
MARACAS: A Real-Time Multicore VCPU

Scheduling Framework

Ying Ye, Richard West, Jingyi Zhang and Zhuoqun Cheng

Computer Science Department

Boston University

Email: {yingy,richwest,jyzhangr,czq}@cs.bu.edu

Abstract—This paper describes a multicore scheduling and
load-balancing framework called MARACAS, to address shared
cache and memory bus contention. It builds upon prior work
centered around the concept of virtual CPU (VCPU) scheduling.
Threads are associated with VCPUs that have periodically
replenished time budgets. VCPUs are guaranteed to receive their
periodic budgets even if they are migrated between cores. A
load balancing algorithm ensures VCPUs are mapped to cores
to fairly distribute surplus CPU cycles, after ensuring VCPU
timing guarantees. MARACAS uses surplus cycles to throttle the
execution of threads running on specific cores when memory
contention exceeds a certain threshold. This enables threads on
other cores to make better progress without interference from
co-runners. Our scheduling framework features a novel memory-
aware scheduling approach that uses performance counters
to derive an average memory request latency. We show that
latency-based memory throttling is more effective than rate-based
memory access control in reducing bus contention. MARACAS
also supports cache-aware scheduling and migration using page
recoloring to improve performance isolation amongst VCPUs.
Experiments show how MARACAS reduces multicore resource
contention, leading to improved task progress.

I. INTRODUCTION

There is an increasing prevalence of multicore processors in

embedded and real-time systems. These processors offer power

and performance benefits over single-core alternatives running

at higher clock frequencies. However, complex on-chip cache

hierarchies, including shared last-level caches, and memory

buses that are common to all cores, pose challenges for tasks

with real-time requirements. A task running on one core may

experience harmful contention for cache lines that are shared

with tasks running on other cores. Consequently, a task that

should seemingly run in isolation of tasks on other cores

experiences timing unpredictability due to unforeseen cache

line evictions, misses, and reloads. Similarly, cache-line fills

with instructions and data require accesses to a shared memory

bus. This may lead to one or more co-running tasks being

forced to stall while a memory bus transaction is performed

for another task.

This paper describes a multicore scheduling and load-

balancing framework, called MARACAS 1, applied to our

Quest real-time operating system. It extends our prior work on

uniprocessor real-time virtual CPU (VCPU) scheduling [1], to

deal with micro-architectural challenges associated with mul-

ticore processors. Quest associates one or more task threads

1Memory-Aware, Real-time-Aware, Cache-Aware Scheduling.

with VCPUs, which in turn are scheduled on physical CPUs.

This hierarchical approach is similar to that found in virtual

machine systems, decomposing the scheduling problem into

simpler layers. Rather than tracking time for every individual

thread in a system, it is only necessary to track the time

usage of VCPUs. Real-time threads can be assigned dedi-

cated VCPUs, while threads that are not time critical can

be scheduled with other threads on the same VCPU. Each

VCPU is guaranteed a budgeted amount of CPU time in a

specific period, ensuring bandwidth preservation. By managing

CPU time at the granularity of VCPUs rather than threads, we

reduce the overhead of reprogramming the hardware timers to

track available budget usage.

In Quest, each core is associated with a separate VCPU

scheduling queue, but VCPUs are migratory between cores.

The scheduling approach ensures that every VCPU created in

the system is guaranteed its foreground budget. Once a VCPU

has exhausted its budget, it cannot execute in foreground mode

again until it is replenished at least part of its budget some

period of time in the future. If every VCPU on a processor core

has exhausted its budget then the core switches to background

mode. Essentially, background mode is a state in which there

are surplus CPU cycles on the corresponding core.

In this paper, we show how the MARACAS scheduling

framework uses background cycles to improve system perfor-

mance (e.g., to maximize the total instruction execution count)

and to balance resource usage across a set of cores. This

means the system guarantees timing constraints on VCPUs

while attempting to maximize the progress of a set of tasks.

We see this as being beneficial to applications that improve the

resolution, or quality, of their results when granted extra com-

putation time. For example, with “anytime” computing [2], or

imprecise computations [3], a task is divided into mandatory

and optional parts: execution of an optional part proceeds

to improve quality if there are sufficient resources. This

could apply to an MPEG-encoded video stream where it is

mandatory to process I-frames, but optional to process B-

and P-frames that improve frame rate. Similarly, an obstacle

avoidance system might use a mandatory time allocation to

identify potential collisions with objects whose locations are

estimated, while extra compute cycles improve the accuracy

of various obstacle positions.

MARACAS addresses shared cache and memory bus con-

tention, while ensuring task timing requirements. Page col-

oring techniques ensure that address spaces associated with

specific VCPUs map to cache lines that do not conflict with

other address spaces. MARACAS uses page color information

as part of its cache-aware load balancing strategy, to maximize

the instructions executed per cycle on the corresponding

VCPU. A significant contribution of this work is a novel mem-

ory throttling approach for each core operating in background

mode. As part of MARACAS’ memory-aware scheduling,

each core uses hardware performance counters to monitor the

average memory request latency. If this exceeds a specified

latency threshold, then the core prevents usage of background

cycles until the memory access rate across all cores decreases

below a rate threshold. We show by a series of experiments

how these aspects of cache- and memory-aware scheduling

improve system-wide performance for a series of task sets,

where all VCPUs are guaranteed their timing requirements.

Our latency-based memory throttling approach is shown to

be more effective than rate-based memory access control at

reducing bus contention.

The next section provides brief background information

about the Quest VCPU scheduling framework. This is followed

by several sections that describe the memory- and cache-aware

scheduling features that are new to MARACAS, including

the algorithms for VCPU load balancing and background-

mode resource management. Experiments are described in

Section VI, followed by Related Work in Section VII. Finally,

Conclusions and Future Work are discussed in Section VIII.

II. QUEST OPERATING SYSTEM

A. VCPU Scheduling

The Quest real-time system implements a novel virtual CPU

(VCPU) scheduling framework [1]. Rather than scheduling

threads directly on physical CPUs or cores (PCPUs), the

scheduling problem is decomposed into a simpler two-level

hierarchy (Figure 1). One or more threads are assigned and

scheduled on VCPUs, which are then scheduled on PCPUs.

This way, groups of threads that are non-time-critical or which

are part of an equivalent class can share a single VCPU, while

specific real-time tasks may be assigned separate VCPUs.

VCPUs are resource containers [4] for threads that are

assigned to them. They account for budget usage in specific

windows of real-time. By default, each VCPU is specified a

processor capacity reserve [5] consisting of a budget capacity,

C, and period, T . A VCPU is required to receive at least its

budget every period when it is runnable. The Quest scheduling

framework distinguishes between VCPUs for handling task

execution and system events, such as interrupts. However, for

this paper, we assume that every VCPU is implemented as a

Sporadic Server [6], [7], and each VCPU is assigned a single

thread.

Each core is associated with a separate scheduling queue.

All VCPUs assigned to the same core are scheduled using

Rate-Monotonic Scheduling (RMS) [8]. The RMS utilization

bound is then applied on a per-core basis when assigning

VCPUs to cores. Schedulability tests are performed when new

VCPUs are created and when they are migrated between cores.

