
Physically Based Modeling
CS 15-863 Notes Spring 1997

Particle Collision and Contact

1 Collisions with Springs

Suppose we wanted to implement a particle simulator with a “floor”: a solid horizontal plane which
particles could bounce off of, or lie on. Assuming all the particles started out above the floor, they’d
all have to stay there for the rest of the simulation. How could we go about implementing this?

Clearly, there are two problems. We need to detect when particles are near the floor, and when
they are, we need to do something to stop them from passing through the floor. One obvious thing
to do is to impose a vertical spring force of−ky(t)whenever the y-coordinate y(t) of the particle is
less than zero. (We’ll suppose the floor is simply the line y = 0.) If we make k large enough, than
we can prevent the particle from moving too far beneath the floor. The problem is, that by making
k large, we set ourselves up for stiff ODE’s, as mentioned in earlier notes. Also, no matter what
value of k you pick, I can always choose a heavy enough particle (or a particle moving downwards
with a high enough velocity) so that the upwards −ky(t) spring-force isn’t strong enough to stop
the particle from moving substantially below the line y = 0.

Of course, we could modify the spring force to completely stop the particle from moving be-
low the floor, no matter what we throw at it. Suppose the spring force is 1

ky(t)2 e
1

ky(t) . Then as y(t)
decreases towards zero, the spring force becomes strong quickly; in fact, it is impossible for the
particle to ever attain y(t) = 0 given this spring force. Note that in this case we have “action at a
distance”: the spring force acts even before y(t) becomes negative. By making k large though, we
can make the force fall off for positive values of y(t) quickly. Of course, this is a pretty stiff force
function; −ky(t) is a walk in the park in comparison...

2 Impulses

For both the linear springs and the exponential springs, as we increase k we cause the particle’s
velocity to change more quickly. If we view our floor as an impenetrable obstacle, we should just
take this process to the limit, and let the particle undergo an instantaneous change in velocity.

As an example, suppose we have a particle of mass m and velocity v0 (a vector). Lets apply a
force F to the particle for a period of time1t. We’ll assume that F points directly opposite to v0,
and that no other forces act on the particle. The particle’s velocity v1 time 1t later is

v1 =
∫ 1t

0
F/m dt+ v0 = F1t

m
+ v0

Suppose we want the force F to completely cancel the initial velocity v0 after time1t. Setting

1

v1 to zero and solving, we get

F = −mv0

1t
(again under the assumption that F is directly opposite v0). Clearly, to stop the particle instanta-
neously (that is, with1t = 0) requires an infinite force. We can stop the particle arbitrarily quickly,
by making F suitably strong, but we can’t stop the particle instantaneously with a force F.

Instead, we’ll define a new quantity called an impulse. Lets imagine applying a force F over
shorter and shorter time intervals1t. As1t shrinks, F grows. Suppose that F grows without bound
as 1t goes to zero, such that lim1t→0 F =∞ in such a way that

lim
1t→0

F1t

converges to some finite value J. The quantity J defined in such a way is called an impulse. Like
force, impulse is a vector quantity. Impulse has the dimensions of force times time, or equivalently,
mass times velocity. What is impulse good for?

Imagine that lim1t→0 F1t = J = −mv0; that is, no matter what 1t we choose, we pick F so
that F1t = −mv0. Then as 1t goes to zero, we have

v1 = lim
1t→0

∫ 1t

0
F/m dt+ v0 = lim

1t→0

F1t
m
+ v0 = J/m+ v0 = 0.

In the limit then, we have made v1 zero instantaneously. The idea of an impulse is that when applied
to a particle, it produces an instantaneous change of velocity. Unlike force, an impulse is applied
only for a zero-length period of time.

If we define the momentum P of a particle with mass m and velocity v as P= mv, then applying
an impulse J (of arbitrary direction) changes the momentum to P+ J, and the velocity from P/m
to (P+ J)/m. Note that any other finite forces (e.g. gravity, wind) are ignored when an impulse is
applied, because the effects of these finite forces on the velocity go to zero as1t goes to zero. By
defining impulses, we can abstractly consider the idea of an instantaneous change of velocity, by
ignoring the continuous change of velocity that occurs over an arbitrarily small time interval1t.

