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ABSTRACT: The technique used by harmonica players to alter the pitch of the note being played, by vocal tract
manipulations, is described. Observations of the effect from the player’s point of view, and the results of experiments
using a mechanically blown instrument are presented. An’ acoustical analysis of the effect using the small signal
approximation, and including both reeds in each airway in the model, yields predictions in accord with the observations.

INTRODUCTION

The purpose of this report is to describe, and explain, the
technique which is used by harmonica players (particularly
blues and jazz players) to alter the pitch of the note being played
by changing the shape of the vocal tract, pamcularly by changes
in the position of the tongue.

There are only casual references to the harmonlca in the
literature, usually in general discussions of the vibrating reed
as a sound source, but the acoustics of the instrument do not
appear to have been studied in depth. However, there is an
extensive literature of the mechanism of sound generation by
vibrating reeds [1], [2], [3], [4], [10], [11], [17], particularly in
connection with the clarinet. Also there is a body of evidence
for the effect of vocal tract resonances on the performance of
wind instruments [5], [6], [7], [8], [9], including their pitch [7],
[12].

The instrument on which the technique is most widely used
is the simple ten hole harmonica, which is tuned to a diatonic
major scale. The more complex chromatic harmonica does not
readily respond to the technique, and is much less widely used
in this field despite the apparent advantage of a full chromatic
scale. We have used Hohner “Special 20 Marine Band”
harmonicas, which are a general standard. They are available
in any major key.

For a C instrument the tuning is as shown in Figure 1. The

missing A4 in the lowest octave is to allow the dominant 7th
chord to be played without dissonance.

The “classical” technique of playing the instrument is to
cover four holes with the lips and to block the lowest three off
with the tongue. The melody is played through the remaining
open hole and the tongue can be lifted to allow vamping of
accompanying chords. The tongue is not available to alter the
shape of the vocal tract, and pitch bending is not used with
this method. With this technique, the instrument is very limited
because accidentals are not available.
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Figure 1: Tuning and reed layout of the ten hole harmonica

The instrument was made much more versatile by the
adoption of a different technique by American Negroes, earlier
this century. The method involves “kissing” the harmonica
to select the note to draw or blow. The tongue is then free to
be used to change the shape of the mouth cavity which has
the effect of changing the pitch in a remarkably subtle and
reliable fashion (changes of up to three semitones can be
achieved).

The importance of being able to bend pitch for this type of
music is twofold. Firstly, Jazz/Blues music uses a lot of subtle
slides of pitch, rather than fixed pitch scale tones. Any
instrument that cannot produce these “bent notes’ is of little
use for the idiom. Secondly, the scales used are not diatonic
major scales. They require flattened thirds, fifths and sevenths
to be available. This can be achieved by playing modes of the
major scale (particularly that with tonic a fourth below the
instrument key), and other missing notes are played by bending
available ones.

OBSERVATIONS ABOUT PITCH BENDING
Any theory of pitch bending on the harmonica must account
for the following observations.

A. The note can only be flattened.

B. Only certain notes can be bent — low draw notes and
high blow notes. The detailed rule is simple — the only notes
that can be bent are those where the other note in the same
channel (i.e. the draw note when a biow note is being played)
has a lower pitch than the one being played. For the harmonica
shown in Figure 1, this applies to draw 1 to 6 and blow 7 to 10.
Blow 1 to 6 and draw 7 to 10 cannot be bent more than a few
tens of cents.

C. The degree to which the pitch can be bent is also related
to the pitch of the other note in the same channel. The rule is
that, for those notes that can be bent, the pitch can be varied
from the normal pitch of the note being played, down to
approximately a semitone sharp of the pitch of the other note
in the same channel (which is flat of the note being played
by A).

