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Abstract

This paper presents the ShareStreams (Scalable Hardware
Architecture for Stream Schedulers) architecture, hardware and
systems software for scheduling gigabit packet streams in clus-
ter server machines and switches. We can provide EDF, Static-
priority, Fair-share and DWCS native scheduling support for
real-time streams and best-effort streams. Using processor re-
sources for queuing and data movement, and FPGA hardware
for accelerating stream selection and stream priority updates,
ShareStreams can easily meet the wire-speeds of 10Gbps links.
This allows provision of customized scheduling solutions and
interoperability of scheduling disciplines. FPGA hardware uses
a single-cycle Decision block to compare multiple stream at-
tributes simultaneously for pairwise ordering and a Decision
block arrangement in a recirculating network to conserve area
and improve scalability. Our hardware implemented in the new
Xilinx Virtex II family easily scales from 4 to 32 streams on a
single chip. A running FPGA prototype in a PCI card under
systems software control can divide bandwidth of actual data
streams based on user specifications and meet the temporal
bounds and packet-time requirements of multi-gigabit links.

1 Introduction

A confluence of events is making QoS (Quality-of-Service)
provisioning in clusters an even more interesting research area.
First, (1) wire-speeds in clusters are steadily increasing with
ubiquitous deployment of gigabit Ethernet NIs & switches, im-
pending availability of Infiniband-2.5Gbps and 10Gig Ethernet
Alliance [1] hardware, and plans for Infiniband-10Gbps and
30Gbps hardware. Second, (2) workloads running on server
clusters are increasingly a mix of best-effort web-traffic, real-
time media streams, scientific and transaction processing work-
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loads. Third, (3) Systems-on-a-chip (SoC) solutions [5] that
combine a microprocessor datapath with a reprogrammable
logic fabric [5] are now available, as are optimized datapaths for
network packet processing and transmission in network proces-
sors. Single-chip FPGAs[5] with customized logic capabilites
for 10M gate designs and beyond are available at high clock-
rates of 200MHz, supporting low reconfiguration overheads.

FCFS (First-Come-First-Serve) stream schedulers on end-
system server machines or switches will easily allow
bandwidth-hog streams to flow through, while other streams
starve. Flexible scheduling disciplines form the heart of ef-
fective QoS provisioning in clusters, where real-time media
streams, best-effort web traffic and general-purpose workload
traffic can effectively be served together. Availability of tightly-
coupled processor and reconfigurable logic solutions means that
customized scheduling solutions can be provided, with the flexi-
bility of software at hardware speeds. This ensures matching the
needs of the constantly changing landscape of network services
and protocols. Our previous experiences with host-based and
embedded software schedulers [11], has shown that meeting
packet-time requirements of multi-gigabit links is difficult with
software-only realizations of scheduling disciplines. Schedul-
ing disciplines must be able to make a decision within a packet-
time ( ����	�
������������������������������ �!�"�����#�$ %�&�'�'(&���)�& �! ), to maintain high link utilization.

These trends call for a architectural framework that allows us
to reason about providing packet scheduling solutions, balanc-
ing performance & constraints and making tradeoffs required
in their physical realization. Figure 1 shows a relationship be-
tween QoS bounds, scale (number of streams or granularity or
aggregation degree) and scheduling rate. For serving a large
number of streams, with pre-determined QoS bounds (band-
width, delay and delay-jitter), a higher scheduling rate might
be needed to select a winner and adjust the priority of streams.
Similarly, scheduling and serving MPEG frames (with larger
granularity and larger packet-times than 1500-byte or 64-byte
Ethernet frames) may not require a high scheduling rate. An
architectural solution may be able to provide QoS bounds for
a given number of streams (N) & granularity (packet-size) at
a certain scheduling rate. Figure 1(b) shows, if at all, the re-
quired scheduling rate, can be realized in silicon or reconfig-



urable logic, given the implementation complexity of a given
scheduling discipline. By similar argument, if only a common-
case (or lower than required for worst-case service) scheduling
rate can be realized, what will be the degradation in QoS? (and
if this is acceptable to applications), if more streams, or smaller
packets need to be serviced while the scheduling discipline is in
operation. Note that a scheduling discipline may also aggregate
entities into a service-class (say multiple virtual circuits into a
priority-level) reflecting the degree of aggregation.
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Figure 1. (a) ShareStreams Architectural Solutions
Framework (b) Implementation Complexity of Packet
Schedulers

We propose the SHAreStreamS (Scalable Hardware
Architecture for Stream Scheduling) shown in Figure 2 and
Figure 3 that combines a commercial microprocessor datapath
or network processor with a reconfigurable logic fabric. The
complexity of stream selection and priority update com-
putations poses a challenging implementation problem for
scheduling a large number of streams over multi-gigabit links.
For example, the Ethernet frame time on a 10 Gigabit link
ranges from approximately 0.05 microseconds (64 byte) to
1.2 microsecond (1500 byte). This can be substantially lower
for ATM cells or SONET frames that need to be scheduled
at wire speeds. Packet level QoS scheduling at these link
speeds poses significant implementation challenges. Our
architecture stores per-stream state and attribute adjustment
logic in Register base blocks and orders streams pair-wise
using multi-attribute-compare-capable Decision blocks in a
recirculating shuffle network to conserve area. Scheduling
logic does possess significant amount of parallelism for which
we propose a customized FPGA solution. Such solutions are
viable as FPGA technology pushes 10 M gate designs with
clock rates of up to 200MHz with relatively low reconfiguration
overheads. By carefully crafting suitable implementations for
compute-intensive scheduler components for implementation
within the FPGA, we find tractable implementations for the
fine grained, real-time packet scheduling problem.

This paper provides performance evaluation of our architec-
ture using the DWCS (Dynamic Window-constrained Schedul-
ing Discipline) [10]. DWCS is a powerful scheduling frame-
work that can be configured to realize most existing schedul-

ing disciplines such as EDF (Earliest-Deadline First), static-
priority, WFQ (Weighted Fair Queuing) [4] and also native
(deadline and window-constrained dual-attribute) scheduling.
We provide a DWCS primer in Section 2 with details in [10].
To demonstrate the versatility of our architecture, we present a
FPGA realization of DWCS along with system software sup-
port for queue management and transmission that can meet the
packet-time requirements of 10Gbps Ethernet links.
Outline of Paper. We begin by presenting the control-flow,
data-flow and implementation complexity of packet scheduling
algorithms in Section 2 and propose a general-purpose Share-
Streams architecture for implementing packet schedulers. Sec-
tion 3 describes the ShareStreams queue management and trans-
mission system software along with hardware architecture for
end-systems and line-cards. Xilinx Virtex FPGA architecture
and implementation details are provided in Section 4. Perfor-
mance evaluation of the integrated hardware and software sys-
tem with synthesized area/delay results and run-time evaluation
of actual running hardware is presented in Section 5. We com-
pare other architectures in Section 6 and conclude in Section 7.

