
COLORIS: A Dynamic Cache Partitioning System Using
Page Coloring

Ying Ye, Richard West, Zhuoqun Cheng, Ye Li

Computer Science Department
Boston University



Overview

1 Background

2 Contribution

3 COLORIS Design

4 Evaluation

5 Conclusion



Background

For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC

unpredictable caching behaviors
severe performance degradation
compromised QoS

Performance isolation needed for QoS-demanding systems



Background

For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC

unpredictable caching behaviors
severe performance degradation
compromised QoS

Performance isolation needed for QoS-demanding systems



Background

For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC

unpredictable caching behaviors
severe performance degradation
compromised QoS

Performance isolation needed for QoS-demanding systems



Background

For multicore platforms, tightly-coupled on-chip resources allow faster
data sharing between processing cores, at the same time, suffering
from potentially heavy resource contention

Most commercial off-the-shelf systems only provide best effort service
for accessing the shared LLC

unpredictable caching behaviors
severe performance degradation
compromised QoS

Performance isolation needed for QoS-demanding systems



Page Coloring

Figure : Page Color Bits

Figure : Mapping Between Memory
Pages and Cache Space



Page Coloring



Page Coloring



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Dynamic Partitioning

When to re-partition LLC?

phase change; absent of a-priori knowledge

What is the right partition size?

How to recolor memory?

heavy overhead; inefficient use

How to work with over-committed systems?



Contribution

Our work tries to solve all problems above associated with
implementing dynamic page coloring in production systems

We proposes an efficient page recoloring framework in the Linux
kernel, called COLORIS (COLOR ISolation)



Page COLOR ISolation Architecture

Figure : COLORIS Architecture



Color-aware Page Allocator

Figure : Page Allocator



Page Color Manager

Static color assignment

Cache is divided into N sections of contiguous colors

Each cache section is statically assigned to a core

local core; remote core

Each process is assigned a section of page colors and runs on the
corresponding core

local color; remote color



Static Color Assignment



Dynamic Color Assignment

Dynamic color assignment:

Applications with low cache demand may give up page colors
Applications needing more cache may acquire page colors from other
cache sections



Dynamic Color Assignment

Dynamic color assignment:

Applications with low cache demand may give up page colors
Applications needing more cache may acquire page colors from other
cache sections



Cache Utilization Monitor

Figure : COLORIS Architecture



Cache Utilization Monitor

Measures cache usage of individual applications:

cache miss rate = misses
accesses

Triggers cache re-partitioning:

miss rate higher than HighThreshold
miss rate lower than LowThreshold



Cache Utilization Monitor

Measures cache usage of individual applications:

cache miss rate = misses
accesses

Triggers cache re-partitioning:

miss rate higher than HighThreshold
miss rate lower than LowThreshold



Cache Re-partitioning

Color Hotness

The number of processes sharing the color

Global Hotness: number of owners on all cores

Remote Hotness: number of owners on remote cores

if color A is in the cache section statically assigned to core X, all other
cores are called remote cores with respect to A



Cache Re-partitioning

Color Hotness

The number of processes sharing the color

Global Hotness: number of owners on all cores

Remote Hotness: number of owners on remote cores

if color A is in the cache section statically assigned to core X, all other
cores are called remote cores with respect to A



Cache Re-partitioning

Color Hotness

The number of processes sharing the color

Global Hotness: number of owners on all cores

Remote Hotness: number of owners on remote cores

if color A is in the cache section statically assigned to core X, all other
cores are called remote cores with respect to A



Cache Re-partitioning

procedure alloc colors(num)
new ← φ
while num > 0
if needRemote()
new + =
pick coldest remote()

else
new + =
pick coldest local()

num← num − 1
return new
end procedure

pick coldest remote:
pick a color in a remote
cache section, with the
smallest global hotness

pick coldest local:
pick a color in the local
cache section, with the
smallest remote hotness