Fig. 1. VCPU Framework

B. Performance Monitoring

Quest features a performance monitoring sub-system, which

uses hardware counters to track system events. Cycle-accurate

timestamp counters track the CPU time usage of each and

every VCPU. Additional counters are configurable via an

API to monitor events such as cache references, misses, hits,

and instructions retired. We use these event counts for cache

occupancy estimates [9], [10] and cache-aware scheduling.

Cache occupancy estimates make it possible to determine the

correct sizes of cache partitions to avoid contention.

C. Cache Partitioning

On multicore platforms, shared cache contention is a signif-

icant problem for real-time systems. Contention is eliminated

by partitioning a cache into separate regions for each task.

Software approaches to cache partitioning include page color-

ing [11]. Pages of different colors are mapped by hardware

to different cache lines 2. Quest has the option of being

configured and built with support for a color-aware memory

allocator [12], to assign pages of memory to a task. The

allocator maintains separate lists of free pages for each color.

Each core is associated with a different subset of these lists

and, hence, page colors. This ensures that tasks running on

separate cores do not experience shared cache conflicts.

III. BACKGROUND SCHEDULING

Each VCPU with available budget at the current time oper-

ates in foreground mode. When a VCPU depletes its budget

it enters background mode, where it will only be scheduled

if there are no other runnable VCPUs in foreground mode

on the same core. A core is said to be in background mode

when all VCPUs assigned to it are in background mode. At

this point, the core invokes its background scheduling policy.

MARACAS implements a background scheduling algorithm

that attempts to fairly distribute surplus CPU time amongst

VCPUs. Every task and, hence, VCPU 3 is tracked for the

amount of background CPU time (BGT) it has used so far.

When a core enters background mode, the local scheduler

2Or at least different sets of cache lines in set-associate caches.
3Unless otherwise stated, we use “task” and “VCPU” interchangeably.

picks a task with the smallest BGT and keeps it running until

the core switches back to foreground mode. The mode switch

occurs when a VCPU is replenished with available budget.

An alternative background scheduling approach in MARA-

CAS is to keep the same task running on a core when

it switches from foreground to background mode. If that

task happens to block during background mode, the system

schedules the task that is expected to run first when the core

switches back into foreground mode. This method attempts to

reduce context switches, but experimental results suggest there

is negligible performance benefit.

A further background scheduling option in MARACAS

attempts to reduce cache and memory bus contention. A sched-

uler running on a core in background mode gives precedence to

tasks that are less memory intensive. This approach guarantees

budgeted foreground time for a set of tasks, while trying

to use surplus CPU time to minimize resource contention.

Other approaches have attempted to co-schedule tasks to avoid

cache and memory bus contention, at the cost of meeting

timing requirements [13], [10]. The use of separate foreground

and background modes enables VCPU timing constraints to

be met, while allowing for objectives such as fairness and

performance to be addressed.

MARACAS’ use of VCPUs is similar to soft reservations in

the resource kernel [14]. When a soft reservation is depleted,

it can be scheduled for execution along with unreserved

threads and other depleted reservations. Similarly, when a

foreground VCPU in MARACAS depletes its budget, it is

possible to schedule that VCPU along with others on the

same core when there are no more eligible to execute in

foreground mode. However, MARACAS implements novel

background scheduling policies to explicitly address multicore

resource contention by carefully regulating which cores are

eligible to use their background time. Some cores are throttled

from using their background time to allow others to make

progress without contention for the memory bus. Others have

developed slack stealing algorithms [15] to enable soft real-

time tasks to acquire resources while ensuring hard real-time

task guarantees. Our use of background time is to improve

task progress beyond the base-level provided by foreground

timing guarantees.

IV. MEMORY-AWARE SCHEDULING (MAS)

Memory-aware scheduling considers the effects of memory

accesses when ordering the execution of a set of tasks.

Memory accesses on one core might incur delays caused by

concurrent accesses on another core, because of contention on

a shared memory bus. One approach to address this problem

is to regulate the rate of off-chip memory references (i.e.,

those missing in a cache), so that each core cannot exceed

a pre-defined threshold [16]. However, there are additional

problems that affect the throughput of memory requests.

DRAM bank-level parallelism leads to significant variations

in the throughput of memory traffic, depending on whether

memory accesses are to the same or separate banks [17]. While

separate banks are accessible in parallel, requests to the same

bank are serialized. Similarly, servicing sequential accesses

is faster than servicing random accesses within the same

bank, due to row buffering in DRAM. Interleaved accesses

to separate rows within the same bank impact row locality,

leading to repeated pre-charging of a row buffer. These factors

combine to make it difficult to determine the correct memory

access rate threshold to avoid excessive bus contention. If we

assume separate accesses map to different banks, we may set

the threshold too high and it may never be reached even when

the bus is heavily contended. Similarly, if we pessimistically

assume all accesses are to the same DRAM bank and set the

threshold too low, we may trigger memory throttling when the

bus is not heavily contended.

A lower memory access rate does not necessarily mean

lower contention. Consider the case where two tasks, task1

and task2, are allowed a budgeted number of memory requests

every period, T [16]. Figure 2 shows the situation where the

tasks run concurrently on separate cores until t, when they

exhaust their request budget. Both tasks are then suspended

until T . Assuming uniform memory accesses in time, each

task reduces its memory access rate by a factor T−t
T

in the

interval [0, T]. However, because the tasks execute at exactly

the same time, a reduction in memory access rate does not

reduce the contention experienced in the interval [0, t]. We call

this phenomenon the Sync Effect, which occurs when two or

more cores have overlapping idle times due to the suspension

of tasks. The Sync Effect leads to a drop in CPU and bus

utilization without improving task performance.

Fig. 2. Sync Effect

To eliminate memory contention requires complete knowl-

edge of access patterns from all cores and Direct Memory Ac-

cess (DMA) devices, including how they interleave inside the

memory controller. Monitoring system wide memory traffic by

only looking at each core’s requests, either through cache miss

events or off-core events [18], is insufficient. This would not

detect DMA requests or accesses to a memory domain from

a remote node in a Non-Uniform Memory Access (NUMA)

system. Fortunately, some multicore architectures, such as the

Intel Xeon now provide monitoring events for all types of

DRAM traffic.

Our method to deal with memory contention neither relies

on memory access rates nor ignores traffic outside cores. It

measures memory traffic by looking at the average latency to

service memory requests. Unlike a rate-based metric, latency

is directly related to application performance. Intel Sandy

Bridge and more recent processors provide two uncore perfor-

mance monitoring events: UNC ARB TRK REQUEST.ALL

and UNC ARB TRK OCCUPANCY.ALL. The first event

counts all memory requests going to the memory controller

request queue (requests), and the second one counts cycles

weighted by the number of pending requests in the queue

(occupancy). For example, in Figure 3, request r1 arrives

at time 0 and finishes at time 2. r2 and r3 both arrive at

time 1 and complete at time 5. At the end of this 5 cycles

period, occupancy = 10, requests = 3. We derive the average

latency (cycles) per request as follows:

latency = occupancy
requests

Fig. 3. Example of Memory Controller Occupancy and Requests

MARACAS is configured with a request latency threshold,

MAX MEM LAT. The threshold is global rather than per-

core for comparison with the observed overall bus traffic.