D. For draw notes the pitch variation is essentially continuous
between the upper and lower pitch limits for a continuous
change in mouth geometry. For the high notes, the pitch
change tends to be abrupt between the limits.
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E. The technique that is used to achieve these changes,
while complex, is essentially as follows. For medium to high
pitched notes the size of the oral cavity, controlled by the
position of the tongue, seems to be the crucial factor. For
medium pitch draw bends, the tongue is pushed down and
back to flatten the pitch. For the high blow bends, the tongue
is pushed forward and as mentioned above the pitch drops
more or less abruptly. In both cases the higher notes are
played with the tongue further forward in the mouth. For
very low pitched notes the movement of the tongue is less
pronounced and it is noticed that the Adam’s apple drops
on bending to lower pitch, and this is an indication that the
larynx is being lowered [5]. These changes in tongue position
from low to high notes are similar to those found in woodwind
playing [5], [6].

OBSERVATIONS USING AN

ARTIFICIALLY BLOWN HARMONICA
Experiments were performed using a mechanically blown
harmonica, to show that the pitch bending effect could be
produced by varying the resonance frequency of a chamber
through which the instrument was blown. The arrangement is
depicted schematically in Figure 2. The effect of changes in
the vocal tract geometry was simulated by a variable length
cylinder in the air supply. This arrangement has also been
used experimentally by Coltman [12]. The frequency was
measured with a Cohn Strobe Tuner, and the measurements
are taken close to the critical pressure where the small signal
approximation is most likely to apply (there is a small
fiattening of pitch with increasing blowing pressure).

To water manometer
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to isolate manometer.

Figure 2: Schematic layout of experimental apparatus

Figure 3 shows the results of an experiment in which the
frequency of the sound emitted by blow 8 on a C instrument,
a note that bends easily, is measured as the tube was extended.
The free reed frequency of the bottom plate reed (i.e. the one
not normally associated with the production of the note being
played) is then returned sharper, that is towards the pitch of
the top plate reed by filing the reed. The pitch variation with
cylinder length is re-measured and the process repeated. The
results show clearly that the limit down to which the pitch can
be bent is determined by the free reed frequency of the other
reed in the channel. It is also observed that this reed has a
substantial amplitude of vibration when the pitch is lowest.
The extremes of pitch that can be produced by this exper-
imental arrangement are in good agreement with what is found
playing the instrument normally.

Figure 4 shows the pitch variation with cylinder length, for
the note blow 8 on a G instrument, with both reeds in the
channel free to vibrate, with the top reed free to vibrate with
the bottom reed taped over, and with the bottom reed free to
vibrate with the top reed taped over. The results show that
the vibration of both reeds is needed if the greatest pitch
variation is to be obtained. .
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Figure 3: Pitch versus tube length for a blow note that will bend
({blow 8 on a C instrument), the bottom plate (draw/ reed being tuned to
different free reed pitches, approaching the free reed pitch

of the top plate.
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Figure 4: Pitch versus tube length for a blow note that will bend
{blow 8 on a G instrument).
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Figure 5: Pitch versus tube length for a blow note that will not
bend significantly (blow 4 on a C instrument). ;
I\ — Both reeds free to vibrate © — Only top plate reed free

x — Only bottom plate reed free

Figure 5 shows the same measurements repeated for a note
that will not bend easily — blow 4 on a C instrument. The
pitch variation is small, and, with both reeds free, at cylinder
lengths where the pitch is flattened, the sound output greatly
attenuated. In these length ranges, it is also possible, by
increasing the blowing pressure, to produce a second pitch
near the pitch produced by blowing with only the top reed
free. Such a note can be produced in normal playing by
delicate vocal tract manipulation and increased blowing
pressure.

