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Particle Collision and Contact

1 Coallisionswith Springs

Suppose we wanted to implement a particle smulator with a“floor”: asolid horizontal plane which
particles could bounce off of, or lieon. Assuming all the particles started out above thefloor, they’d
all have to stay there for the rest of the simulation. How could we go about implementing this?

Clearly, there are two problems. We need to detect when particles are near the floor, and when
they are, we need to do something to stop them from passing through the floor. One obvious thing
todoistoimposeavertical spring force of —ky(t) whenever the y-coordinate y(t) of the particleis
less than zero. (We'll suppose the floor issimply theliney = 0.) If we make k large enough, than
we can prevent the particle from moving too far beneath the floor. The problemis, that by making
k large, we set ourselves up for stiff ODE’s, as mentioned in earlier notes. Also, no matter what
value of k you pick, | can always choose a heavy enough particle (or a particle moving downwards
with a high enough velocity) so that the upwards —ky(t) spring-force isn’t strong enough to stop
the particle from moving substantially below theliney = 0.

Of course, we could modify the spring force to completely stop the particle from moving be-
low the floor, no matter what we throw at it. Suppose the spring force is . ﬁt)zeﬁ}t). Then as y(t)
decreases towards zero, the spring force becomes strong quickly; in fact, it is impossible for the
particle to ever attain y(t) = 0 given this spring force. Note that in this case we have “action at a
distance”: the spring force acts even before y(t) becomes negative. By making k large though, we
can make the force fall off for positive values of y(t) quickly. Of course, thisis a pretty stiff force
function; —ky(t) isawalk in the park in comparison...

2 Impulses

For both the linear springs and the exponentia springs, as we increase k we cause the particle’'s
velocity to change more quickly. If we view our floor as an impenetrable obstacle, we should just
take this process to the limit, and let the particle undergo an instantaneous change in velocity.

As an example, suppose we have a particle of mass m and velocity vy (a vector). Lets apply a
force F to the particle for a period of time At. We'll assume that F points directly opposite to vy,
and that no other forces act on the particle. The particle’svelocity v, time At later is
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Suppose we want the force F to completely cancel theinitial velocity vg after time At. Setting



v, to zero and solving, we get
—Mug
At

(again under the assumption that F is directly opposite vg). Clearly, to stop the particle instanta-

neously (that is, with At = 0) requiresan infiniteforce. We can stop the particle arbitrarily quickly,

by making F suitably strong, but we can't stop the particle instantaneously with aforce F.
Instead, we'll define a new quantity called an impulse. Lets imagine applying a force F over

shorter and shorter timeintervals At. As At shrinks, F grows. Supposethat F growswithout bound

as At goesto zero, such that limu_.o F = oo in such away that

lim FAt
At—0

converges to some finite value J. The quantity J defined in such away is called animpulse. Like
force, impulseisavector quantity. Impulse hasthe dimensions of force timestime, or equivalently,
mass times velocity. What isimpulse good for?

Imagine that lim;_.o FAt = J = —muy; that is, no matter what At we choose, we pick F so
that FAt = —mw,. Then as At goes to zero, we have

F=

= lim AtF mdt + vg = lim FM+ =J/m+4+1=0
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In the limit then, we have made v, zero instantaneously. Theideaof animpulseisthat when applied
to a particle, it produces an instantaneous change of velocity. Unlike force, an impulseis applied
only for a zero-length period of time.

If we define the momentum P of aparticlewith massmand velocity v as P = mw, then applying
an impulse J (of arbitrary direction) changes the momentumto P + J, and the velocity from P/ m
to (P+ J)/m. Note that any other finite forces (e.g. gravity, wind) are ignored when animpulseis
applied, because the effects of these finite forces on the velocity go to zero as At goesto zero. By
defining impulses, we can abstractly consider the idea of an instantaneous change of velocity, by
ignoring the continuous change of velocity that occurs over an arbitrarily small time interval At.

