CS480/CS680 Problem Set 2

Due in class Tuesday, November 21 at the beginning of lecture.

Please prepare the answers to these questions, neatly written or typed, on separate paper.

- 1. (10 points) Prove the invariance property of NURBS under perspective viewing transforms. In other words, prove that applying a transform \mathbf{M}_{per} to the control points \mathbf{p}_k yields the same result as applying \mathbf{M}_{per} directly to the NURBS curve function $\mathbf{P}(u)$.
- 2. (5 points) Are NURBS also invariant to affine transformations? Justify your answer.
- 3. We are given the following boundary conditions for a cubic spline section:

$$\mathbf{P}(0) = \mathbf{p}_k$$

$$\mathbf{P}(1) = \mathbf{p}_{k+1}$$

$$\mathbf{P}''(0) = \mathbf{p}_{k+1} + \mathbf{p}_{k-1} - 2\mathbf{p}_k$$

$$\mathbf{P}''(1) = \mathbf{p}_k + \mathbf{p}_{k+1} - 2\mathbf{p}_{k+2}$$

- (a) (5 points) Do adjacent segments satisfy G1 continuity? Give a mathematical justification.
- (b) (5 points) Given the boundary conditions as specified above, derive \mathbf{M}_{geom} for this curve.
- (c) (10 points) Given the boundary conditions as specified above, derive the 4×4 matrix \mathbf{M}_{spline} .
- (d) (5 points) Given your solution for \mathbf{M}_{spline} above, write out the blending functions for this curve.
- (e) (5 points) Give the equation $\mathbf{P}'(u)$ for the tangent to this curve in terms of \mathbf{M}_{spline} and \mathbf{M}_{geom} .
- (f) (10 points) Do adjacent segments satisfy C2 continuity? Give a mathematical justification.
- (g) (15 points) Say that we use this cubic spline formulation to define a 2D spline segment with control points \mathbf{p}_{k-1} , \mathbf{p}_k , \mathbf{p}_{k+1} , \mathbf{p}_{k+2} . We want to generate successive values along the curve at a fixed step size δ . Give the specific forward difference equations and initial values for this.
- 4. (30 points) We are given a 3D revolved surface (torus). The cross-section for the revolved surface is defined as a closed, quadratic periodic B-spline curve in the x y plane. The 3D surface is produced by revolving the cross-section around the y-axis.
 - (a) Give the equation for the closed, quadratic periodic B-spline curve in the x y plane $\mathbf{P}(u)$.
 - (b) Given $\mathbf{P}(u)$, derive the parametric equation for a point on the revolved surface $\mathbf{S}(u, \theta)$.
 - (c) Given $\mathbf{P}(u)$, derive the parametric equation for the <u>unit</u> normal to the revolved surface $\mathbf{n}(u, \theta)$.
- 5. (CS680 only, 20 points) For the revolved surface in Problem 4, give the steps in the algorithm and equation(s) that can be used to determine if a point is *inside*, *on*, or *outside* the revolved surface via the even-odd parity rule.