2 Packet Schedulers: Properties & Complexity

The fundamental idea in packet scheduling is to pick a
stream from a given set of streams and schedule the head-
packet from the eligible stream for transmission. The schedul-
ing discipline must make this decision based on stream service
constraints, expressed as descriptors/attributes (which could be
integer-valued weights by which bandwidth of the output link is
to be divided or deadlines at which packets in each stream may
need service) so that the service requirements of each stream
(bandwidth, delay or jitter) are satisfied to the best extent pos-
sible. The stream attributes of relevance to a certain scheduling
discipline by which streams are ordered may be multi-valued
(deadlines, loss-ratios) or single-valued (stream weights) and
may be abstracted for convenience as stream priorities. For
comparing multiple service attributes from two streams simul-
taneously, usually a hierarchy of rules is necessary and an ex-
ample is listed in Table 1 for the case of DWCS (Dynamic
Window-constrained Scheduling). For the purposes of this pa-
per, we call comparing stream attributes from two different
streams as a decision and a decision cycle involves (1) order-
ing streams based on rules and (2) updating their priorities after
all the streams are ordered. A decision yields a winner and a
loser stream; after a decision cycle, the stream with the high-
est priority is said to be a winner over other loser streams. The
scheduling discipline must also ensure that the scheduling de-
cision is completed in a packet-time ( ����	�
����������������������� ������ �!� � � �#�$ %�&�'�'(&���)�& �! ) to
ensure maximum link utilization. A static priority scheduling
discipline (which minimizes the weighted mean delay) for non-
time-constrained traffic picks a stream based on a static time-
invariant priority. A dynamic priority scheduling discipline on
the other hand, will bias or alter the priority of streams every
scheduling decision cycle so that streams waiting for service
may also be picked (albeit eventually) over the stream recently
serviced. This may be necessary for guaranteeing real-time
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bounds (as in an Earliest-Deadline-First EDF scheduler) or allo-
cating bandwidth fairly among best-effort streams. A schedul-
ing discipline must strive to provide performance bounds for
real-time and fairness for best-effort streams.

The focus of this paper is to provide an architecture for
dynamic-priority schedulers that can meet the performance
bounds for real-time streams and also provide fairness for best-
effort streams. Scheduling disciplines like WFQ[4], SFQ[12],
SMART and DWCS[10] are dynamic priority algorithms. In
fair-queuing schedulers, [4, 12], a service-tag (start-time or
finish-time) is assigned to every incoming packet and packets
with the least service tag are served first. In DWCS[10], dead-
lines and loss-ratios are used for servicing packets based on
rules shown in Table 1. Service attributes of packets are updated
every scheduling decision cycle and multiple stream service at-
tributes are used for every decision.

Pairwise Ordering for Streams

Earliest-Deadline First
Equal Deadlines, order lowest window-constraint first
Equal deadlines and zero window-constraints,
order highest window-denominator first
Equal deadlines and equal non-zero window-constraints,
order lowest window-numerator first
All other cases: first-come-first-serve

Table 1. Example Scheduler Decision Rules

The implementation complexity of a dynamic-priority
scheduling discipline is shown in Figure 1 (b) and dependent
on the following factors.
State Storage. The service attributes that the scheduling disci-
pline is dependent on must be updated and stored as streams
are scheduled, along with scheduler specific counters and flags
e.g. packet discard flags and scheduling discipline performance
counters.
Attribute Comparison Complexity. Certain scheduling disci-
plines like EDF(Earliest-Deadline-First) and WFQ[4] use only
one attribute for comparison namely, deadlines or stream
weights. Flexible scheduling disciplines like DWCS use a com-
bination of multiple attributes like deadlines, loss-ratios and ar-
rival times for comparison and pairwise stream ordering. This
determines the decision rate.
Winner Selection Rate & Priority Update Rate. Ultimately, all
streams have to be ordered and the highest “priority” stream
must be picked, which determines the winner selection rate.
State storage and update operations on service attributes deter-
mine the priority update rate. In DWCS for example, the stream
service attributes are updated every scheduling decision cycle.
One way to look at Figure 1 (b) is that the implementation com-
plexity places an upper bound on the scheduling rate. This
could be further constrained by area or critical path limitations.
A higher scheduling rate might be necessary to maintain QoS
bounds or meet scale requirements and it becomes necessary to
quantify any possible QoS degradation. Decision time in Figure
1 (b), refers to total time required to pick a winner stream (every

decision cycle).
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Figure 2. ShareStreams Discipline-Independent Hard-
ware Architecture

Mapping Packet Scheduling to a Hardware Architecture
Figure 2 presents the ShareStreams architecture for realizing a
range of practically interesting dynamic-priority scheduling al-
gorithms. Stream service attributes are stored in each Register
base block R1, R2 and also tiled Register Base blocks, like R5
and R8. The space-time interchange network is an appropriate
arrangement of Decision blocks (could be simple comparators
for single attribute comparison between streams) in a network
such as a binary tree, a single-stage recirculating shuffle net-
work, a systolic queue or a shift-register network. Space-time
interchange network refers to tradeoffs between area (space)
and time, allowed by the requirements of a certain architecture.
For example, a single-stage recirculating shuffle is a single-level
of a binary tree, which can be scheduled in time over

���������
	��

cycles, and the cycle-by-cycle level traversals form a tree if laid
out in space. To save area, one may choose a single-stage recir-
culating shuffle over a binary tree, and still get full level traver-
sal of a tree over time. The tiled Register blocks store stream
state for streams currently being ordered and this allows streams
to be scaled beyond a single Register Base block at the base of
the network. A winner stream is picked by ordering streams
with state in tiled register blocks, and the sequence is termed a
round. To scale beyond the state in tiled register blocks, state
storage from register blocks can be saved in memory and re-
stored when needed during the next decision cycle (after finding
a single winner stream across all streams). So assuming there
are 32 streams, the winner (or top few, as demanded by the re-
alization) from the first 16 streams will be determined during
round 1, with state currently available in tiled register blocks.
Saved context for the next 16 streams will then be restored into
the Register banks from SRAM using the context save/restore
engine and the winners computed during round 2. Note that
the save and restore operations can easily be pipelined as the
streams are being ordered. A third round can inter-play the
winners from the previous rounds. Note how the architecture
captures the dependencies in Figure 1 (a) and Figure 1 (b). To
scale the architecture to support more streams, the scheduling
rate must be increased to satisfy the QoS bounds or packet-time
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requirements of links. We select DWCS (Dynamic Window-
Constrained Scheduling)[10] to realize our architecture because
it can provide EDF, static-priority, fair-share and native schedul-
ing support for streams using a single realization.
DWCS Background Every stream requiring service is assigned
two service attributes - a Deadline and a window-constraint or
loss-tolerance (ratio) ( � � ). A request period ( � � ) is the inter-
val between deadlines of two successive packets in the same
stream ( � � ). The end of a request period ( � � ) is the deadline by
which the packet requiring service must be scheduled for trans-
mission. The window-constraint ( � � ) or loss-tolerance ( ���� �

