
The Quest-V Separation Kernel
for Mixed Criticality Systems

Richard West

richwest@cs.bu.edu

Ye Li, Eric Missimer

{liye, missimer}@cs.bu.edu

Computer Science

mailto:richwest@cs.bu.edu

2

Background

• Multi- / many-core processors increasingly
popular in embedded systems

• Many now feature hardware virtualization
– ARM Cortex A15, Intel VT-x, AMD-V

• H/W Virtualization provides opportunity to
partition resources amongst guest VMs

H/W Virtualization + Resource Partitioning =
Platform for Mixed Criticality Systems

3

Problem

• Traditional Virtual Machine approaches too
expensive

– Require traps to VMM (a.k.a. hypervisor)
to mux & manage machine resources for
multiple guests

– e.g., ~1500 clock cycles VM-Enter/Exit
on Xeon E5506

4

Contributions

• Quest-V Separation Kernel
– Uses H/W virtualization to partition

resources amongst services of different
criticalities

– Each partition, or sandbox, manages its
own CPU cores, memory area, and I/O
devices w/o hypervisor intervention

– Hypervisor typically only needed for
bootstrapping system + managing comms
channels b/w sandboxes

5

Architecture Overview

6

Memory Partitioning

• Guest kernel page tables for GVA-to-GPA
translation

• EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation

– EPTs modifiable only by monitors
–

– Intel VT-x: 1GB address spaces require
12KB EPTs w/ 2MB superpaging

7

Quest-V Linux Memory Layout

8

Quest-V Memory Partitioning

9

I/O Partitioning

• Device interrupts directed to each sandbox
– Use I/O APIC redirection tables
– Eliminates monitor from control path

• EPTs prevent unauthorized updates to I/O APIC
memory area by guest kernels

• Port-addressed devices use in/out instructions

• VMCS configured to cause monitor trap for specific port
addresses

• Monitor maintains device "blacklist" for each sandbox
– DeviceID + VendorID of restricted PCI devices

10

Quest-V I/O Partitioning

11

CPU Partitioning

• Scheduling local to each sandbox
– partitioned rather than global
– avoids monitor intervention

• Uses VCPU approach for Quest native
kernels (real-time)

12

Cache Partitioning

• Shared caches controlled using color-aware
memory allocator

• Cache occupancy prediction based on h/w
performance counters

– E' = (1-E/C) * m
l
 – E/C * m

o

13

Linux Front End

• For low criticality legacy services

• Based on Puppy Linux 3.8.0
• Runs entirely out of RAM including root filesystem
• Low-cost paravirtualization

– less than 100 lines
– Restrict observable memory
– Adjust DMA offsets

• Grant access to VGA framebuffer + GPU
• Quest native SBs tunnel terminal I/O to Linux via

shared memory using special drivers

14

Quest-V Linux Screenshot

15

Quest-V Performance Overhead

• Measured time to play back 1080P MPEG2
video from the x264 HD video benchmark

• Mini-ITX Intel Core i5-2500K 4-core, HD3000
graphics, 4GB RAM

mplayer Benchmark

16

Conclusions

• Quest-V separation kernel built from scratch
– Distributed system on a chip
– Uses (optional) h/w virtualization to partition

resources into sandboxes
– Protected comms channels b/w sandboxes

• Sandboxes can have different criticalities
– Linux front-end for less critical legacy services

• Sandboxes responsible for local resource management
– avoids monitor involvement

 See: www.questos.org for more details

http://www.questos.org/

17

Future Work

• Online fault detection and recovery
• Technologies for secure monitors

– e.g., Intel TXT

18

VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

19

● VCPUs for budgeted real-time execution of
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on
assigned cores

● Avoid VM-Exits to Monitor – eliminate
cache/TLB flushes

Predictability

20

Memory Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM

	Quest-V – a Virtualized Multikernel
	Goals
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