3 Collisions with Planes

Lets apply the concept of an impulse to let our particles bounce off an arbitrary plane. First, we
need to worry about detecting collisions between a particle and a plane. Consider a particle with
position x(t) in space, and a plane with a unit normal n̂. The normal n̂ is chosen so that n̂ points
towards the legal side of the plane. (For the case of the floor, n̂ points straight up.) Let q0 be any
point on the plane. Then the plane is defined as the set of points p such that

n̂ · (p− q0) = 0.

Our particle is on the legal side of the plane as long as n̂· (x(t)− q0) > 0. When n̂· (x(t)− q0)= 0,
the particle has collided with the plane (figure 1). Determining exactly when the particle has col-
lided is in general a hard problem. Our approach will be as follows: whenever we find the particle
is on the illegal side of the plane, we’ll displace it in the n̂ direction so its exactly on the plane. Then
we’ll apply an impulse to it to kick it away from the wall. The correct way to do collision detection
is explained in section 3.3.

2

(illegal side)

v−

ˆ n

vN
−() ˆ n

q0

p1

p2

x(t)

Figure 1: The vector p1− q0 is opposite n̂, so (p1 − q0) · n̂ < 0 and p1 is on the illegal side of the
plane. Similarly, (p2 − q0) · n̂ > 0.

3.1 Collision Response

Our particle is in contact with the plane. What impulse J should we apply to the particle to kick
it off the wall? First, some notation. Lets let the initial velocity, before application of J, be v−.
Lets let the velocity after application of J be v+. Define the normal speed v−N before the collision
(figure 1) by

v−N = n̂ · v−
and the normal speed v−N after the collision by

v+N = n̂ · v+.
Note that v− and v+ are vectors while v−N and v+N are scalars.

To determine J, we use an empirical law for collisions. The law states that a collision can be
described in terms of a coefficient of restitution denoted by ε, where 0≤ ε ≤ 1. The law relates the
initial normal speed to the final normal speed by

v+N = −εv−N. (1)

If ε= 1, then the normal speed is completely reversed, and we have in effect a “superball.” Ifε= 0,
the collision is completely “dead,” in that the particle won’t bounce away from the wall.

We can use this law to determine J as follows. Assume that there is no friction between the
particle and the wall. Then the direction of J is parallel to n̂, and should be in the same direction.

3

That is, we can write J = jn̂ for some scalar j. Our intuition is that j should be a positive number.
To compute j, we express v+N in terms of j and use equation (1). We have

v+ = v− + J
m
= v− + jn̂

m

where m is the particle’s mass. Then

v+N = n̂ · v+
= n̂ · v− + jn̂ · n̂

m

= v−N +
j

m

since n̂ · n̂ = 1. Using equation (1), we get

v+N = v−N +
j

m
= −εv−N

which we can solve to obtain

j = −(1+ ε)mv−N.

Note that since we presumably started with v−N being negative (since the particle had velocity
partly opposite n̂) we get j > 0 as expected.

If we want to add a frictional component, we can use a (simplified) version of Coulomb’s friction
law. For any impulse of strength j in the n̂ direction, there will also be an impulse tangent to the
plane of strengthµ j, where µ is the coefficient of friction. Reasonable values forµ would be in the
range zero to perhaps 1

3 . The direction of this tangential impulse is directly opposite the component
of v− in the plane. The component of v− tangent to the plane is

v− − v−Nn̂.

Thus, to add friction, let the total impulse be

jn̂−µ j
v− − v−Nn̂
|v− − v−Nn̂| .

(Don’t try this if v− has no tangential component.)

3.2 Particle/Plane Contact

Suppose that we set ε to zero, so that after the collision, v+N was zero. Then the particle would be
resting on the plane. In this case, we will have to apply a force to stop the particle from being pushed
through the plane.

Suppose that the net force acting on the particle is Fext. The force Fext would include gravity
forces, drag from velocity, and any inter-particle forces such as springs. We need to stop the particle

4

from accelerating opposite n̂. To do this, we add a contact force Fc that acts on the particle. Again,
lets start with the frictionless case, where Fc acts in the n̂ direction. So we can write Fc = fcn̂ for
some scalar fc.