) is
the number of packets � � (loss-numerator) that can be late/lost
over a window � � (loss-denominator) packet arrivals in the same
stream � � . All packets in the same stream have the same loss-
tolerance or window-constraint ( � � ) but a different deadline
(separated by the request period). In order for a winner or eli-
gible stream to be picked, the streams must be ordered pairwise
based on the rules presented in Table 1. The winner stream is
then picked for service and its deadlines and loss- tolerances
adjusted. We refer the reader to [10] for details but simply state
here that the deadline and loss-tolerance adjustments are sim-
ple arithmetic operations (increments to deadlines and incre-
ments/decrements to loss-numerator and denominator). Simi-
larly, other streams waiting for service have their deadlines and
loss-tolerances adjusted in a different manner from the ’win-
ner’ stream if they miss their deadlines (in effect to to increase
their priorities). Streams without any deadline misses are not
adjusted. This combination of deadline and loss-tolerance spec-
ifications allows DWCS to provide real-time guarantees and fair
bandwidth division for streams. In fact, DWCS can be con-
figured to operate as an EDF scheduler (loss-tolerances are	
	 ), static priority scheduler (infinite deadline, static priority
is original loss-tolerance of streams) and fair scheduler (WFQ
weights can be set using deadlines and loss-tolerances) [10, 11].

The next Section describes the ShareStreams architecture,
the software architecture for managing packet queues along
with a hardware scheduling discipline realization to schedule
streams using the ShareStreams architecture.

3 The ShareStreams Hardware & Software Ar-
chitecture

Certain functions like QoS provisioning are particularly sen-
sitive to temporal bounds and need hardware support and ac-
celeration to satisfy the packet-time requirements of outgoing
links. The ShareStreams architecture provides support for data-
movement and per-stream queuing on Stream processors and
provides hardware support for accelerating packet scheduling
in FPGAs.
The Stream Processor The ShareStreams architecture main-
tains per-stream queues usually created on a stream processor
(see Figure 3). In Figure 3, per-stream queues are usually cre-
ated on the host processor (acting as a Stream processor) or
Network (Co-)Processor (like the IXP1200) resident on the PCI
I/O bus (with specialized hardware units for fast data move-
ment), by a Queue Manager (QM) on stream admission. Our
per-stream queues are circular buffers with separate read and
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Figure 3. ShareStreams Endsystem Realization

write pointers for concurrent access, without any synchroniza-
tion needs. This allows a producer to populate the per-stream
queues, while the Transmission Engine (TE) may concurrently
transfer scheduled frames to the network. As stream queues are
instantiated, their service constraints are communicated over the
PCI bus to a FPGA PCI card by depositing in a SRAM parti-
tion (with a special address range). As packets in each stream
arrive, their arrival times are communicated to the FPGA PCI
card over the PCI bus by direct transfer to Dual-ported SRAM
partitions. Most FPGA PCI cards are equipped with banked
SRAM that allows multiple stream queues to be accessed con-
currently. Transfer of packet arrival times (16 bits, only the
offsets are communicated), is usually completed in batch fash-
ion to realize the full burst bandwidth of the I/O interconnect.
Note that the packet arrival times are only communicated, not
the the packets themselves. The Scheduler Control unit, ac-
cesses packet arrival times from the SRAM with the help of the
Streaming Engine in Figure 3. As winners are determined in
each cycle, their stream IDs are deposited into the SRAMs to
allow reads by Transmission Engine (TE) threads. The Trans-
mission Engine (TE) threads then select the head-of-line packet
from scheduled queues and transfer the packet to the network
interface (usually a DMA pull from the NI). Only 16-bit arrival
times are communicated over the PCI bus from the Stream pro-
cessor to the FPGA PCI card, as are 5-bit scheduled winner
stream IDs from the FPGA PCI card to the Stream processor. A
line-card realization of the ShareStreams architecture is shown
in Figure 4. Dual-ported SRAM allows packets arriving from
the crossbar to be placed in per-stream SRAM queues. Their
arrival times can be read by the SRAM interface concurrently.
Winner Stream IDs are written into the SRAM partition by the
SRAM interface, which are provided by the Scheduler control
unit.
ShareStreams Hardware and Streaming Unit The Scheduler
hardware and Streaming unit are resident on the FPGA PCI
card. The Scheduler hardware consists of a Control unit, per-
stream state storage Register blocks and Decision blocks ar-
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ranged in a recirculating shuffle-exchange network (see Figure
5). The Decision block network allows pairwise comparison of
streams to determine a winner stream based on current stream
service constraints or attributes. Most scheduling algorithms
[10, 4], use arrival times for service attribute comparisons and
these must be provided to the scheduler hardware during every
decision cycle, representing each packet arrival. The recircu-
lating shuffle network generates an ordered list of streams and
the winning stream ID is provided to the Control unit which
pipelines the IDs to the SRAM interface every decision cycle.
The function of the Streaming unit in Figure 3, is to ensure that
packet arrivals on the Stream processor are communicated to the
Scheduler hardware with low-latency and winner Stream IDs
are communicated to the Stream processor with low-latency so
that packets in circular stream queues experience minimal de-
lay. The Streaming unit in our design can keep the packet arrival
time queue in dual-ported SRAM memory full using a combina-
tion of push and pull. The Stream processor may use PIO writes
across the PCI bus (write-combined and bursted on most im-
plementations) to transfer packet arrival times. This is efficient
for small transfers, say in the case of a out-of-band time criti-
cal stream (see Figure 15) requiring service or a low-bandwidth
stream requiring low-delay. For bulk transfers of arrival times
(large burst), the Stream processor may request bulk-transfer
service using the pull-start service line of the Streaming unit
(see Figure 3), after setting the registers of the card-resident
DMA engine. This allows the Streaming unit to prepare the
SRAM partition for bulk-transfers (our hardware implementa-
tion uses the Celoxica FPGA card that uses a register-based
hardware semaphore to arbitrate SRAM bank access by the host
or the scheduler hardware on the FPGA) and pipeline arrival
times to the Scheduler Control unit. Pull-transfers also allow
the Streaming unit to monitor queue levels in SRAM memory
and initiate pulls so that the Scheduler control unit always has
packet arrival times for winners to be picked and scheduled.
Push-Pull transfers are also used for transfer of winner Stream
IDs from the FPGA processor to the Stream processor Trans-
mission Engine (TE).