Measurements have been made of the critical pressure
required to start vibration. For the “bendable” note “blow 8"
on a G instrument, for instance, it was found to range from
0.1 kPa to 0.5 kPa for the top reed only, 4.6 kPa to 6 kPa for
the bottom reed, and from 0.3 kPa to 1.5 kPa when both reeds
are free to vibrate. In this last case, the high value occurs for
tube lengths that yield the minimum pitch, that is, the critical
pressure increases as the note is bent flat. '

That the effect can be produced with such an arrangement,
is strong evidence that pitch bending in normal playing is
affected by changing the resonant frequency of.the vocal tract
by changing its shape. That there is an increase in threshold
pressure as the note is bent, leads many players to faisely
ascribe the bending effect to increased blowing pressure, or to
choking the air supply. Furthermore, our experiments show
that both reeds in the channel are involved in pitch bending,
contrary to the general belief that only one reed is vibrating at
any time.

THEORY .

Fietcher [3] has shown that the oscillations of the classical
wind instruments can be understood by dividing the instrument
system ‘into a passive linear distributed acoustic system (the
instrument tube), and a non-inear sound generator. Each

system is characterised by its impedance (or admittance)
function, and owing to the possibility of negative impedance
of the sound generator, self sustained oscillations can occur.

This approach can be used to give a qualitative explanation
of pitch control in harmonica playing. The passive distributed
system is the player's vocal tract with admittance Y,, at the
lips looking into the mouth, and the sound generator is the pair
of reeds of the harmonica in the airway of the note being
played, with admittance Y}, logking into the instrument. The
condition that the reed system &ct as a sound generator is that
the real part of Y, be negative, and larger in magnitude than
the real part Y, [3]. In addition, continuity of the volume velocity
requires that

tan ¢, = tan ¢, (1)

where ¢, and ¢y, are the phases of the admittance functions of
the vocal tract and the reed system. Equation (1) determines
the frequency of oscillation of the combined system. Details of
the calculation of Yy, ¢y, Y, and ¢, are given in the Appendix.

It is helpful to distinguish, following Helmholtz [1], two ways
in which a reed that is coupled to a distributed linear acoustic
system can act as a sound generator. In one mode the reed gap
is reduced when the reed moves in the direction of the air flow
and in the other it is increased when it moves in the direction
of the air flow. We shall call the first a closing reed and the
second an opening reed. (We have deviated from Heimholtz's
terminology because it is only appropriate to blown instruments,
not drawn ones.) When playing a blow note the top reed is a

closing reed and the bottom reed is an opening reed. The roles
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Figure 7: The real part, and the phase of the acoustic admittance
versus frequency for an opening reed. Parameters are as for Figure 6
except X, = —0.2mm, W, = 5800 rad. s-1
are reversed for a draw note. The reeds that are associated
with the normal playing of notes are the closing reeds, but the
following analysis will show that the opening reed plays a

decisive role in bent notes.

Consider first the case where only one reed in the airway is
free to vibrate. Figure 6 and Figure 7 show the real part of the
admittance Y, and the phase ¢, for opening and closing reeds.
This form of the acoustic admittance of reeds has been well
confirmed experimentally [4]. Operation near the minimum of
RE(Y,} is favoured by the system, and this occurs for closing
reeds at a frequency just below the reed’s resonance frequency,
and for opening reeds at a frequency just above the reed’s
resonance frequency, as was found in Figures 4 and 5. The
frequency of vibration of the combined system of vocal tract
and one reed with be given by

tan ¢, = tan ¢, 2)

For closing reeds, —#/2 < ¢, < 0 for the frequencies where
RE(Y,) < 0 and for opening reeds 0 < ¢, < =/2 for the
frequencies where RE (Y,) < 0.

Since ¢, varies from nearly +«/2 to —=/2, with suitable
continuous variations in the geometry of the vocal tract,
equation (2) can only be satisfied for certain vocal tract shapes
for closing reeds, and for certain intermediate vocal tract
shapes for opening reeds. It is in fact found that when one reed
of a harmonica is covered by tape, the instrument will only
sound when certain mouth shapes are assumed. This was also
found for the artificially blown instrument with one reed fixed
in Figures 4 and 5.

In the real instrument both reeds, which are acoustically in
parallel, contribute to sound generation. One reed is opening
and the other is closing, so there are two distinct cases:

1. :The higher pitch reed is a closing reed and the lower is
opening. This applies to HIGH BLOW and LOW DRAW.

