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Background

• Multi- / many-core processors increasingly 
popular in embedded systems

• Many now feature hardware virtualization
– ARM Cortex A15, Intel VT-x, AMD-V

• H/W Virtualization provides opportunity to 
partition resources amongst guest VMs

H/W Virtualization + Resource Partitioning = 
Platform for Mixed Criticality Systems



3

Problem

• Traditional Virtual Machine approaches too 
expensive

– Require traps to VMM (a.k.a. hypervisor) 
to mux & manage machine resources for 
multiple guests

– e.g., ~1500 clock cycles VM-Enter/Exit 
on  Xeon E5506
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Contributions

• Quest-V Separation Kernel
– Uses H/W virtualization to partition 

resources amongst services of different 
criticalities

– Each partition, or sandbox, manages its 
own CPU cores, memory area, and I/O 
devices w/o hypervisor intervention

– Hypervisor typically only needed for 
bootstrapping system + managing comms 
channels b/w sandboxes
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Architecture Overview
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Memory Partitioning

• Guest kernel page tables for GVA-to-GPA 
translation

• EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation

– EPTs modifiable only by monitors
–

– Intel VT-x: 1GB address spaces require 
12KB EPTs w/ 2MB superpaging
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Quest-V Linux Memory Layout
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Quest-V Memory Partitioning
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I/O Partitioning

• Device interrupts directed to each sandbox 
– Use I/O APIC redirection tables
– Eliminates monitor from control path 

• EPTs prevent unauthorized updates to I/O APIC 
memory area by guest kernels

• Port-addressed devices use in/out instructions

• VMCS configured to cause monitor trap for specific port 
addresses

• Monitor maintains device "blacklist" for each sandbox
– DeviceID + VendorID of restricted PCI devices
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Quest-V I/O Partitioning
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CPU Partitioning

• Scheduling local to each sandbox
– partitioned rather than global
– avoids monitor intervention

• Uses VCPU approach for Quest native 
kernels (real-time)



12

Cache Partitioning

• Shared caches controlled using color-aware 
memory allocator

• Cache occupancy prediction based on h/w 
performance counters

– E' = (1-E/C) * m
l
 – E/C * m

o
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Linux Front End

• For low criticality legacy services

• Based on Puppy Linux 3.8.0
• Runs entirely out of RAM including root filesystem
• Low-cost paravirtualization

– less than 100 lines
– Restrict observable memory
– Adjust DMA offsets

• Grant access to VGA framebuffer + GPU
• Quest native SBs tunnel terminal I/O to Linux via 

shared memory using special drivers
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Quest-V Linux Screenshot
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Quest-V Performance Overhead

• Measured time to play back 1080P MPEG2 
video from the x264 HD video benchmark

• Mini-ITX Intel Core i5-2500K 4-core, HD3000 
graphics, 4GB RAM 

mplayer Benchmark
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Conclusions

• Quest-V separation kernel built from scratch
– Distributed system on a chip
–  Uses (optional) h/w virtualization to partition 

resources into sandboxes
– Protected comms channels b/w sandboxes

• Sandboxes can have different criticalities
– Linux front-end for less critical legacy services

• Sandboxes responsible for local resource management
– avoids monitor involvement

                

              See: www.questos.org for more details

http://www.questos.org/
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Future Work

• Online fault detection and recovery
• Technologies for secure monitors 

– e.g., Intel TXT
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VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space



19

● VCPUs for budgeted real-time execution of 
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on 
assigned cores

● Avoid VM-Exits to Monitor – eliminate 
cache/TLB flushes

Predictability
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Memory Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM
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