ShareStreams Scheduler Hardware Architecture The Share-
Streams scheduler hardware consists of a push-pull Streaming
unit, Scheduler Control unit, Register Base blocks and Decision
blocks arranged in a recirculating shuffle-exchange network and
is shown in Figure 5. The next Section details the Scheduler
hardware architecture and implementation in FPGAs.
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4 FPGA Hardware Architecture & Implementa-
tion

This Section describes the FPGA hardware implementation
of the ShareStreams Scheduler hardware architecture on Xil-
inx Virtex I & II FPGAs. To demonstrate the versatility of our
architecture, we implement a dynamic priority packet schedul-
ing algorithm - DWCS[10], which requires a priority update or
service attribute update every decision cycle. This allows the
packet scheduling algorithm to service static-priority, fair-share
and EDF streams or a combination thereof, using a single archi-
tecture realization.
Single-Stage Recirculating Shuffle-Exchange Network As
described in Section 3 per-stream service attributes are stored
in Register Base blocks, Decision Blocks allow pairwise com-
parison of two streams, using multiple stream service attributes.
Recirculating the stream service attributes allows pairwise or-
dering of all streams in

����� � ��	��
cycles for N stream Register

Base blocks, using a single-stage recirculating shuffle-exchange
network. A sorted list of streams is obtained after

����� � ��	��
cy-

cles and the winner ID is circulated to every Register Base block
so that per-stream updates can be applied based on whether a
stream is a winner or a loser or whether a stream has missed or
met its deadline. The network requires N Register Base blocks,
( � � � Decision blocks and

�
��� � ��	 �
cycles of the recirculating

shuffle-exchange network for determination of a winner stream.
Scheduling Timeline The Scheduling timeline is presented in
Figure 6 for an implementation with four streams. During the
LOAD cycle, the Register Base blocks are loaded with stream
service attributes using the load enable signal driven from the
Control & Steering Unit. After the LOAD cycle, the SCHED-
ULE state and PRIORITY UPDATE cycle can begin and will
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alternate to generate winner stream IDs. During the I cycle of
the SCHEDULE state, the Control unit provides signals for the
muxes (see Figure 5 and this allows the stream service attributes
to be applied for comparison to the Decision blocks. This will
yield winners and losers. The winners and losers from each
comparison ie. outputs of the Decision blocks are recirculated
during the II cycle of the SCHEDULE state. This allows the
winners to be pitched against the winners and the losers to be
pitched against the losers, yielding a sorted list of streams after
2 cycles (for a four steam implementation). The winner Stream
ID is circulated to the Register Base blocks during the PRIOR-
ITY UPDATE cycle, along with a PRIORITY UPDATE sig-
nal and a new packet arrival time for the winning stream and
streams that may have dropped a packet. Each Register Base
block compares it’s ID with with the winner ID, compares the
current time (provided by the Control unit) with it’s deadline
and applies updates (simple arithmetic increments and decre-
ments) based on whether a stream is a winner or a loser and
whether it has met or missed a packet deadline.
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Control Unit and Register Base Blocks The Control Unit se-
quences the recirculating shuffle-exchange network shown in
Figure 5 by providing appropriate control signals to sequence
the scheduling timeline. The control unit interfaces with the
memory controller to provide packet arrival times for Register
Base blocks that have scheduled a winner (needs new packet ar-
rival time now) and those streams that have dropped a packet.
The Control unit also supplies winner Stream IDs to the mem-

ory interface along with a timestamp. The Control unit main-
tains a counter and supplies the 16-bit offset timestamp value
to the Register Base blocks for comparison with stream dead-
line values to determine if a packet has missed or met a dead-
line. The Register Base blocks store Stream service attribute
values - individual packet arrival times (16 bit), request periods
(16-bit), stream IDs (5-bit), loss-tolerance numerator (8-bit) and
loss-tolerance denominator (8-bit), deadlines (16-bit), violation
state registers (1-bit), counters (16-bit) and drop packet state
storage flag (1-bit). A key element of a Register Base block
is a priority update operation which in the case of a dynamic
priority algorithm occurs every scheduler decision cycle. For
the case of DWCS (see [10]), simple increments/decrements to
deadlines and loss-tolerances (numerator and denominator) are
applied if the stream is a winner (the Register Base block com-
pares it’s ID with the winner stream ID circulated by the Con-
trol unit) and similarly, increments/decrements to deadlines and
loss-tolerances are applied to loser Register blocks that miss a
deadline (a block loses a decision cycle, if the circulated winner
Stream ID is different from it’s Stream ID). Figure 7 shows the
logic operations needed during a PRIORITY UPDATE.
Decision Block A Decision Block is a key element of the
ShareStreams hardware architecture. Figure 8 shows the logic
architecture of a Decision block implementing the scheduler
rules in Table 1. A Decision block is provided two sets
of inputs, usually stream service attributes, representing two
streams whose service attributes must be ordered to determine
the stream with the higher “priority” (“priority-ordering” must
be pre-established using a single service attribute or a combina-
tion of service attributes). DWCS uses a combination of service
attributes for “priority-ordering” to allow flexible scheduling,
which allows service of a mix of EDF, fair-share and static-
priority streams. A fair-queuing scheduler might simply use
stream weights for stream ordering [12].

Table 1 suggests sequential evaluation of rules that might re-
quire multiple cycles for completion by pipelining a compara-
tor chain. This is because of the apparent dependencies in the
sequential arrangement of rules. For concurrent evaluation of
these rules, it is necessary to find independent operations that
will allow selection of a winner predicated on values of condi-
tions. The idea is to evaluate all possible compare operations
(cheap operations and only a finite number) and select the rel-
evant operations based on concurrent evaluation of the condi-
tions. One important “compare” operation orders two fractions
expressed as numerator and denominator ( � �� � and � �� � ). We use
a 8-bit multiplier ( ��� � � � == � � � ��� ) as fast-carry chains and
RPM macros are available with the Xilinx Virtex I chip and ac-
tual silicon block multipliers are generously scattered across the
chip in Virtex II architectures (instead of range limited chordic
math). The ShareStreams Decision block for DWCS organizes
the rules in simple predicate logic form along a value-bus and
predicate-bus. All the values along the value-bus are evaluated
concurrently, but only one is selected by values along the pred-
icate bus. This allows all the rules to be evaluated in just a
single-cycle and helps lower decision time.