2. The higher pitch reed is an opening reed and the lower is
closing. This applies to LOW BLOW and HIGH DRAW,

In view of observation B above, it seems that only the first
of these cases allows pitch bending. We can see why this is
by plotting the admittance given by equations (A7) and (A8)
for the two distinct cases. This is done is Figures 8 and 9.

We find that for the first case (closing reed of higher pitch),
Y} is negative essentially only between the two reed resonance
frequencies. Furthermore, the acoustic phase angle varies from
+m/2 to —x/2 in the range where RE(Y}) is negative when,
Wp < W,. Since ¢, also varies virtually from + /2 to —x/2
with changing vocal tract shape, it will be possible for the
instrument to sound at any pitch between the resonance
ferquencies of the reeds for some mouth geometry. This is the
pitch bending phenomenon.

For the second case (opening reed of higher pitch), by
contrast, we find the frequency ranges in which RE(Y}) is
negative are essentially those for the-individual reeds, and, in
these regions, the phase angle only asumes a small range of
values. Thus, sound is possible only for fairly specific mouth
geometries at two small frequency ranges; below the closing
reed’s resonance and above the opening reed’s resonance.
The first is the frequency of the normal note and the other is
the note that can be produced by ‘‘overblowing’ a low blow
note. This latter note can be struck on the low blow notes by
applying the same technique for bending low draw notes and

0.06, —

0.044

0.024

-0.02

RE(Yh) (m? Pa™ 57" x 1075)

-0.04

-0.06.

5500 6000 7000 7500

Frequency Radian,s™

4500 5000 6500

1.5

®hPhase (radian)
ad

-1.5.
Figure 8: The real part, and the phase of the acoustic admittance versus
frequency for the two reed harmonica model when the resonance
frequency of the closing reed is higher than the resonance frequency of
the opening reed. All parameters are as in Figure 6 except
W, = 6300rad. s-7, W, = 5800 rad. s-'
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blowing very hard. It is very difficult to control and often
forms a rapid alternation of pitch with the normal note. This is
occasionally used by players as an effect.

Observation C can be understood in terms of our model,
when it is realised that it expresses the lowest pitch attainable
in terms of the pitch of the other note in the channel when
played normally i.e. as a closing reed. Our model suggests that
the lowest attainable pitch will be about that of the other reed
in the channel played as an opening reed. The minimum of
RE(Y,) for an opening reed occurs at approximately 0.5 D,W,
above the reed resonance frequency, and the same amount
below the resonance frequency for closihg reeds [3]. We
therefore expect the lowest extreme of pitch to be about D,W,
above the pitch of the other note of the same channel played
normally. This is in agreement with the fixed scale interval
relation expressed in C.

The observations D and E are explained by reference to the
variation of pitch with tube length shown in Figure 3. When
operating in the region of continuous variation in pitch with
length, increasing the length of the tube lowers the pitch.
Evidently this.is the type of change in vocal tract resonance
occurring in the technique for the low and middle notes.
However the pitch can also be lowered by crossing the
discontinuity in pitch with a decrease in length of the pipe.
This accounts for the apparently contradictory technique used
on high blow notes, and their discontinuous change in pitch.

AERODYNAMIC DAMPING OF THE REED
Observation A is clearly related to the observation that the
closing reed requires much less pressure to start vibration than
the opening reed in the same channel, and thus the note
associated with the closing reeds is taken as the natural pitch
of the note. In all notes that can be bent, the closing reed has
the higher pitch. If the closing reeds were not easier to sound
the instrument would be practically unplayable, requiring
constant attention to pitch control. However, this large
difference in critical pressure of opening and closing reeds of
almost identical parameters is not predicted by the simple
model above.

It can be shown from equation (A3) that the minimum
critical pressure Py, is approximately

Prin = (ZMIZ/SrY)XODf @

and the difference in X, or M,/S, is not sufficient to account for
the large observed difference in P, Only the assumption that
the opening and closing reeds have substantially different
values for the damping constant D, will make (3) accord with
reality.