Memory throttling commences when the observed average

latency exceeds or equals MAX MEM LAT, as shown in

Algorithm 1 (line 9). A memory monitoring thread assigned

to a dedicated VCPU periodically updates the average latency

via a MONITOR procedure. The period is set to a constant

MEM PERIOD.

When throttling is applied in MARACAS, background

scheduling on the corresponding core is temporarily disabled,

and the core goes idle. This reduces contention on the memory

controller, shared cache lines and Miss Status Holding Regis-

ters [19]. While the Sync Effect is still possible, MARACAS

is able to detect the contention and apply further throttling.

When one or more cores throttle their usage of background

time, other cores in foreground mode are able to make greater

progress due to the reduced contention.

Instead of simply disabling the cores with the most traffic,

we adopt a proportional throttling scheme. Suppose the ith

core in a set of n cores generates mi requests to the memory

controller in time ti, which yields a memory access rate

ri =
mi

ti
. Larger values of ri cause a greater degree of memory

throttling on the ith core. Global variable num throttle

is used to tell the scheduling sub-system how many cores

(referred to as cpus in Algorithm 1) need to be throttled. When

the core-local scheduler is switched to background mode, it

calls function IS BG SCHED , which returns TRUE if a task

is able to run. count keeps track of how many cores should

be allowed to run in background mode if the current core is

allowed to do so as well. bg vtime[i] on core i is the product

of the background execution time consumed in the current

period (MEM PERIOD) and the weight, mem weight[i],
which is generated inside CALC WEIGHTS. Higher values

of bg vtime[i] relative to those on other cores increase the

likelihood of core i being throttled.

Once memory throttling is activated, it begs the question

how long it should be applied. While average memory re-

quest latency is used to determine bus contention, it is not

necessarily the best metric to identify a reduction in memory

bandwidth demand. This is because a reduction in memory

access latency could be due to throttling background time,

rather than a drop in memory requests from the running VC-

PUs. Let Rcur =
∑n

i=1
mi in the current period 4, and Rhigh

be the largest Rcur since throttling began. In MARACAS, if

Rcur <= Rhigh×IDLE MEM (IDLE MEM is a configurable

parameter between 0 and 1), the system-wide memory access

intensity is considered to be lower than before and throttling is

reduced gradually (by decreasing num throttle, Algorithm 1

line 14).

V. MULTICORE VCPU SCHEDULING

MARACAS is built on Quest’s VCPU scheduling frame-

work. Special kernel threads, associated with dedicated mi-

gration VCPUs, are responsible for the movement of VCPUs

between cores. Every core has one migration thread, but only

one can be active at a certain time while others are blocked.

A migration thread is responsible for checking the load of

every core and deciding whether to perform load balancing.

If a migration thread decides to move a VCPU, it must first

identify a destination core. A VCPU is only migrated if it

passes a schedulability test for the destination core. The cost of

the test, which amounts to a relatively simple utilization bound

calculation, is factored into the migration thread’s budget. A

migration thread is woken up when there is a scheduling event

(e.g., a task blocks, wakes up or terminates), at which point it

performs a rebalance check and potential VCPU migration. A

migration thread is not woken up by the periodic sleeping of

real-time tasks, which are ineligible to run in foreground mode

until their budgets are replenished. Currently, only one VCPU

is allowed to be migrated within one period of the migration

thread. This is purely a policy decision and not an inherent

design limitation. A pending event counter records the number

of scheduling events that happen before the active migration

thread completes the transfer of a VCPU.

For real-time systems, the migration process has to be

predictable. Care must be taken to make sure migration costs

do not impact the timing requirements of the VCPU being

relocated to another core. First, migration threads are set to the

highest priority on their respective cores to avoid preemption

during the migration process. Second, each VCPU that is

created must pass a schedulability test on its assigned core.

This means the migration thread’s execution of its entire

budget Cm does not lead to any other local VCPUs missing

their deadlines. Therefore, as long as the migration cost is

smaller than Cm, timing constraints on the local core will

not be violated. Finally, the migrated VCPU must pass a

schedulability test at the destination to ensure that it does not

violate any timing guarantees on that core.

4Or, equivalently, Rcur =
∑n

i=1
ri over a unit-length period.

Algorithm 1 Memory-Aware Scheduling

1: procedure MONITOR

2: /* update all mi */
3: /* clear all bg vtime[i] */
4: /* UNC ARB TRK REQUEST.ALL */
5: requests = get requests()
6: /* UNC ARB TRK OCCUPANCY.ALL */
7: occupancy = get occupancy()
8: latency = occupancy/requests
9: if latency >= MAX MEM LAT and

10: num throttle < num cpus then
11: num throttle++
12: else if IS LESS TRAFFIC() and

13: num throttle > 0 then
14: num throttle−−

15: end if
16: if num throttle > 0 then

17: CALC WEIGHTS()
18: end if
19: end procedure

20: procedure IS LESS TRAFFIC

21: if Rcur <= Rhigh × IDLE MEM then
22: return TRUE
23: else
24: return FALSE
25: end if
26: end procedure

27: procedure CALC WEIGHTS

28: for all cpu do
29: mem weight[cpu] = mcpu/Rcur

30: end for
31: end procedure

32: procedure IS BG SCHED

33: if num throttle <= 0 then
34: return TRUE
35: end if

36: if num throttle >= num cpus then
37: return FALSE
38: end if
39: count = 0
40: self = get local cpu id()
41: for all cpu do
42: if cpu ! = self and
43: bg vtime[cpu] <= bg vtime[self] then

44: count++
45: end if
46: end for
47: if count < num cpus− num throttle then

48: return TRUE
49: else
50: return FALSE
51: end if
52: end procedure

In MARACAS, the VCPU migration process is as simple as

locking two runqueues (on the source and destination cores),

detaching the VCPU data structure from the source queue and

attaching it to the destination. Memory address space copying

is not needed during migration unless cache partitioning is

enabled within the underlying Quest system. Quest runs as

a single system image across all cores, and memory copying

during migration is only necessary if page color-aware cache

partitioning is configured by a system designer, who wishes

to have stronger resource isolation.

Let Elock be the overhead of locking a runqueue, and

Estruct be the overhead of moving a VCPU data structure

in the worst case. Then, the following condition must hold:

Cm ≥ 2× Elock + Estruct

If cache partitioning is enabled, then pages of a migrated

address space need recoloring on the destination core. MARA-

CAS builds upon the Quest system guarantee that process

address spaces are limited to a maximum size. Hence, it is

possible to place an upper bound on the memory copying

overheads. Let Epage be the cost of copying one page, and

Pmax be the maximum number of pages. Then, the new

migration constraint is:

Cm ≥ 2× Elock + Estruct + Pmax × Epage

To keep migration costs down, it makes sense to reduce the

frequency with which migrations occur. While MARACAS

currently invokes a migration thread on the local core every

time a scheduling event occurs, it is possible to define a

minimum time interval (or maximum frequency) in which

migration is allowed. It is also the case that Cm should be

set sufficiently large to encompass the cost of migration in

foreground mode. This way, the migration thread itself will

not be throttled if congestion is detected. Further studies of the

exact costs of migration, and policies to control the migration

frequency, are left to future work.

