agarwal, “Factored operating systems
(FOS): The case for a scalable operating system for multicores,”
SIGOPS Operating Systems Review, vol. 43, pp. 76–85, 2009.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The Multi-
kernel: A new OS architecture for scalable multicore systems,” in
Proceedings of the 22nd ACM Symposium on Operating Systems

Principles, pp. 29–44, 2009.

[4] J. M. Rushby, “Design and verification of secure systems,” in
Proceedings of the 8th ACM Symposium on Operating Systems

Principles, pp. 12–21, 1981.

[5] “SYSGO PikeOS.” http://www.sysgo.com/products/pikeos-rtos-
and-virtualization-concept.

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal verification
of an OS kernel,” in the 22nd ACM Symposium on Operating

Systems Principles, pp. 207–220, 2009.

[7] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded
architecture based on hypervisor: The XtratuM approach.,” in the

European Dependable Computing Conference, pp. 67–72, 2010.

[8] Y. Li, R. West, and E. Missimer, “A virtualized separation
kernel for mixed criticality systems,” in Proceedings of the 10th

ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE), (Salt Lake City, Utah), March
1-2 2014.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel:
An operating system architecture for application-level resource
management,” in Proceedings of the 15th ACM Symposium on

Operating Systems Principles, pp. 251–266, 1995.

[10] M. Danish, Y. Li, and R. West, “Virtual-CPU scheduling in
the Quest operating system,” in Proceedings of the 17th Real-

Time and Embedded Technology and Applications Symposium,
pp. 169–179, 2011.

[11] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard real-time systems,” Real-Time Systems Journal, vol. 1,
no. 1, pp. 27–60, 1989.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment,” Journal of the

ACM, vol. 20, no. 1, pp. 46–61, 1973.

[13] M. Stanovich, T. P. Baker, A. I. Wang, and M. G. Harbour,
“Defects of the POSIX sporadic server and how to correct
them,” in Proceedings of the 16th IEEE Real-Time and Embedded

Technology and Applications Symposium, 2010.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium on

Operating Systems Principles, pp. 164–177, 2003.

[15] I. Habib, “Virtualization with KVM,” Linux Journal, vol. 2008,
no. 166, p. 8, 2008.

[16] “LynxSecure Embedded Hypervisor and Separation Kernel.”
http://www.lynuxworks.com/virtualization/hypervisor.php.

[17] T. Maoz, A. Barak, and L. Amar, “Combining Virtual Machine
migration with process migration for HPC on multi-clusters and
Grids,” in IEEE International Conference on Cluster Computing,
pp. 89 –98, 2008.

[18] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle
workstations,” in Proceedings of the 8th International Conference

of Distributed Computing Systems, June 1988.

[19] L. Abeni and T. Prastowo, “Experiences with client/server in-
teractions in a reservation-based system,” in Proceedings of the

27th Annual ACM Symposium on Applied Computing, 2012.

[20] D. De Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource
Sharing in Reservation-Based Systems,” in Proceedings of the

22nd IEEE Real-time Systems Symposium, pp. 171–180, 2001.

[21] G. Lamastra and L. Abeni, “Task synchronization in reservation-
based real-time systems,” IEEE Transactions on Computers,
vol. 53, no. 12, pp. 1591–1601, 2004.

[22] R. Pineiro, K. Ioannidou, C. Maltzahn, and S. A. Brandt, “RAD-
flows: Buffering for predictable communication,” in Proceedings

of The 17th IEEE Real-Time and Embedded Technology and

Applications Symposium, April 2011.

VIII. APPENDIX

Listing 2 shows the pseudo code implementation of

the vcpu migration function. It simply sets up the mi-

gration request and waits for the scheduler to respond.

The actual handling of a migration request is part of the

schedule function shown in Listing 3.

Listing 2. vcpu migration Pseudo Code
bool vcpu_migration (uint32_t time, int dest

, int flag) {

if(!valid (dest) || !(valid (flag)))

return FALSE;

if(flag == MIG_STRICT) {

if(time)

cur_task.mig_timeout = now + time;

else

cur_task.mig_timeout = 0;

} else if(flag == MIG_RELAX) {

cur_task.mig_dl = MAX_DEADLINE;

} else {

if(time)

cur_task.mig_dl = now + time;

else

return FALSE;

}

cur_task.mig_status = 0;

cur_task.mig_flag = flag;

cur_task.affinity = dest;

return TRUE;

}

Listing 3. Scheduler Pseudo Code
void schedule (void) {

...

/* Check migration request when de-

scheduled */

if(next_task != cur_task) {

if(cur_task.affinity != cur_sandbox) {

if(cur_task.affinity == DEST_ANY)

cur_task.affinity =

find_destination();

/* Lock both source and destination */

if(try_lock(cur_sandbox, cur_task.

affinity)) {

if(!check_utilization_bound()) {

cur_task.mig_flag = FAIL;

cur_task.affinity = cur_sandbox;

goto release;

}

/* MIG_RELAX, migrate right now */

if(cur_task.mig_flag == MIG_RELAX) {

cur_task.mig_status = SUCCESS;

do_migration(cur_task);

goto release;

}

/* Calculate migration cost */

WCET = calculate_wcet(cur_task);

if(cur_task.mig_flag == MIG_STRICT)

{

/* next_event () returns Es */

cur_task.mig_dl =

next_event()+now;

}

if((now+WCET) > cur_task.mig_dl) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

} else {

cur_task.mig_status = SUCCESS;

do_migration(cur_task);

}

release:

unlock(cur_sandbox, cur_task.

affinity);

} else {

/* Destination is busy or we are

migrating another task */

if(flag == MIG_STRICT) {

if((now+next_event()) >=

cur_task.mig_timeout) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

}

} else {

if((now+next_event()) >=

cur_task.mig_dl) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

}

}

}

}

}

resume_schedule:

...

}