Two architectural variants or modifications are described
to the original Base architecture (BA) and termed Winner-
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Evaluation

only Routing (WR) and Compute-Ahead (CA) Register blocks.
These are described below.
Reducing wiring for scaling: Winner-only Routing Figure 5
suggests how the architecture can be scaled (area, decision-time
growth) with increase in stream size. The idea is to route only
winners from each shuffle cycle, that need to be recirculated to
the next shuffle cycle. Each Decision block only provides win-
ner Stream attribute buses and does not retain ports for loser
attribute buses. This can reduce the interconnect requirements
and we show the effects on clock-rate and area in Section 5.
While area reduction might be marginal as only wires are re-
moved, critical path delay improvement can be substantial as
fewer components need be traversed. So for an 8 stream imple-
mentation in Figure 5, winners after the first shuffle cycle are
pitched against each other. So only Decision block 1 and 3 are
used in the second cycle and Decision block 1 in the final cycle.
Reducing Decision-time: Compute-Ahead Register Blocks
Applications where extra area is not of a concern (large part
available or spare area available), Compute-Ahead Register
blocks can be used to reduce the decision time. The idea is to
overlap the SCHEDULE state and PRIORITY UPDATE cycle
shown in Figure 6. In order to achieve this, a Compute-Ahead
Register Base block will compute its updates for a stream being
both a winner and a loser. These computations are concurrently
executed along with the SCHEDULE cycles. As soon as the
winner is available after the SCHEDULE state, the stream ser-
vice attributes (already computed in the previous cycle) can be
selected. This eliminates a whole cycle and allows successive
scheduling decisions to be run without an intervening PRIOR-
ITY UPDATE cycle and is shown in Figure 7. Scalability and
Decision Time Our architecture uses N Register Base blocks
for state storage and

�
� � � Decision blocks for pairwise packet

ordering. A winner is determined in
�
��� � ��	��

cycles of the recir-
culating shuffle-exchange network and available with a sorted
list of streams. Our architecture grows linearly in terms of area
and logarithmically in terms of decision time. Service attributes
of the streams are usually updated after a winner stream ID is
determined. Compute-Ahead logic blocks allow trading com-
putation logic area for time, and help determine a winner every

�
����� ��	��
cycles instead of (

����� � �
	��
cycles + number of cycles

for priority update). We show in [11] for a software-based im-
plementation of the scheduler, that it is possible to relax priority
updates every decision cycle and still maintain bounds with-
out severe degradation. Similarly, scheduling packets in future
packet-times may be possible using the sorted list of streams
every decision cycle i.e. for a set of 8 streams, it may be possi-
ble to schedule packets for the current packet-time and 7 future
packet-times every decision cycle.

The notions of scalability in ShareStreams are two-fold -
Horizontal and Vertical. To Horizontally scale our architecture
in Figure 5 from 8 to 16, the number of Register Base blocks
are increased from 8 to 16, the number of Decision blocks from
4 to 8 with additional wiring and muxes for control. A winner is
available every

����� �����
or four cycles with this scaling. For Ver-

tical scaling, as seen in Figure 2, the Register Base blocks are
tiled and the Decision block network is fixed. So for schedul-
ing 16 streams with tiled Register Base blocks for Figure 5, the
first 8 streams are scheduled for a winner result after

���������
i.e.

3 cycles and the second 8 streams are scheduled for a winner
result in another 3 cycles. This can complete by using two ap-
proaches - take another three cycles by choosing the top four
streams from each round or complete in just one more cycle by
choosing the winner Stream ID from each round. This scaling
arrangement is useful for complex Decision blocks requiring a
combination of stream service attributes to be compared simul-
taneously. By fixing the number of Decision blocks and the
interconnecting wiring, area savings is achieved by trading time
for area (logic implementation and interconnect implementation
complexity). This is useful in settings where scheduler cycle
times are sub-multiples of packet times ie. many rounds for
winner determination will not exceed packet-times and situa-
tions where large granularity packets are being scheduled or as
determined by constraints of Figure 1. Note that aggregation of
entities into a service-class or priority-level is another indirect
way of achieving scaling. So in a 32 stream scheduler, we can
actually schedule 32 service-classes or priority-levels with tens
of virtual-circuits (for example) in each class.

ShareStreams Scheduler Hardware Prototype The Control
& Steering unit, SRAM memory interface are written in behav-
ioral VHDL (control FSMs) to allow adaptation to new environ-
ments. The Decision blocks, Register base blocks and Shuffle-
exchange are implemented by wiring components using struc-
tural VHDL. These time-critical components use hand-crafted
logic by wiring Xilinx corelib components and custom-defined
logic components to reduce critical path delay and increase
throughput. An evaluation of the architecture with area/delay
results is presented in Figure 5. We use the Synplify Pro 7.1
tool for logic synthesis, the Xilinx backend tools (map, place,
route) version 4.1 for physical synthesis and bitstream gener-
ation. We run the hardware on a Celoxica Virtex I/1000 PCI
card which can clock a design upto 100MHz and is equipped
with a 32bit/33MHz PCI controller. The card is equipped with a
8M SRAM accessible from both a host/PCI peer and the Virtex
FPGA with suitable arbitration (between the FPGA and host-
PCI peer) provided by the firmware. Details of the card are
found in [3].
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5 Performance Evaluation

This Section evaluates the FPGA hardware implementation
and Stream processor software implementation of the Share-
Streams architecture. We first present scaling results of the
FPGA hardware implementation on Xilinx Virtex I and Virtex
II architectures, with architectural variants to improve scalabil-
ity and delay over the base architecture. The second part of this
Section shows the ability of the hardware and software compo-
nents of the ShareStreams architecture working in tandem to al-
low stream-specific scheduling ie. EDF, Static-priority (SP) and
fair-share (FS) for streams and also for a mix of traffic classes
(EDF and FS for example). We demonstrate this for the switch
line-card and end-system/host-router target architectures.