3 Collisonswith Planes

Lets apply the concept of an impulse to let our particles bounce off an arbitrary plane. First, we
need to worry about detecting collisions between a particle and a plane. Consider a particle with
position x(t) in space, and a plane with a unit normal A. The normal fi is chosen so that fA points
towards the legal side of the plane. (For the case of the floor, fi points straight up.) Let gp be any
point on the plane. Then the plane is defined as the set of points p such that

A-(p—0o)=0.

Our particleisonthelegal side of theplaneaslongash - (X(t) — go) > 0. Whenf - (x(t) — qo) =0,

the particle has collided with the plane (figure 1). Determining exactly when the particle has col-
lided isin general ahard problem. Our approach will be asfollows: whenever we find the particle
isontheillegal side of the plane, we'll displaceit inthe A direction so itsexactly on the plane. Then
we'll apply animpulsetoit to kick it away from thewall. The correct way to do collision detection
isexplained in section 3.3.
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Figure 1: The vector p; — qg isopposite i, so (p1 — (o) « N < 0and p, ison theillegal side of the
plane. Similarly, (p> — do) - h > 0.

3.1 Collison Response

Our particle isin contact with the plane. What impulse J should we apply to the particle to kick
it off the wall? First, some notation. Lets let the initial velocity, before application of J, be v~.
Lets let the velocity after application of J be v*. Define the normal speed vy before the collision
(figure 1) by

vy="N-v
and the normal speed vy, after the collision by

vi=h.vt.

z+

Note that v~ and v* are vectors while vy and v{; are scalars.

To determine J, we use an empirical law for collisions. The law states that a collision can be
described in terms of a coefficient of restitution denoted by €, where 0 < € < 1. The law relatesthe
initial normal speed to the final normal speed by

v = —evy. 1)
If € = 1, thenthe normal speed iscompletely reversed, and we havein effect a“ superball.” 1fe =0,
the collisionis completely “dead,” in that the particle won't bounce away from the wall.

We can use this law to determine J as follows. Assume that there is no friction between the
particle and the wall. Then the direction of J is parallel to f, and should be in the same direction.



That is, we can write J = jh for somescalar j. Our intuitionisthat j should be a positive number.
To compute j, we express vy in terms of j and use equation (1). We have
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where misthe particle’smass. Then
vi="hA.v"
. _ .. N
=N-.v 4+ JN.—
m
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since i - A= 1. Using equation (1), we get
vﬁ:vﬁ,—i-l:—evg,
m

which we can solve to obtain

j=—Q+e)muy.

Note that since we presumably started with vy, being negative (since the particle had velocity
partly opposite A) we get | > 0 as expected.

If wewant to add africtional component, we can use a (simplified) version of Coulomb’sfriction
law. For any impulse of strength j in the f direction, there will also be an impulse tangent to the
plane of strength 1], where 1 isthe coefficient of friction. Reasonable valuesfor © would beinthe
range zero to perhaps % . Thedirection of thistangential impulseisdirectly opposite the component
of v~ inthe plane. The component of v~ tangent to the planeis

v _UNn.

Thus, to add friction, let the total impulse be

v —uh

n— —_— .
J MJ|v——an|

(Don't try thisif v~ has no tangential component.)

3.2 Particle/Plane Contact

Suppose that we set € to zero, so that after the collision, vy, was zero. Then the particle would be

resting onthe plane. Inthiscase, wewill haveto apply aforceto stop the particle from being pushed
through the plane.

Suppose that the net force acting on the particle is Fey;. The force Fex would include gravity
forces, drag from velocity, and any inter-particleforces such as springs. We need to stop the particle
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from accelerating opposite A. To do this, we add a contact force F. that acts on the particle. Again,
lets start with the frictionless case, where F. acts in the f direction. So we can write |, = f:h for
some scalar f..