A. VCPU Load Balancing (VLB)

In Linux, the CPU load is defined as the sum of all local

tasks’ scheduling weights, where a weight is decided by a

task’s priority. Every core periodically runs a load balancing

algorithm, which attempts to minimize the difference in load

amongst all cores. The goal is to let every task of the same

priority have the same amount of CPU time.

Load balancing in our real-time VCPU framework differs

from that in a general-purpose OS, as it deals with VCPUs that

have CPU reservations. Each VCPU is guaranteed its CPU

reservation irrespective of the mapping of VCPUs to cores.

Balancing VCPUs so they received the same amount of CPU

time would penalize those with larger reservations. VCPUs

with larger budgets in a given period of time would have

less background time than those with smaller reservations.

In observance of these differences, we propose an alternative

method of load balancing for a system of VCPUs on a

multicore platform.

Let each VCPU, Vi, have a utilization factor Ui = Ci

Ti

.

We then define the Slack-Per-VCPU (SPV) of a core as
1.0−

∑
v

i=1
Ui

v
, where v is the number of VCPUs on the cor-

responding core. The smaller the SPV is, the heavier the load

is for the core. For load balancing, we attempt to equalize the

SPV values across cores.

Algorithm 2 is the main body of VCPU load balancing

scheme. When any VCPU blocks, the kernel tries to find

a core with the smallest SPV value and activates its corre-

sponding migration thread. Whenever a VCPU is awoken,

the migration thread on the same core is activated as well.

Every migration thread runs procedure REBALANCE when

active, which migrates VCPUs from the current core to the

one that has the most idle time, as indicated by the largest

SPV. FIND HOST CPU identifies the core with the largest

idle time that can feasibly schedule a new VCPU. For a

feasible schedule, all VCPUs must satisfy their foreground

scheduling requirements on the given core. Line 18 starts by

finding a target core for the VCPU with the lowest utilization

on the local (source) core. If a core exists, lines 29 onwards

check to see if an alternative VCPU could be migrated to the

target core to reduce the SPV imbalance between the source

and destination. By checking the feasibility of migrating the

lowest utilization VCPU first, we avoid attempting to reduce

the SPV imbalance across cores for higher utilization VCPUs

that would not be schedulable at the destination. Finally, line

48 is the condition to terminate the rebalancing procedure.

B. Cache-Aware Scheduling (CAS)

To improve performance isolation and timing predictability,

we extended the VLB algorithm to work with the cache par-

titioning sub-system in Quest. In the current implementation,

static cache partitioning is used and every core is assigned

some fixed number of colors during system initialization.

Tasks running on a core are allocated page frames whose

colors are restricted to the set reserved for the corresponding

core. The VCPU creation API in Quest was modified to allow

tasks to specify the minimum number of page colors needed

for their cache requirement:

bool vcpu_create(uint C, uint T, uint colors);

CAS is similar to VLB except that before a VCPU is

migrated the destination core is checked to see if it has

sufficient page colors available. Migration only takes place

if there are enough page colors to meet the VCPU’s cache

requirement. The migration process takes longer since the

task’s address space associated with the migrating VCPU has

to be recolored [12]. As a result, migration threads need larger

CPU reservations.

Although we focus on static page coloring in this paper,

we have also studied dynamic page coloring. Our experiences

suggest that dynamic page coloring incurs too much timing

unpredictability to be appropriate for hard real-time tasks, but

could be beneficial for non-real-time or low-criticality tasks in

a mixed criticality system.

VI. EVALUATION

We evaluated the MARACAS multicore scheduling frame-

work in Quest, using the hardware platform in Table I.

Processor Intel Core i5-2500k quad-core

Caches 6MB L3 cache, 12-way set associative, 4 cache slices

Memory 8GB 1333MHz DDR3, 1 channel, 2 ranks, 8KB row buffers

TABLE I
HARDWARE SPECIFICATION

A. Background Scheduling

The first experiment investigated the effectiveness of back-

ground scheduling using two test cases. In the first case (vcpu

+ bg), tasks were run with background scheduling enabled,

Algorithm 2 VCPU Load Balancing

1: procedure FIND HOST CPU(new vcpu)
2: max = 0
3: for all cpu do
4: if schedulability test(cpu, new vcpu) == FALSE then

5: continue
6: end if
7: if SPV (cpu) > max then
8: max = SPV (cpu)
9: host = cpu

10: end if
11: end for
12: return host
13: end procedure

14: procedure REBALANCE

15: src cpu = current cpu id()
16: /* return the VCPU with the smallest utilization on a core */
17: min v = get smallest ut vcpu(src cpu)
18: dst cpu = FIND HOST CPU(min v)
19: if dst cpu == src cpu then
20: return
21: end if
22: src spv = get SPV of(src cpu)
23: dst spv = get SPV of(dst cpu)
24: if runqueue length(dst cpu) == 0 then
25: imbalance = ∞

26: else

27: imbalance = dst spv − src spv
28: end if

29: for all vcpu in runqueue(src cpu) do

30: if runqueue length(src cpu) <= 1 then
31: break
32: end if

33: /* calculate a core’s new SPV as if a VCPU is added */
34: /* without actually adding VCPU to the core */
35: dst spv = get SPV add one(dst cpu, vcpu)
36: /* calculate a core’s new SPV as if a VCPU is removed */
37: /* without actually removing VCPU from the core */
38: src spv = get SPV remove one(src cpu, vcpu)
39: if dst spv < src spv and
40: src spv − dst spv >= imbalance then

41: continue
42: end if
43: if schedulability test(dst cpu, vcpu) == FALSE then
44: continue

45: end if

46: move vcpu(src cpu, dst cpu, vcpu)
47: imbalance = dst spv − src spv
48: if imbalance <= 0 then
49: break
50: end if

51: end for
52: end procedure

while in the second case (vcpu), background scheduling was

disabled. Four Mälardalen benchmarks [20] (compress, adpcm,

fir, and matmult) were started simultaneously on the same

core. Every task was assigned a VCPU with the same capacity

C (ms) and a fixed period of T = 100 ms. Unless stated

otherwise, the value T = 100 ms was used throughout the

experimental evaluations in this paper. In this experiment,

benchmarks were executed for 5 minutes, after which the

counts of their instructions retired were collected. Figure 4

shows that background scheduling improves progress in every

case. The total instructions retired are approximately equal for

each benchmark with different values of C. Greater values of

C increase the base level instructions retired when a VCPU

obtains its guaranteed share of the CPU.

B. Memory-Aware Scheduling

This section compares Memory-Aware Scheduling (MAS)

using our latency metric against an approach using a rate

metric. For this experiment, we developed a memory-intensive

benchmark, m jump (with pseudocode shown in Code 1), that

operates on a 6 MB data array, which is large enough to span

the entire last-level cache (L3). The benchmark writes to the

first 4 of every 64 bytes in the array. As every cache line

is also 64 bytes, this causes the entire cache to be filled.

After every write, m jump jumps 8 KB forward in order

to avoid cache prefetching effects. It is worth noting that

caches cannot be disabled for this experiment, even though

our focus is on memory performance. If caches were disabled,

every instruction would be fetched from memory. This would

effectively force CPUs to run at the same speed as the memory

bus, reducing the likelihood of bus congestion.

Code 1. m jump

byte array[6M];

for (uint32 j = 0; j < 8192; j += 64)

for (uint32 i = j; i < 6M; i += 8192)

<Variable delay added here>

array[i] = i;

To establish a fair comparison between the rate and latency

metrics, we first performed several profiling experiments.