5.1 Area-Clock Rate Characteristics

This Section evaluates the ShareStreams base architecture
along with two architectural variants discussed in Section 4 - the
“Winner-only Routing” (WR) modification and the compute-
ahead (CA) Register base block. Our design has been targeted
to both Virtex I [5] and Virtex II [5] architectures. The Celoxica
PCI card has a Virtex 1000 chip and targeting the design to the
Virtex I V1000 chip helps us complete run-time performance
evaluation. The Virtex II has on-chip block multipliers (hard
multipliers that provide single-cycle multiply outputs) which
can provide significant gains for scalability and decision time.
This Section uses the Virtex II V2000 chip as a synthesis target
that has 56 x 48 CLBs (Xilinx II Configurable Logic Blocks)
and distinct 56 18*18 multiplier blocks. A slice includes LUTs
and flip-flops and is the basic logic element. Xilinx literature
describes a Virtex II CLB equivalent to 4 Virtex II slices and a
Xilinx 2V2000 chip capable of a 2 million system-gate design
[5]. Similarly, a Virtex 1000 part has an equivalent of 1 million
system gates with 64 x 96 Virtex I CLBs (2 Virtex I slices = 1
Virtex I CLB).

This Section determines Virtex chip area and decision time
(calculated from clock rate, our base architecture can determine
a winner in three cycles and our compute-ahead register base
block variant can compute a winner in two cycles by overlap-
ping priority-updates and winner-selection). The evaluation in
this Section does not include the memory/interconnect interface
of the design with SRAM memory or any other shared-switched
interconnect. Each data-point evaluates the design with Register
Base blocks, Decision blocks, control-steering logic block and
the recirculating shuffle network. The Figures in this Section
use BA to refer to the Base Architecture, WR is the “winner-
only routing” architectural variant and CA is the compute-ahead
architectural variant with compute-ahead Register base blocks.
We measured the area of each component in Virtex I and Vir-
tex II and found the area of the Control -steering logic to be
22 slices each (Virtex I and Virtex II), Decision block was 190
slices in Virtex I and 122 slices with 2 additional multipliers
under Virtex II. The Register base block was 150 slices in Vir-
tex I and 148 slices in Virtex II. The area of the shuffle-network
wires and pass-through CLBs is dependent on the stream size
of a given design.

Area-Decision time Scaling with the Virtex I chip Figure 9
shows the area-clock rate characteristics of the design from 4 to
32 streams with the Base-architecture and the WR variant. As
the number of streams is increased from 4 to 32, the area dou-
bles for the BA architecture. The design stores per-stream state
and the state storage doubles at each data-point. The number of
Decision blocks needed at each stream size design data-point,
also grows linearly, 2, 4, 8 and 16 Decision blocks for stream
sizes of 4, 8, 16 and 32 streams. Our architecture grows linearly,
in terms of area, and our physically placed & routed designs
also exhibit the same rate of growth. For the “winner-only” ar-
chitectural variant, our Decision blocks only provide outputs of
winners, which are recirculated every shuffle cycle. This is ex-
pected to ease the routing requirements of the architecture dur-
ing physical placement and routing. We see some area savings
over the base BA architecture.

While area grows linearly, decision time grows logarithmi-
cally, exhibiting 2, 3, 4, and 5 cycles for computation of a win-
ner as stream size grows from 4 to 32 streams. To maintain the
logarithmic growth, the clock rate must be maintained without
any decay and we see from Figure 9 that the clock rate is main-
tained at nearly the same level between 8, 16 and 32 stream de-
signs for the BA architecture. The change from 4 to 8 streams
for the BA architecture shows a 20% drop in clock rate. The
WR architecture shows better results over BA in terms of clock
rate variation, we see only 5% change in clock rate from 4 to
8 streams and this is nearly maintained over the growth to 32
streams. This can be attributed to easing the physical routing
requirements by routing only winners. Reduction in intercon-
nect density can lead to a more compact design with less sus-
ceptibility to longer net delays, promoting enhanced clock rate
scaling. The “winner-only” routed design variant exhibits bet-
ter area and clock rate scaling than its base architecture (BA) by
reducing physical interconnect requirements.

Figure 9. Area-Clock Rate Characteristics of Architec-
ture (Virtex I)

Area-Decision time Scaling with the Virtex II chip Figure 10
shows the area/clock-rate characteristics of the Base architec-
ture and the WR architectural variant on the Virtex II chip. The
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Figure 10. Area-Clock Rate Characteristics of Archi-
tecture (Virtex II)

Virtex II has block hardware multipliers (our Virtex I multipli-
ers are relationally-placed macros but need carry-chains which
can aggravate net delay) and we expect our design to speedup
significantly over our Virtex I implementation. We indeed see
this effect, for the BA and WR architectures, the clock rate of
the Virtex II designs for all stream sizes are twice that of the
Virtex I implementation. We see a linear increase in area for the
BA and WR architectures, with better area results for WR ar-
chitecture that only routes winners. The BA architecture clock
rate depreciates more than 20% from 4 to 8 streams, and 30%
from 16 to 32 streams. The WR architecture, exhibits more sta-
ble clock rate variation from 4 to 16 streams with decay of 15%
from 16 to 32 streams. The WR architectural-variant exhibits
more stable clock-rate variation than its base architecture and
more than double clock rate improvement over the equivalent
Virtex I design.

Area-Decision time Scaling with Compute-Ahead Register
Blocks Compute-Ahead Register blocks are described in Sec-
tion 4 and shown in Figure 7. Compute-ahead Register Base
blocks, overlap priority-update with winner selection by pre-
computing the new service constraints before the actual winner
is available. This allows better decision time as the cycle for
priority update is completely removed from the decision time
of the packet. This means that a new winner decision cycle can
be started after 2, 3, 4, 5 cycles for 4, 8, 16, 32 streams instead
of (2+1), (3+1), (4+1), (5+1) cycles. This allows the scheduler
to be structured for higher throughput.

The design evaluated in this Section is similar in structure to
the BA base architecture, except that the ComputeAhead Reg-
ister Base blocks are larger than the size of a BA Register base
block. The ComputeAhead Base block calculates and stores
state for both the cases of a particular stream winning or losing
a decision cycle. When the winner becomes available, the ap-
propriate service constraints are selected and applied for a deci-
sion in the next cycle based on whether the Register Base block
currently , is a winner or a loser. Figure 11 shows area/clock-
rate characteristics for a BA with ComputeAhead Register Base

Figure 11. ComputeAhead Register Blocks (BA-based)
Results (Virtex II)

blocks. The area grows linearly, from 4 to 32 streams, while
clock rate drops 20% from 4 to 8 streams (like the BA architec-
ture in Figure 10) and maintains from 8 to 32 streams.

Our BA, WR and compute-ahead implementations for both
Virtex I and Virtex II can easily meet the packet-time require-
ments of all frame sizes (64-byte and 1500-byte) on gigabit
links, and 1500-byte frames on 10Gbps links. It is also com-
mon practice to aggregate many streams into a service-class or
priority-class and we can maintain scale by simple aggregation.

