Synchronized Flashing in Fireflies

Biology

- Fireflies are beetles
 - > 2000 species world wide
 - Males rove around looking for sedentary female
 - Mating is the goal
 - Elaborate flashing used to guide courtship
 - Morse code
 - In groups, flashing becomes highly synchronized
 - Only by males though ...

Synchronization

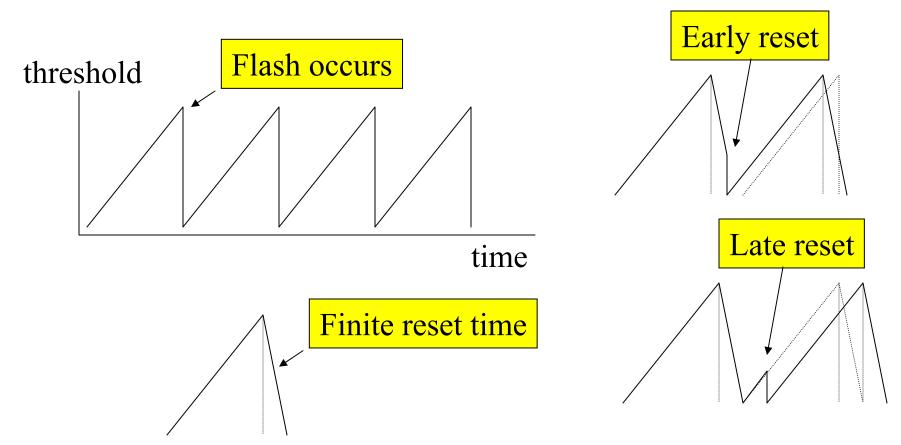
- No apparent leader or conductor
 Firefly swarms can change dynamically
- No global communication
- Synchronization is emergent
- Takes time to achieve complete synchronization
- 1000's of insects can be involved
- In 1930's effect was denied to exist
 - Could not explain it, so it didn't occur!
 - Suggested that it had reproductive benefit

Explanations

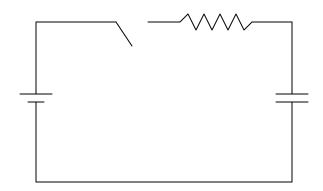
- Craig (1917)
 - "It's accidental"
 - "It's the observer blinking his eyes!"
- Wheeler (1917)
 - "A fine sense of [individual] rhythm"
- 1865
 - "Puffs of wind cause synchronous flashing"
- Repetitive external stimuli could not explain phenomenon

Explanations

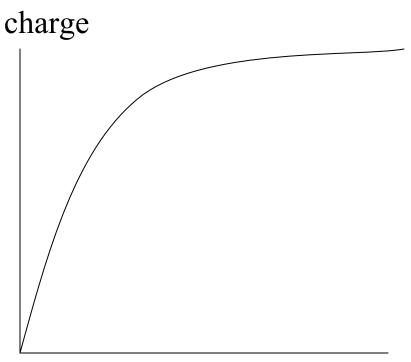
- Blair (1915)
 - Each firefly requires period of recharging after flash
 - Every other firefly stimulated to flash when they see a flash
- Critique
 - Fireflies can't see very far
 - What happens when the leader leaves?
 - Flash propagation is 55-80ms, flash is 30ms, so can't be done


Actual Explanation

- Fireflies had neural timing mechanism
 An oscillator
- Oscillator frequency is stimulated or inhibited by flashing light

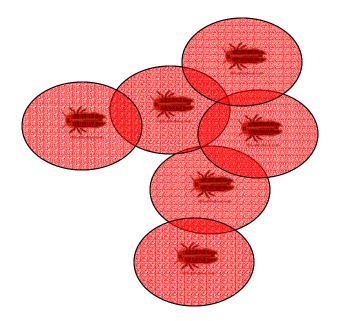

Experiments

- Buck (1981)
 - Free range flash cycle: 965 ms \pm 90 ms
 - Injected 40 ms random flashes every 10 sec
 - 21 pulses applied
- Results
 - Synchronous: no effect
 - After (110-840 ms): next flash delayed ~1 sec
 - Before (>840 ms): next flash early ~800 ms
 - Several cycles of normal flashing between test flashes


Model

Physical Model

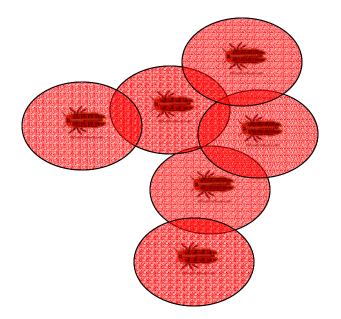
Oscillator modelled as a circuit: resistor in series with a capacitor



Comments

- Reset takes finite time (discharge)
- When flash detected reset is immediate
- Result is subsequent flash will occur later or earlier depending upon flash timing
- With random movement result is "global" synchronization
 - Firefly acts as intrinsic oscillator
 - Flashes at characteristic frequency
 - Coupling via perception of neighbors flashing

Coupling



Limited horizon for sensing of light

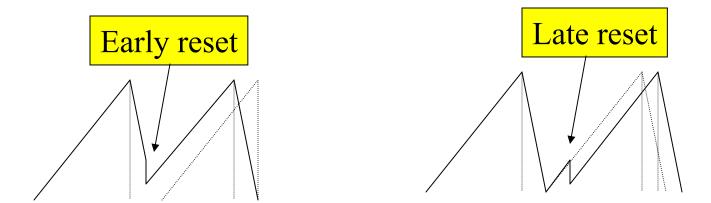
Movement (a random walk) causes changes to occur in flashing

Run the demo ...

More Complex Though ...

Feedback from neighbours means that synchronization can take a while ...

Run the demo ...


Comments

- Minolli and Strogatz analysed behavior:
 - Identical oscillators
 - Oscillators sensitive to light throughout cycle
 - Excitation is concave downwards (not linear)
- Results
 - Synchronization under almost all conditions
 - However, model isn't real

Enhancements

- Some species require several cycles to synchronize (e.g. Luciola pupilla)
 - Threshold only changes partially
 - Can only change within limits

Humans do it too!

- Finger tapping
 - Close eyes and tap fingers
 - Synchronization will be rapid!
 - Tapping will synchronize at ~2-3 taps per sec.

Other examples

- Fidler crab: synchronized craw waving
- Honey bees: synchronized respiration
- Ants, synchronized:
 - Activity cycles [Franks and Bryant, 1970]
 - Alarm drumming [Hölldobler and Wilson, 1990]
- Termites: synchronized chewing
- Herring gulls: synchronized breeding

References

- Strogatz, S.H., and Stewart, I., Coupled Oscillators and Biological Synchronization. *Scientific American* pp. 68-75. (December, 1993)
- Buck, J. and Buck, E., Synchronous Fireflies. *Scientific American* pp. 74-85. (May, 1976)

Applications and Sites

• Action at a distance

• The FireFly Files site

• <u>http://iris.biosci.ohio-</u> <u>state.edu/projects/Ffiles/</u>