Three m jump tasks (task1, task2 and task3) were executed

on separate cores for 5 minutes without memory throttling.

The task parameters, (C, T), were set to (20, 40), (25, 50) and

(30, 60), respectively. In each run, we inserted a time delay

between memory accesses in the m jump code for task1 and

task2, by performing multiplication operations on a register

value for a variable number of iterations. The use of a register

was to avoid any extra memory requests that might affect the

experiment. At the end of the experiment, we recorded the

total system-wide bus traffic, average memory request latency

and task3’s instructions retired in foreground mode. Results are

shown in Figure 5. The Bus Traffic curve shows data points for

the memory latency X and corresponding traffic Y . Matching

X and Y data points on the Bus Traffic curve are used to

establish latency and rate thresholds, respectively, for memory

throttling. Derivation of these thresholds is described later.

The corresponding Instructions curve enables thresholds to be

set that trade-off performance of the target application (task3)

and the entire system memory throughput. Notice that MAS

does not require performance profiling to function properly.

Profiling is used here to establish comparable thresholds for

the two memory throttling metrics.

From Figure 5, we chose three data points on the Bus Traffic

curve that straddled the intersection with the Instructions

curve. The chosen values represent several cases when the

bus traffic is rising to its limit. The latencies for these three

points were 157, 183 and 228 cycles, respectively, as shown

by the vertical lines. For each latency, we also recorded the

foreground performance of task3 on the Instructions curve,

which resulted in three experimental configurations, E1, E2

and E3 (See Table II).

Bus Traffic (GB) Latency task3 Instructions Retired (×108)

E1 1128 228 249

E2 1049 183 304

E3 976 157 357

TABLE II
PROFILE CONFIGURATIONS

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 100 150 200 250 300 350 400 450
 0

 100

 200

 300

 400

 500

B
us

 T
ra

ffi
c

(G
B

)

ta
sk

3
In

st
ru

ct
io

ns
 R

et
ire

d
(X

 1
08)

Latency (Cycles)

Bus Traffic
Instructions

Fig. 5. Bus Traffic & Instructions Retired versus Latency

The values in the Latency column were used as thresholds

for latency-based memory throttling. Data in the Bus Traffic

column shows the gigabytes transferred across the memory

bus in a 5 minute interval. We converted these values into a

memory service rate per MEM PERIOD (set to 2 seconds),

to establish comparative thresholds for rate-based memory

throttling. MEM PERIOD is set empirically, with smaller

values enabling finer-grained monitoring of bus traffic and

larger values imposing lower system overhead on memory-

aware scheduling. We chose a value of MEM PERIOD=2s

as a reasonable trade-off when considering task scheduling

periods in milliseconds. The last column in Table II serves as

a reference, showing the expected performance of task3 using

the corresponding thresholds.

Next, we repeated the previous experiment with memory

throttling. A fixed delay was added to the m jump code of

task1 and task2 so they would cause heavy bus contention.

With each configuration (E1, E2, E3), we compared rate- and

latency-based memory throttling. Figure 6 shows the resultant

foreground performance of task3. In both E1 and E2 cases,

our latency-based throttling approach was able to reduce bus

contention so that the target application’s performance was

better than expected. In contrast, the rate-based approach

failed to achieve the expected performance of task3. In case

E3, the latency threshold was too low, leading to insufficient

background time (BGT) to reduce bus contention. However,

latency-based throttling still enabled task3 to execute more

instructions (and, hence, make further progress) than the rate-

based approach.

 0

 100

 200

 300

 400

 500

 600

 700

com
press

adpcm

fir m
atm

ult

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

09)

C=5

vcpu+bg
vcpu

 0

 100

 200

 300

 400

 500

 600

 700

com
press

adpcm

fir m
atm

ult

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

09)

C=10

vcpu+bg
vcpu

 0

 100

 200

 300

 400

 500

 600

 700

com
press

adpcm

fir m
atm

ult

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

09)

C=18

vcpu+bg
vcpu

Fig. 4. Background Scheduling

 0

 50

 100

 150

 200

 250

 300

 350

 400

E1 E2 E3

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

08)

rate
latency

expected

Fig. 6. Comparison between Rate- and Latency-based Throttling

The E3 case reveals a limitation of MARACAS: the ef-

fectiveness of memory throttling depends on the amount of

BGT for each core. We demonstrated this dependence through

another experiment. A canny edge detection benchmark used

in image processing was executed for 10 minutes on a VCPU

with parameters C = 50 ms, T = 100 ms. During this

time, canny repeatedly processed a 720×480 pixel image

on a single core. Three m jump benchmarks were executed

on the other three cores, with their VCPU periods set to

T = 150, 100 and 50 ms, respectively. Different T values

were used to avoid the Sync Effect described in Section IV.

The foreground utilizations of the VCPUs associated with the

m jump benchmarks were varied to yield five different cases

in this experiment. For cases, U=30%, U=60%, U=80% and

U=100%, each m jump VCPU was allocated 30, 60, 80 and

100% CPU utilization, respectively. For the special case alone,

canny was executed without any m jump co-runners.

Figure 7 shows the performance of canny in foreground

mode. For m jump utilizations below 80%, the system was

able to maintain memory request latency below the threshold,

MAX MEM LAT = 180 cycles. As the m jump utilization

increased, MARACAS would gradually lose its capability to

provide service quality to canny.

C. VCPU Load Balancing

With VLB, every task has a fair share of BGT. This is shown

by the following experiment comprising two groups. A static

group used only the FIND HOST CPU procedure from VLB

 44

 46

 48

 50

 52

 54

 56

 58

 60

 62

 64

alone
U=30%

U=60%

U=80%

U=100%

 80

 100

 120

 140

 160

 180

 200

 220

 240

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

010
)

A
ve

ra
ge

 L
at

en
cy

 (
bu

s
cy

cl
es

)

instructions
latency

Fig. 7. Foreground Performance of Canny

(Algorithm 2) and statically mapped tasks to cores. A second

VLB group used the complete VLB algorithm, which allowed

threads to be migrated between cores. In each case, we created

16 instances of the compress benchmark that were started at

1 second intervals. Every benchmark was assigned a VCPU

capacity, C, and duration D. The duration specified how long

the task executed in minutes. In all cases, the VCPU periods

assigned to each benchmark were set to T = 100 ms.

We generated 10 sets (k0 to k9) of parameter values for

each group of 16 tasks. Parameters C and D were generated

from a uniform random distribution over the range 1− 14 ms

and 2 − 11 minutes, respectively. The range of C values

caused variation in the foreground utilization of each VCPU,

while ensuring the total utilization remained below the RMS

bound [8]. The range of D values ensured that within a 10
minute monitoring period the system load was dynamic: some

tasks terminated while others remained active. Each of the

16 tasks in the same experimental group were assigned a

randomly chosen value of C, while the first 14 tasks were

assigned randomly chosen values of D. Two other tasks in

each group (task1 and task2) were executed for the full du-

ration of each experimental run. The total instructions retired

in background mode were recorded for task1 and task2 over a

10 minute interval from when all 16 tasks were first assigned

to cores.