5.2 Stream-specific Scheduling

We demonstrate the ability of the ShareStreams architecture
to provide stream-specific scheduling for fair-share, EDF and
Static-priority streams and also for heterogeneous streams with
a mix of traffic classes (FS and SP or SP and EDF). We first
demonstrate Stream-specific scheduling for the Stream proces-
sor software and FPGA hardware running in tandem for the tar-
get architecture shown in Figure 3. We demonstrate customized
stream scheduling for EDF, SP and fair-share streams for the
target architectures shown in Figure 3 and Figure 4.
Fair Bandwidth Allocation for Streams We use the target ar-
chitecture shown in Figure 3 for the case of a End-system or
host-based router. The host is a Pentium III 500MHz with
Redhat Linux version 2.4. We run the ShareStreams hardware
scheduler on a Celoxica FPGA PCI card[3] on a attached PCI
bus. The host processor functions as the Stream processor for
this target architecture.

The Queue Manager (QM) on the Stream processor pro-
vides per-stream queues and stores service attributes in descrip-
tor fields for each stream. Stream service constraints for each
stream are communicated over the PCI bus to the scheduler by
writing values into an SRAM partition. Four Streams 1, 2, 3
and 4 are instantiated with window-constraints ( ���� ������ �

���� �� ) i.e.
bandwidth-division ratios of 1:1:2:4 (obtained as 1- �� etc. see
[10]). The SRAM interface along with the Control & Steer-
ing logic unit shown in Figure 5 provide the required control

9



signals to load the service constraint values into the Stream reg-
isters. The Transmission Engine (TE) provides arrival times
to the ShareStreams hardware scheduler running on the FPGA
across the PCI bus and reads winner stream ids and their times-
tamps from the FPGA PCI card for transmission. Frames are
injected by stream producers on the host CPU into per-stream
queues resident on the host. Stream producers generate frames
between sizes of 64-bytes (null-payload minimum size Ether-
net frame) and 1500-bytes (max. transmission unit). This emu-
lates a link-layer Ethernet frame generation system. Each frame
producer injects 64000 frames of varying sizes with an inter-
burst delay interval after the first 4000 frames. The frame pro-
ducers are allowed to populate the stream queues concurrently
and we timestamp each incoming frame. Only 16-bit arrival
times are communicated for each packet (in each stream) re-
quiring scheduling to the ShareStreams scheduler running on
the FPGA PCI card across the PCI (32bit, 33MHz) bus. Note
that the FPGA PCI card also has SRAM banks for buffering
incoming packet arrival times and for storing ids of scheduled
streams. Extended buffering can also be provided as ends of a
data-pipeline from the SRAM banks into the Virtex FPGA on-
chip block RAMs. We use the TPIL[7] communications library
developed as part of the Active System Area Networks project
at Georgia Tech [7]. The FPGA PCI card allows DMAs of over
120 MBytes/second by user-level DMAs from the Celoxica PCI
card DMA engines using the TPIL library (peak bandwidth of
this bus is 133MBytes/sec). The Transmission engine trans-
ferred 64000 arrival-times in each stream to the FPGA SRAM
banks (for a total transfer of 4 x 64000 x 16 bits) and we
recorded over 60MBytes/second of transfer bandwidth. After
completion of this transfer, the TE pulled winner Streams IDs
from the ShareStreams scheduler output SRAM banks for trans-
mission to a remote client. For the purposes of this experiment,
we ran the the ShareStreams scheduler at 23MHz on the Celox-
ica PCI card. We report output bandwidths of each stream by
accruing bytes transferred over time at the Transmission Engine
(TE) end, without making any network stack system calls.
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Figure 12. Fair Bandwidth Allocation of Streams
(1,2,3,4) with ratios - 1:1:2:4

Figure 12 shows the output bandwidth allocation between
Stream 1, Stream 2, Stream 3 and Stream 4. Stream 1 and

Stream 2 settle at an output bandwidth of 47.15 MBytes/second.
Stream 3 settles at an output bandwidth of 95.3 MBytes/second,
while Stream 4 settles at an output bandwidth of 188.6
MBytes/second. Note that the output bandwidths of Stream 1,
Stream 2, Stream 3 and Stream 4 are in the requested ratios of
1:1:2:4.
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Figure 13. Queuing Delay of Streams 1, 2, 3 and 4

Figure 13 shows the queuing delay of the streams at the host
processor. Stream producers place frames of varying sizes si-
multaneously into per-stream queues on the stream processor.
Each frame has to wait in queues until the transmission engine
begins transmission. This is the total of time taken to generate
all 64000 frames per stream queue (there is a 1 ms inter-burst
wait period after the first 4000 frames during generation), trans-
fer time to SRAM arrival-time queue buffers on the FPGA PCI
card, transfer time of scheduled stream ids from the PCI card to
the Stream processor and playout time of all the frames (with-
out any network stack system calls). Note the zig-zag forma-
tion in the queuing delay graphs of all streams. The traffic gen-
erator introduces a multi-ms inter-burst gap after the first 4000
frames of all streams and all the first 4000 frames in each stream
experience increased queuing delay than rest of the frames in
the stream. Stream 4 has the highest bandwidth allocation as
seen in Figure 12 and incurs the least queuing delay across all
frames. Stream 3 has half the bandwidth allocation of Stream
4 and shows slightly more queuing delay across all frames, as
Stream 4 frames get serviced more often than Stream 3 frames.

Stream Scheduling for EDF, SP and Fair-share Traffic
Mixes We demonstrate customized stream scheduling for
Earliest-Deadline-First (EDF), Static-priority (SP) mixed with
Fair-share traffic for the target architecture shown in Figure 4.
For the purposes of these sets of experiments, we deposited ser-
vice constraints for each stream in the scheduler run-time pa-
rameter SRAM partition and backlogged the SRAM partitions
for each stream with packet arrivals. We set the clock on the
Celoxica FPGA card using our FPGA PCI communications li-
brary to 23 MHz, which uses the Virtex 1000 FPGA part. We
then started the scheduler and present the outputs of the sched-
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uled winners for each traffic mix.
Fair-share Scheduling for the Line-card Realization Figure
14 shows the settling of bandwidth of streams with equal di-
vision ratios using the line card physical realization described
in Section 3. Bandwidth is presented along the y-axis as pack-
ets /unit time and time is presented along the y-axis on a log-
scale. A bandwidth of 1.0 represents 100% utilization. The
time-axis is scaled “real time” - we increment the clock by one
tick every time a winner stream is scheduled. A winner is de-
termined every three clock cycles and this makes a time axis
tick equal to (clock period x 3). Note that we run the hardware
at 23 MHz, which allows us to meet the packet-time require-
ments of 1 Gbps links. This allows us to verify that winners are
available every three clock cycles and enables operation of the
scheduler over longer periods of time.
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Figure 14. Fair Bandwidth Allocation of Streams
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Deadline-scheduling for EDF Streams This experiment
scheduled four streams - Stream 1, Stream 2 , Stream 3 and
Stream 4. Each stream had a deadline one-period apart and in
strict order 4, 3, 2 and 1. We set the window-constraints/loss-
tolerances (numerator and denominator) to be 0 for each
stream. Stream ids were equal (15999 each) over a total of
63996 winner stream ids collected.
Scheduling for a Mix of Fair-Share and Static-Priority
Streams