Cache Re-partitioning

procedure alloc colors(num)
new ← φ
while num > 0
if needRemote()
new + =
pick coldest remote()

else
new + =
pick coldest local()

num← num − 1
return new
end procedure

pick coldest remote:
pick a color in a remote
cache section, with the
smallest global hotness

pick coldest local:
pick a color in the local
cache section, with the
smallest remote hotness



Cache Re-partitioning

procedure alloc colors(num)
new ← φ
while num > 0
if needRemote()
new + =
pick coldest remote()

else
new + =
pick coldest local()

num← num − 1
return new
end procedure

pick coldest remote:
pick a color in a remote
cache section, with the
smallest global hotness

pick coldest local:
pick a color in the local
cache section, with the
smallest remote hotness





Cache Re-partitioning

procedure pick victims(num)
victims ← φ
while num > 0
if hasRemote()
victims + =
pick hottest remote()

else
victims + =
pick hottest local()

num← num − 1
return victims
end procedure

pick hottest remote:
pick a color in a remote
cache section, with the
largest global hotness

pick hottest local:
pick a color in the local
cache section, with the
largest remote hotness



Cache Re-partitioning

procedure pick victims(num)
victims ← φ
while num > 0
if hasRemote()
victims + =
pick hottest remote()

else
victims + =
pick hottest local()

num← num − 1
return victims
end procedure

pick hottest remote:
pick a color in a remote
cache section, with the
largest global hotness

pick hottest local:
pick a color in the local
cache section, with the
largest remote hotness



Cache Re-partitioning

procedure pick victims(num)
victims ← φ
while num > 0
if hasRemote()
victims + =
pick hottest remote()

else
victims + =
pick hottest local()

num← num − 1
return victims
end procedure

pick hottest remote:
pick a color in a remote
cache section, with the
largest global hotness

pick hottest local:
pick a color in the local
cache section, with the
largest remote hotness





Recoloring Engine

Figure : COLORIS Architecture



Recoloring Engine

Shrinkage: lazy recoloring [Lin et al:08]

look for pages of specific colors that are going to be taken away and
clear the present bits of their page table entries

an unused bit is set to indicate recoloring needed

allocate new pages from assigned colors in a round-robin manner



Recoloring Engine

Expansion

Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

Redistribution:

clear the access bit of every page table entry
after a fixed time window, scan the page table again
apply lazy recoloring to entries with access bits set



Recoloring Engine

Expansion

Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

Redistribution:

clear the access bit of every page table entry
after a fixed time window, scan the page table again
apply lazy recoloring to entries with access bits set



Recoloring Engine

Expansion

Selective Moving:
Assuming n-way set associative cache, scan the whole page table and
recolor one in every n + 1 pages of the same color

Redistribution:

clear the access bit of every page table entry
after a fixed time window, scan the page table again
apply lazy recoloring to entries with access bits set



Evaluation

Experiment setup

Dell PowerEdge T410 machine with quad-core Intel Xeon E5506
2.13GHz processor, 8GB RAM, shared 4MB 16-way set-associative L3
cache

Benchmark: SPEC CPU2006



Evaluation

Dynamic partitioning for QoS

Four benchmarks run together for an hour

In C1 and C2, HighThreshold is 65% and 75% respectively



Evaluation

Dynamic partitioning for QoS

Four benchmarks run together for an hour
In C1 and C2, HighThreshold is 65% and 75% respectively



Evaluation

COLORIS in over-committed systems

Eight applications run together, with each two pinned to a core

C7: Dynamic; C8: Static; C9: None (Linux default)



Evaluation

COLORIS in over-committed systems

Eight applications run together, with each two pinned to a core
C7: Dynamic; C8: Static; C9: None (Linux default)



Conclusion

Designed a memory sub-system that provides static/dynamic cache
partitioning capabilities

Proposed a scheme for managing page colors, which works for
over-committed systems

Studied two page selection policies for effective page recoloring



The End

Thank you!


	Background
	Contribution
	COLORIS Design
	Evaluation
	Conclusion