Figure 8 shows the result of VCPU load balancing. In the

static case, task1 and task2 exhibit highly variable progress

 40

 60

 80

 100

 120

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

010
)

static

task1
task2

 40

 60

 80

 100

 120

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

In
st

ru
ct

io
ns

 R
et

ire
d

(X
 1

010
)

VLB

task1
task2

Fig. 8. Instructions Retired in Background Mode

across the 10 parameter sets. In contrast, the VLB case shows

that dynamic load balancing achieves more evenly distributed

progress for the two observed tasks. This suggests that VLB is

more effective at distributing background CPU time equally.

D. Cache-Aware Scheduling

For the next experiment, we set the memory pool inside

MARACAS’ cache-aware memory allocator to be 1 GB.

The hardware specification in Table I allows a total of 32

allocatable page colors [12]. We devised several programs to

observe the effects of shared caches on task execution. Our

mwalk program writes to elements of a 1 MB array in a

pseudo-random order to eliminate the benefits of hardware

cache prefetching. Another hog program repeatedly scans a

2 MB array of integer elements in a sequential order.

We first started 15 hog tasks, each with parameters C

and D, at 1 second intervals. Values for C and D were

randomly generated in the same way as for the previous VLB

experiments. After the last hog was activated, we executed an

instance of mwalk for 10 minutes on a VCPU with C = 6 ms

and T = 100 ms. The last-level cache (LLC) miss ratio in

misses per reference was then recorded for mwalk’s execution.

The experiment above was repeated 10 times with different

random sets of parameters (t0 to t9) applied to the 15 instances

of hog. Three cases were considered: share, c0 and c6. In

the share case, the VLB algorithm was tested on a Quest

system without page coloring. In the c0 and c6 cases, VLB was

used with page coloring to implement cache-aware scheduling

(CAS), with the LLC partitioned in the page color ratio

4 : 4 : 10 : 14 across the four cores. The mwalk task requested

0 page colors for c0, and 6 page colors for c6. c0 represents the

case where there is no cache space reserved for the task, even

though it will obviously need memory pages for its address

space.

Figure 9 shows the LLC Miss Ratio for mwalk in all

10 experimental runs. In the presence of inter-core cache

interference, mwalk suffers a very high cache miss ratio as seen

by the share cases. Even with cache partitioning, the c0 case

does not always perform well (e.g., for experimental runs t3,

t4 and t6). This happens because a migration thread may place

mwalk on a core with a cache partition that is smaller than its

working set, causing self-conflict misses. In general, the c6

case performs best, although cache misses still occur due to

context-switching between mwalk and other tasks on the same

core. When a new task executes on a given core, it may evict

cache lines for the previously running task. As stated earlier,

MARACAS has the option of establishing a fixed number of

page colors for each core, ensuring cache partitioning at the

core-level. It is still possible for tasks on the same core to be

assigned overlapping page colors. However, given sufficient

colors, tasks can be allocated memory pages from a separate

set of page colors.

To show the effects of context-switching between tasks on

the same core, we ran another set of experiments similar to the

above. This time, we varied the working set of mwalk using

three different array sizes of 0.5MB, 1MB and 2MB. In each

case, the cache requirement to accommodate the working set

of mwalk was passed to the Quest kernel. Figure 10 shows that

for a larger working set, the task may consume all its VCPU

budget before scanning the entire array, only to see its cache

contents evicted by another task before resuming execution.

 20

 30

 40

 50

 60

 70

 80

 90

 100

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

LL
C

 M
is

s
R

at
io

 (
%

)

share
c0
c6

Fig. 9. CAS Evaluation

VII. RELATED WORK

A. Multicore Real-Time Scheduling

Prior work on multicore real-time scheduling has predomi-

nantly focused on global [21], [22] and partitioned [23], [24]

approaches. Global scheduling selects tasks from a system-

wide run queue and allows for task migrations between

cores. Partitioned scheduling statically assigns each task to

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

LL
C

 M
is

s
R

at
io

 (
%

)

0.5MB
1MB
2MB

Fig. 10. mwalk With Different Working Set Size

a core, where it is scheduled from a local run queue. Parti-

tioned approaches take advantage of well-studied uniprocessor

scheduling techniques [25], [26], while global approaches tend

to achieve better CPU utilization across the whole system [27].

To improve utilization, while avoiding the overheads of global

scheduling, researchers have now developed semi-partitioned

schemes. Examples include EDF-fm [28] and EDF-WM [29].

Semi-partitioned scheduling allows for a subset of tasks to

migrate, while others remain statically mapped to cores.

The MARACAS scheduling framework built on Quest im-

plements a local scheduler for each core, but allows for tasks

and their VCPUs to be migrated to other cores. The system

avoids the need for a global scheduling queue by allowing

each local scheduler to access load information for remote

cores, as part of dynamic load balancing. The redistribution

of tasks and VCPUs in our work is intended to balance the

background CPU time on each core, for use in the prevention

of cache and memory bus contention.

MARACAS’ use of surplus CPU time contrasts with slack

reclamation algorithms. MARACAS regulates the use of slack

time, beyond that reserved by VCPUs, to address both con-

tention and improve task progress. Slack reclamation algo-

rithms [15] typically allow aperiodic or low-priority jobs to

execute whenever high-priority ones may be safely postponed.

Approaches such as CBS [30], CASH [31], GRUB [32] and

BACKSLASH [33] apply techniques to reclaim dynamic slack,

which is unused but reserved capacity. They allow for tasks to

acquire early access to surplus resources. MARACAS focuses

on the redistribution of static slack (i.e., unreserved capacity)

across cores, to maximize the number of cores that can be

throttled when there is resource contention.

B. Shared Resource Management

The effects of shared caches, buses and DRAM banks

on task execution have been studied in recent years. Page

coloring [34], [35], [11], [36] is a commonly used technique

to partition physically-indexed caches on multicore processors.

In 2006, Cho and Jin [37] applied page coloring to a multicore

system, with the goal to place data in cache slices that

are closer to the CPU running the target application. Tam

et al [38] implemented static page coloring in a prototype

Linux system, which demonstrated improved performance by

reducing cache contention amongst cores. SRM-Buffer [39]

used page coloring to limit the cache space accessible to a

system page cache, resulting in reduced cache interference

from file operations. COLORIS [12] demonstrated an efficient

method for dynamic page coloring, although it was primarily

intended for improved system performance rather than timing

predictability.

A number of other researchers have also looked at real-

time cache-aware resource management. This includes work

on page coloring with cache lockdown for use in mixed

criticality systems [40]. Ward et al [41] studied cache locking

and scheduling techniques, to reduce worst-case execution

times (WCETs) of higher-criticality hard real-time tasks in the

presence of lower-criticality soft real-time tasks. Calandrino

et al [42] studied several real-time cache-aware scheduling

policies based on the cache utilization of multi-threaded tasks.

Metrics such as the working set size were used to establish

a utilization threshold which, when reached, would trigger a

cache-aware policy to select a task based on under-utilized

cache space and available cores. Kim et al [43] developed an

OS-level cache management scheme for multicore real-time

systems, using Linux/RK. The work included the development

of a response time schedulability test for tasks that share cache

partitions. Mancuso et al [44] also developed a framework to

analyze and profile task memory access patterns, including a

kernel-level cache management scheme to enforce determinis-

tic cache allocations for the most frequently accessed memory

areas. These works mostly complement MARACAS, which

uses page coloring-aware techniques to partition shared caches

and determine the assignment of tasks to cores.