For this experiment, three fair-share (best-effort) streams are
considered along with one static-priority (SP) stream. Stream
1, Stream 2, Stream 3 are set to window-constraints of 2/4, 3/4
and 3/4 i.e. bandwidth division ratios 2:1:1. The static-priority
stream is set to a window-constraint of

	����� (no loss of packets
allowed over a window of 255 packets) and is set to receive ser-
vice after 63810 time units. The window-constraint settings of
Stream 1, Stream 2, Stream 3 will result in a bandwidth utiliza-
tion of 100% of the output link together in the specified ratio.
After the SP stream is introduced, the window constraint setting
of

	����� will not allow other streams to be serviced for a window
of 255 packets and only the static priority stream will receive
service over that window. Figure 15 plots bandwidth (packets
per unit time) on a log-scale against a log-scale time-axis.The
time-axis is scaled “real time” - we increment the clock by one
tick every time a winner stream is scheduled. Figure 15 plots
bandwidth over the final 300 packet window (the scheduler op-

eration terminates after 64000 winners are scheduled). When
Stream 1, Stream 2, Stream 3 reach 63700 time units, their out-
put bandwidths have already settled in the ratio of 2:1:1. At
63810 time units, the static-priority stream is introduced and re-
ceives service over Stream 1, Stream 2 and Stream 3 as packets
over a window of 255 packets are not allowed to be dropped, as
specified by the window- constraint. Note that the bandwidth of
all streams is calculated from time zero (start of playout). The
ShareStreams architecture can support out-of-band time-critical
traffic in the presence of Fair-share best-effort traffic.
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Scheduling for a Mix of Fair-Share and EDF Streams
Fair-share best-effort streams can receive service, even in

the presence of deadline-oriented EDF streams. Stream 1 and
Stream 2 are two fair-share streams with service constraints
such that the bandwidth of Stream 1 is twice that of Stream
2. Stream 4 and Stream 3 are two EDF streams that must be
serviced one service period apart but, always Stream 4 before
Stream 3. Stream 4 and Stream 3 must repeat every four packet-
times. Figure 16 shows bandwidth expressed as packets per
unit time plotted against time on a log scale. Stream 1 settles
receiving twice the bandwidth of Stream 2. The trace was veri-
fied to see that Stream 4 was serviced one service-period before
Stream 3 always, and repeated every four service periods. The
final serviced packet count on Figure 16, shows that Stream 4
and Stream 3 have the same number of serviced packets over
the complete set of 57339 packets serviced.

6 Related Work

Description and early results from our experience of build-
ing a hardware prototype (for a DWCS hardware scheduler) for
scheduling upto four streams is described in [8] with Virtex I.
While [8] presented early results for bandwidth division, this
paper presents a general-purpose architecture for scheduling gi-
gabit packet streams, systems software, scheduling discipline-
specific FPGA (Virtex I and Virtex II) implementation with ar-
chitectural variants, detailed evaluation and scaling results.

A number of hardware structures have been proposed to im-
plement traditional priority queues. [6], [9], [2], all propose
interesting priority queuing structures. None of these can be
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used to target the ShareStreams architecture to realize DWCS
packet scheduling efficiently. First, a heap, a systolic queue or
a shift-register implementation will require replication of the
ShareStreams-DWCS Decision block in every element. The
ShareStreams recirculating shuffle conserves area by using only
the lowermost-level of a tree. Note that ShareStreams-DWCS
Decision blocks require multiple service attributes to be com-
pared simultaneously and are not simple comparators. Second,
the priorities of streams that miss deadlines and the winning
stream are updated every decision-cycle. This will require re-
sorting the heap, systolic queue and shift-register chain (formed
from each arriving packet) every decision-cycle and on packet-
arrival. A simple binary tree simply wastes area, and requires�
����� ��	��

levels of the tree. Successive decision cycles cannot be
pipelined through the tree and only one level is operational dur-
ing a cycle. Instead, a recirculating shuffle conserves area, and
scales better by using only ( � � ) decision blocks in a single-stage
recirculating shuffle.

7 Conclusion and Future Work

We have described an architectural framework and general-
purpose architecture to realize and implement high-speed
packet schedulers in multi- gigabit clusters. The tangible
outputs of this work include systems software and running
FPGA hardware, with design scalability and run-time perfor-
mance evaluation results in a functional hardware/software sys-
tem. The ShareStreams-DWCS hardware architecture can eas-
ily scale from 4 to 32 streams (or service-classes) on a single
Virtex I and Virtex II chip and can meet the packet-time re-
quirements of 10 Gbps links. Tiling register blocks, pipelined
context swap/restore engines and bigger single-chip Virtex parts
will scale this even better to realize the benefits of per-stream
state storage. Our FPGA hardware uses a single-cycle Decision
block to compare multiple stream attributes simultaneously for
pairwise ordering and a Decision block arrangement in a recir-
culating network to conserve area and improve scalability. This
paper also presents architectural variants that promote scalabil-
ity (winner-only routing) and reducing decision time (Compute-
Ahead) Register blocks.
Current work is looking at increasing scheduler throughput by

using the sorted list of streams to schedule packets in future
packet-times and the impact of this on QoS. The ShareStreams-
DWCS FPGA implementation can schedule fair-share, EDF
and Static-priority streams. We are currently integrating those
elements of the architecture that will allow us to construct,
demonstrate and run a system with hundreds of streams. Provid-
ing support for other scheduling disciplines is also being con-
sidered using the architectural framework and constituent ele-
ments. We hope to relate the implementation information back
to the original ShareStreams framework, and it is hoped that
this will allow us to construct more customized scheduling so-
lutions (based on traffic types, different scheduling disciplines,
cluster configurations and producer-consumer pairs) that will
run at wire-speeds.
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