
: A Multithreaded Arduino System for Embedded Computing
Zhuoqun Cheng, Ye Li, Richard West

Problem Overview
The Mismatch between Arduino Hardware and Software:
• Emerging Arduino-compatible devices

– Faster processors and more complicated I/O architectures
– Increasingly complicated physical computing applications

• The standard Arduino API
– Missing support for multithreaded programs, or specifica-

tion of real-time requirements
– Restricted to the capabilities found on less powerful devices

Qduino
• An operating system and programming environment
• Adds support for real-time, multithreading extensions to the

standard Arduino API
• Runs on Quest RTOS for Intel Galileo + future Arduino-

compatible boards

Architecture
• Driver interfaces exposed to user level through system calls.
• GPIO system calls wrapped by user level APIs in libqduino.
• Sketches run as Quest user processes, linked with libqduino.

Figure 1: Qduino Architecture

Qduino Programming

• Allows Up to 32 loop() functions.

• Each loop() function is assigned to a Quest thread and sched-
uled by the Quest scheduler.

• Makes it easier to write sketches with parallel tasks.

• Experiments show up to 28% performance increase over the
single-loop version.

New APIs
Function Signatures Category
loop(loop id, C, T) Structure
interruptsVcpu(C, T), Interrupt
attachInterruptVcpu(pin, ISR, mode, C, T)

spinlockInit(lock),

SpinlockspinlockLock(lock),

spinlockUnlock(lock)

channelWrite(channel, item), Four-slot
item channelRead(channel)

ringbufInit(buffer, size),

Ring bufferringbufWrite(buffer, item),

ringbufRead(buffer, item)

Sample Sketch - Blinking LEDs
int led1 = 13, led2 = 9; // connect LEDs to pin 13 and 9

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

void loop (1 ,40 ,100) { // loop 1 with VCPU (40 ,100) blinks led1

digitalWrite(led1 , HIGH); // turn the LED on

delay (1000); // wait for a second

digitalWrite(led1 , LOW); // turn the LED off

delay (1000); // wait for a second

}

void loop (2 ,20 ,100) { // loop 2 with VCPU (20 ,100) fades led2

analogWrite(led2 , brightness); // set the brightness of pin 9

brightness = brightness + fadeAmount; // change the brightness

// reverse the direction of the fading at the ends of the fade

if (brightness == 0 || brightness == 255) {

fadeAmount = -fadeAmount ;

}

delay (30); // wait for 30 milliseconds to see the dimming effect

}

void setup() {

pinMode(led1 , OUTPUT);

pinMode(led2 , OUTPUT);

}

Temporal Isolation
• The execution of one loop is guaranteed not to interfere with

the timely execution of others.
• Interrupts are handled in threads so that they do not unduly

interfere with the execution of loops.

Figure 2: Quest VCPU Hierarchy

Predictable Events
• User level interrupt handling threads bind to Main VCPUs
• The Main VCPUs are invoked by wakeup events generated by

the bottom half.
• Kernel level threaded bottom half binds to an I/O VCPU
• The I/O VCPU are invoked by hardware interrupt handler
• The above process is bounded by its worst-case delay (WCD):

∆WCD = (Th − Ch) + ∆bh = (Th − Ch)+

(Tio − Cio) +
⌈δbh

Cio
− 1

⌉
·Tio + δbh mod Cio

• Notation:
– (Ch, Th) - parameters of the Main VCPU associated with the

user level interrupt handler
– (Cio, Tio) - parameters of the I/O VCPU associated with the

bottom half
– ∆bh and δbh - the wall-clock time and the required CPU time

to execute the bottom half

Qduino Website: www.cs.bu.edu/fac/richwest/Qduino.php

Advisor: Richard West