Bellosa et al [45] developed a memory throttling technique

using hardware performance counters to determine memory

bus usage. More recently, MemGuard [16] was developed to

address timing variations caused by memory references from

different cores. Each core is assigned a memory budget, which

limits the number of memory accesses in a specified interval.

To improve bandwidth utilization, MemGuard predicts the

actual bandwidth usage of each core in the upcoming period.

For cores that do not use all their budgets, they contribute

their surplus to a global pool, which is shared amongst all

cores. A similar user-space technique [46] was developed to

allow memory to be budgeted to individual, or groups of, tasks.

With MemGuard, mispredictions in memory bandwidth usage

may lead to one core donating too much budget to achieve its

minimum guarantee. That said, MARACAS could use similar

ideas to MemGuard to ensure a minimum memory bandwidth

guarantee for tasks running in foreground mode.

PALLOC uses a DRAM bank-aware buddy allocator to

assign page frames to applications so that bank-level con-

tention is avoided [17]. Both MemGuard and PALLOC are

part of an effort to develop a Single Core Equivalence (SCE)

framework [47]. SCE attempts to treat each core in a multicore

processor as if it were a separate chip, to ensure that a task’s

worst-case execution time (WCET) is not affected by other

tasks running on different cores. MARACAS does not focus on

total isolation between cores, but instead is aimed at improving

the progress of co-running workloads beyond their baseline

timing guarantees.

Finally, Dirigent [48] is a system that regulates the progress

of latency-constrained (foreground) tasks in the presence of

non-time-constrained (background) tasks. Dirigent reduces the

performance variation of foreground applications caused by

memory contention, while maintaining a high throughput for

background tasks. The system works by first offline profil-

ing the execution of latency-constrained tasks when running

alone. An online execution time predictor and controller

then adjust resources available to foreground tasks, to ensure

their latency constraints in the presence of contention from

background tasks. This is similar to how MARACAS throttles

background cycles for some workloads, while others are

allowed to execute. However, MARACAS applies throttling

when it determines the likelihood of congestion, according

to a latency-based memory request metric. Dirigent adjusts

resource allocations according to the online progress of tasks

compared to their offline execution.

VIII. CONCLUSIONS AND FUTURE WORK

This paper describes a real-time multicore scheduling

framework called MARACAS. MARACAS is a memory-

aware, real-time-aware and cache-aware scheduling subsystem

in the Quest operating system. It builds upon Quest’s real-time

VCPU scheduling infrastructure that was described in earlier

work for uniprocessors. In this paper, we focus on VCPUs that

operate as Sporadic Servers, each having a time budget and

period. The MARACAS framework takes advantage of surplus

CPU cycles on each core, after meeting the foreground timing

requirements of each VCPU, to improve system performance.

We show how to load balance VCPUs across cores to both

guarantee VCPU timing requirements and evenly distribute

surplus CPU cycles. MARACAS recolors address spaces as-

sociated with migrating VCPUs to avoid cache contention and

maintain performance isolation. Of particular significance is

MARACAS’ ability to throttle memory accesses by carefully

regulating the amount of surplus, or background, CPU time

available to cores. When there is heavy memory bus con-

tention, each core will stop the allocation of background CPU

time, and will instead limit CPU cycles to only those necessary

to meet VCPU timing constraints. MARACAS uses hardware

performance counters to derive an average memory request

latency metric. This metric is used to determine system-wide

memory traffic congestion and to control the surplus CPU time

available on each core. This approach is shown to outperform

alternative techniques that limit the rate of memory accesses

to avoid bus contention.

MARACAS is a soft real-time framework that unifies the

management of multiple contended resources, which affect

timing guarantees. It targets applications that improve their

quality when given more execution time, such as in data

sampling, numerical integration and imprecise computations.

Background scheduling provides a way to improve task

progress while reducing co-runner contention. The rebalancing

of background time enables as many cores as possible to throt-

tle their execution and therefore reduce resource contention.

As part of future work, we plan to extend our memory

throttling mechanism to handle DMA-related traffic. We will

also investigate the performance and predictability of MARA-

CAS in the presence of IO activities. While MARACAS uses

foreground time to make baseline guarantees and background

time to improve quality of service, we plan to compare against

techniques that have no such time separation. The source code

for MARACAS is available upon request.

ACKNOWLEDGMENT

This work is supported by the National Science Founda-

tion under Grant # 1527050. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation. We also thank the

anonymous reviewers who have helped improve this paper,

and Intel Corporation for its generous support.

REFERENCES

[1] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium, ser. RTAS ’11,
2011, pp. 169–179.

[2] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, and A. Bicchi, “De-
signing Real-Iime Embedded Controllers using the Anytime Computing
Paradigm,” in Proceedings of the 14th IEEE International Conference

on Emerging Technologies and Factory Automation, 2009, pp. 929–936.

[3] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. s. Yu, J. Y. Chung,
and W. Zhao, “Algorithms for Scheduling Imprecise Computations,”
Computer, vol. 24, no. 5, pp. 58–68, May 1991.

[4] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New
Facility for Resource Management in Server Systems,” in Proceedings

of the 3rd USENIX Symposium on Operating Systems Design and

Implementation, 1999.

[5] C. W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves:
Operating System Support for Multimedia Applications,” in Proceedings

of the IEEE International Conference on Multimedia Computing and

Systems, May 1994, pp. 90–99.

[6] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task Scheduling for
Hard Real-Time Systems,” Real-Time Systems Journal, vol. 1, no. 1,
pp. 27–60, 1989.

[7] M. Stanovich, T. P. Baker, A. I. Wang, and M. G. Harbour, “Defects of
the POSIX Sporadic Server and How to Correct Them,” in Proceedings

of the 16th IEEE Real-Time and Embedded Technology and Applications

Symposium, 2010.

[8] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp.
46–61, Jan. 1973.

[9] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “Online Cache
Modeling for Commodity Multicore Processors,” SIGOPS Oper. Syst.

Rev., vol. 44, no. 4, pp. 19–29, Dec. 2010.

[10] ——, “CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs,”
in Multicore Technology: Architecture, Reconfiguration and Modeling.
CRC Press, 2013.

[11] J. Liedtke, H. Härtig, and M. Hohmuth, “OS-Controlled Cache Pre-
dictability for Real-Time Systems,” in Proceedings of the 3rd IEEE

Real-Time Technology and Applications Symposium (RTAS), 1997.

[12] Y. Ye, R. West, Z. Cheng, and Y. Li, “COLORIS: A Dynamic Cache
Partitioning System Using Page Coloring,” in Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, ser.
PACT ’14. ACM, 2014, pp. 381–392.

[13] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-Aware
Scheduling on Multicore Systems,” ACM Transactions on Computer

Systems, vol. 28, no. 4, December 2010.

[14] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels:
A Resource-Centric Approach to Real-Time and Multimedia Systems,”
in Proceedings of the SPIE/ACM Conference on Multimedia Computing

and Networking, 1998, pp. 150–164.

[15] J. P. Lehoczky and S. Ramos-Thuel, “An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems,”
in Proceedings of the IEEE Real-Time Systems Symposium, December
1992, pp. 110–123.