To constrain the particle’'s acceleration, we can write

A %(t) =0 )

which prevents the particle from accelerating in the A direction. The total force on the particle is
Fext + FC! SO

X(t) — FeXtr:]_ I:C — Fext + fCﬁ

m
Substituting into equation (2) yields

A Fext + fcﬁ_ A - Fext + fc_
m m B

0

so that
fc =—f. I:ext- (3)

Now, if Fey isopposite n, then f; ispositive. That is, we require an outwards force to prevent
the particle from being pushed opposite . However, if F was aong f, lifting the particle off the
plane in the positive fi direction, f. would have to be negative to stop the particle from leaving the
surface. If youwant your planesto be sticky, you solve for f. using equation (3), and use whatever
answer you get. But if you want the particle to release from the surface, you will want to set f; to
zero if equation (3) yields a negative value of f..

Finally, if you want to add friction, its about the same as before (using a ssmplified model of
frictionthat is). If the particleis diding along the plane, you add in atangential forcethat isdirectly
opposite to the vel ocity, with amagnitude of . f.. (However, if the particle has no dliding velocity,
things are abit trickier. In this case, what you want to do isto compute a tangential force such that
the component of X(t) in the planeis zero. The strength of that force should not exceed i f.; if it
does, you should chop the magnitude down to be w f.. Clear?)

3.3 Collison Detection

In general, computing exactly when a particle collides with a plane is difficult. Here we' Il explain
the right way to implement collision detection, though the displacement method will do for this
course.

Again, imagine aparticle dropping towards the floor. Suppose we consider the particle at times
to, to + At, to + 2At etc. and suppose the time of collision, t;, a which the particle actually strikes
the floor, lies between to and ty + At. Ideally, we'd like to run our simulator up to timet., change
the velocity of the particle (to make it bounce off the floor), and then restart the smulator. If you're
using an ODE method other than Euler’s method, thisis essential because the ODE solver doesn’'t
realize that the motion equations are discontinuous at t.. (Yes, discontinuous—the particle’s posi-
tion is continuous over time, but its velocity is not at t¢, and the velocity isavariable of the ODE.)
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Figure 2: At time ty + At, the particle is found to lie below the floor. Thus, the actual time of
collision t; lies between the time of the last known legal position, ty, and to + At.

So in terms of ODE solution, we view this as solving up to time t., and then restarting at time t;
with anew initial velocity.

The big problem of courseisfinding t.. Attimety, we find that the particle lies above the floor,
but at the next time step, to + At, we find the particle is beneath the floor, which means that inter-
penetration has occurred.

If we're going to stop and restart the simulator at time t;, we'll need to compute t.. All we
know so far isthat t; lies between ty and ty + At. In general, solving for t. exactly is difficult, so
we solvefor t. numerically, to within a certain tolerance. A simple way of determiningt. isto use
anumerical method called bisection. If at time ty + At we detect inter-penetration, we inform the
ODE solver that we wish to restart back at timety, and simulate forward to time t, + At/2. If the
simulator reaches ty + At/2 without encountering inter-penetration, we know the collision timet.
liesbetweenty+ At/2andto+ At. Otherwise, t. islessthanty + At/2, and wetry to simulatefrom
to to to + At/4. Eventually, the time of collision t. is computed to within some suitable numerical
tolerance. The accuracy with which t. is found depends on the collision detection routines. The
collision detection routines have some parameter €. We decide that our computation of t; is*“good
enough” when the particle inter-penetrates the floor by no more thane, and isless than ¢ above the
floor. At this point we declare that the particle isin contact with the floor (figure 3).

How to actually implement all of this depends on how you interact with your ODE routines.
One might use exception handling code to signal the ODE of various events (collisions, interpene-
tration), or pass some sort of messages to the ODE solver.



t. found (within tolerance)
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Figure 3: When the particle is found to be within some tolerance e of contacting the floor, then t.
is considered to have been computed to within sufficient accuracy.