To constrain the particle’s acceleration, we can write

n̂ · ẍ(t) = 0 (2)

which prevents the particle from accelerating in the n̂ direction. The total force on the particle is
Fext+ Fc, so

ẍ(t) = Fext+ Fc

m
= Fext+ fcn̂

m
.

Substituting into equation (2) yields

n̂ · Fext+ fcn̂
m

= n̂ · Fext+ fc

m
= 0

so that

fc = −n̂ · Fext. (3)

Now, if Fext is opposite n̂, then fc is positive. That is, we require an outwards force to prevent
the particle from being pushed opposite n̂. However, if Fext was along n̂, lifting the particle off the
plane in the positive n̂ direction, fc would have to be negative to stop the particle from leaving the
surface. If you want your planes to be sticky, you solve for fc using equation (3), and use whatever
answer you get. But if you want the particle to release from the surface, you will want to set fc to
zero if equation (3) yields a negative value of fc.

Finally, if you want to add friction, its about the same as before (using a simplified model of
friction that is). If the particle is sliding along the plane, you add in a tangential force that is directly
opposite to the velocity, with a magnitude of µ fc. (However, if the particle has no sliding velocity,
things are a bit trickier. In this case, what you want to do is to compute a tangential force such that
the component of ẍ(t) in the plane is zero. The strength of that force should not exceed µ fc; if it
does, you should chop the magnitude down to be µ fc. Clear?)

3.3 Collision Detection

In general, computing exactly when a particle collides with a plane is difficult. Here we’ll explain
the right way to implement collision detection, though the displacement method will do for this
course.

Again, imagine a particle dropping towards the floor. Suppose we consider the particle at times
t0, t0+1t, t0+ 21t etc. and suppose the time of collision, tc, at which the particle actually strikes
the floor, lies between t0 and t0 +1t. Ideally, we’d like to run our simulator up to time tc, change
the velocity of the particle (to make it bounce off the floor), and then restart the simulator. If you’re
using an ODE method other than Euler’s method, this is essential because the ODE solver doesn’t
realize that the motion equations are discontinuous at tc. (Yes, discontinuous—the particle’s posi-
tion is continuous over time, but its velocity is not at tc, and the velocity is a variable of the ODE.)

5

(interpenetration detected)

tc

t0

t0 + ∆t

Figure 2: At time t0 + 1t, the particle is found to lie below the floor. Thus, the actual time of
collision tc lies between the time of the last known legal position, t0, and t0+1t.

So in terms of ODE solution, we view this as solving up to time tc, and then restarting at time tc

with a new initial velocity.
The big problem of course is finding tc. At time t0, we find that the particle lies above the floor,

but at the next time step, t0 +1t, we find the particle is beneath the floor, which means that inter-
penetration has occurred.

If we’re going to stop and restart the simulator at time tc, we’ll need to compute tc. All we
know so far is that tc lies between t0 and t0 +1t. In general, solving for tc exactly is difficult, so
we solve for tc numerically, to within a certain tolerance. A simple way of determining tc is to use
a numerical method called bisection. If at time t0 +1t we detect inter-penetration, we inform the
ODE solver that we wish to restart back at time t0, and simulate forward to time t0 +1t/2. If the
simulator reaches t0 +1t/2 without encountering inter-penetration, we know the collision time tc

lies between t0+1t/2 and t0+1t. Otherwise, tc is less than t0+1t/2, and we try to simulate from
t0 to t0 +1t/4. Eventually, the time of collision tc is computed to within some suitable numerical
tolerance. The accuracy with which tc is found depends on the collision detection routines. The
collision detection routines have some parameter ε. We decide that our computation of tc is “good
enough” when the particle inter-penetrates the floor by no more than ε, and is less than ε above the
floor. At this point we declare that the particle is in contact with the floor (figure 3).

How to actually implement all of this depends on how you interact with your ODE routines.
One might use exception handling code to signal the ODE of various events (collisions, interpene-
tration), or pass some sort of messages to the ODE solver.

6

(interpenetration detected)

ε

ε

t0

t0 + ∆ t

tc found (within tolerance)

Figure 3: When the particle is found to be within some tolerance ε of contacting the floor, then tc
is considered to have been computed to within sufficient accuracy.

7