[16] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms,” in Proceedings of the 19th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),
ser. RTAS ’13, 2013, pp. 55–64.

[17] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms,” in Proceedings of the 20th IEEE Real-Time and Embedded

Technology and Applications Symposium, ser. RTAS ’14, 2014.

[18] Intel 64 and IA-32 Architectures Software Developer’s Manual Com-

bined Volumes 3A, 3B, 3C, and 3D: System Programming Guide, Intel,
2014.

[19] P. K. Valsan, H. Yun, and F. Farshchi, “Taming Non-blocking Caches to
Improve Isolation in Multicore Real-Time Systems,” in Proceedings of

the 22nd IEEE Real-Time and Embedded Technology and Applications

Symposium, ser. RTAS ’16, 2016.

[20] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET Benchmarks – Past, Present and Future,” in Proceedings of the

10th International Workshop on Worst-Case Execution Time Analysis,
B. Lisper, Ed. OCG, Jul. 2010, pp. 137–147.

[21] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Oper.

Res., vol. 26, no. 1, pp. 127–140, Feb. 1978.

[22] B. B. Brandenburg and J. H. Anderson, “On the Implementation of
Global Real-Time Schedulers,” in Proceedings of the 30th IEEE Real-

Time Systems Symposium, ser. RTSS ’09, 2009, pp. 214–224.

[23] S. Baruah and N. Fisher, “The Partitioned Multiprocessor Scheduling of
Sporadic Task Systems,” in Proceedings of the 26th IEEE International

Real-Time Systems Symposium, ser. RTSS ’05, 2005, pp. 321–329.

[24] ——, “The Partitioned Multiprocessor Scheduling of Deadline-
constrained Sporadic Task Systems,” IEEE Transactions on Computers,
vol. 55, no. 7, pp. 918–923, July 2006.

[25] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia, “Worst-case
Utilization Bound for EDF Scheduling on Real-Time Multiprocessor
Systems,” in Proceedings of the 12th Euromicro Conference on Real-

Time Systems, ser. ECRTS ’00, 2000, pp. 25–33.

[26] J. M. Lopez, J. L. Diaz, and D. F. Garcia, “Minimum and Maximum
Utilization Bounds for Multiprocessor RM Scheduling,” in Proceedings

of the 13th Euromicro Conference on Real-Time Systems, ser. ECRTS
’01, 2001, pp. 67–75.

[27] R. I. Davis and A. Burns, “A Survey of Hard Real-time Scheduling
for Multiprocessor Systems,” ACM Comput. Surv., vol. 43, no. 4, pp.
35:1–35:44, Oct. 2011.

[28] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based Restricted-
migration Scheduling Algorithm for Multiprocessor Soft Real-Time
Systems,” Real-Time Syst., vol. 38, no. 2, pp. 85–131, Feb. 2008.

[29] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned Scheduling of
Sporadic Task Systems on Multiprocessors,” in Proceedings of the 21st

Euromicro Conference on Real-Time Systems, July 2009, pp. 249–258.

[30] L. Abeni, G. Buttazzo, S. Superiore, and S. Anna, “Integrating Multi-
media Applications in Hard Real-Time Systems,” in Proceedings of the

19th IEEE Real-time Systems Symposium, 1998, pp. 4–13.

[31] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity Sharing for Overrun
Control,” in Proceedings of the 21th IEEE Real-Time Systems Sympo-

sium, December 2000, pp. 295–304.

[32] G. Lipari and S. Baruah, “Greedy Reclamation of Unused Bandwidth

in Constant-Bandwidth Servers,” in Proceedings of the 12th Euromicro

Conference on Real-Time Systems, June 2000, pp. 193–200.

[33] C. Lin and S. A. Brandt, “Improving Soft Real-Time Performance
Through Better Slack Reclaiming,” in Proceedings of the 26th IEEE

Real-Time Systems Symposium, 2005, pp. 410–421.

[34] G. Taylor, P. Davies, and M. Farmwald, “The TLB Slice–A Low-cost
High-speed Address Translation Mechanism,” in Proceedings of the 17th

Annual International Symposium on Computer Architecture, 1990, pp.
355–363.

[35] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S.
Lam, “Compiler-directed Page Coloring for Multiprocessors,” in Pro-

ceedings of the 7th International Conference on Architectural Support

for Programming Languages and Operating Systems, 1996, pp. 244–
255.

[36] T. Sherwood, B. Calder, and J. Emer, “Reducing Cache Misses using
Hardware and Software Page Placement,” in Proceedings of the 13th

International Conference on Supercomputing, 1999, pp. 155–164.

[37] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches
Through OS-level Page Allocation,” in Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, 2006, pp.
455–468.

[38] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing Shared
L2 Caches on Multicore Systems in Software,” in Proceedings of the

Workshop on the Interaction between Operating Systems and Computer

Architecture, 2007.

[39] X. Ding, K. Wang, and X. Zhang, “SRM-Buffer: an OS Buffer Man-
agement Technique to Prevent Last Level Cache from Thrashing in
Multicores,” in Proceedings of the 6th ACM European Conference on

Computer Systems, 2011, pp. 243–256.

[40] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J. H. Anderson, and F. D.
Smith, “Attacking the One-Out-Of-m Multicore Problem by Combining
Hardware Management with Mixed-Criticality Provisioning,” in Pro-

ceedings of the 22nd IEEE Real-Time and Embedded Technology and

Applications Symposium, ser. RTAS ’16, 2016.

[41] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making
Shared Caches More Predictable on Multicore Platforms,” in Proceed-

ings of the 25th Euromicro Conference on Real-Time Systems (ECRTS),
July 2013.

[42] J. Calandrino and J. Anderson, “Cache-Aware Real-Time Scheduling on
Multicore Platforms: Heuristics and a Case Study,” in Proceedings of

the 20th Euromicro Conference on Real-Time Systems, July 2008.

[43] H. Kim, A. Kandhalu, and R. Rajkumar, “A Coordinated Approach
for Practical OS-level Cache Management in Multi-core Real-Time
Systems,” in Proceedings of the 25th Euromicro Conference on Real-

Time Systems (ECRTS), July 2013.

[44] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-Time Cache Management Framework for Multi-Core Ar-
chitectures,” in Proceedings of the 19th IEEE International Conference

on Real-Time and Embedded Technology and Applications Symposium

(RTAS), April 2013.

[45] F. Bellosa, “Process Cruise Control: Throttling Memory Access in a Soft
Real-Time Environment,” University of Erlangen, Germany, Tech. Rep.
TR-14-97-02, July 1997.

[46] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjdin, “The Multi-
Resource Server for Predictable Execution on Multi-core Platforms,” in
Proceedings of the 20th IEEE Real-Time and Embedded Technology and

Applications Symposium, April 2014, pp. 1–12.

[47] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni,
H. Yun, R. Kegley, D. Perlman, G. Arundale, and R. Bradford, “Single
Core Equivalent Virtual Machines for Hard Real-Time Computing on
Multicore Processors,” University of Illinois at Urbana-Champaign,
Tech. Rep., October 2014.

[48] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for Latency-Critical
Tasks on Shared Multicore Systems,” in Proceedings of the 21th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), April 2016.