The need for different values of D, for the opening and
closing reed is also suggested by other observations. Firstly,
as mentioned above, the simple model predicts that the
operating frequency of the closing and opening reeds should
differ from the reed resonance by a ratio proportional to the
internal damping of the reed, whereas we find (Figure 4) that
the closing reed operates much closer to the resonance
frequency than the opening reed. Secondly the simple model
predicts that when the two reeds are tuned to the same fequency
RE(Y}) is always positive so the instrument cannot sound.
This is contrary to observation, but the problem is avoided if
damping factors are set unequal.

The source of this difference in damping would appear to be
the aerodynamic mechanism described by St Hilaire et al [17].
By an analysis of the time. varying potential flow around an
harmonium reed, they found that terms in the time-dependent
Bernouli equation could give rise to an oscillating force on the
reed that is in phase with the reed velocity if the reed is a
closing reed and of opposite phase to the velocity if the reed
was an. opening reed. The reeds of a harmonium are always
arranged to be closing, and they considered that the aero-
dynamic mechanism was the cause of the excitation of the

- harmonium reed. That the opening reeds can be excited

while playing the harmonica indicates that the interaction of
the reeds with the vocal tract resonances is the most important
mechanism for reed excitation in this case, but the aerodynamic
force on the reed, being in phase with the velocity of the reed
for closing reeds, can be viewed as decreasing the damping of
the reed, and being out of phase with the reed velocity for
opening reeds, can be viewed as an additional damping
mechanism.
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APPENDIX—
The vocal tract and harmonica admittance functions

THE VOCAL TRACT

The resonances of the vocal tract have been extensively studied by
workers in the field of speed synthesis [13], [14]. In vocalisation, the
glottis is the sound source, and the sub-gottal system is generally
ignored. The system from the glottis to the lips is then represented by
a series of cylinders of varying area, and linear acoustics are used to
calculate its response. in reed instrument playing, the sound source
is at the lips and in general the glottis is wide open, so it is not so
easy to justify ignoring the sub-glottal system.

In principle;, we could use the published methods [15] to calculate
the complex admittance function of the vocal tract as seen from the
lips, given data on the area variation of the vocal tract, glottis and
sub-glottal system. Since this data does not exist for harmonica
playing this approach is not practical. Fortunately we can make
progress in understanding pitch bending, with only the most
qualitative knowledge of the variation with frequency of the phase of
the admittance of the vocal tract.

To this end we start by considering a tube of uniform cross
sectional area S, and length L, open at the far end. The input
impedance can be put in the form [3]

= (R,C/S}(1 + j'Htan (KLN/{H + jtan (KL)) (A1)

where R, is the density of air, C the speed of sound and K the wave
number. H is the height of the impedance maxima above the reference
level R,C/S. The admittance is 1/2 The phase of the admittance, that
is, the phase of the flow into the pipe, relative to the pressure in the
pipe, ¢p, is thus given by

tan () = —I[{H2 — 1)/2H] sin (2KL). (A2)

Since H is typically 10—100 for a tube of these dimensions, [N
varies from nearly —x/2 to + /2 as frequency is increased through a
resonance, with the change being most rapid near a resonance. (See
ref. [16] for experimental measurements of acoustic phase for a
straight tube and for various horns.) The same type of variation of
phase with frequency near resonance is found for tubes of non-
uniform area also [3], [16] although the resonance frequencies are
no longer harmonically related and are related in a complex way to
the area variation of the tube. Thus, while the exact relation between
resonance frequency and vocal tract geometry remains obscure, we
can make the following deduction; for a given frequency of operation,
the phase of the acoustic admittance of the vocal tract seen from the
lips, can be varied from nearly + /2 to — /2, by suitable continuous
variations in the geometry of the vocal tract (mainly affected by
changes in tongue position) that alter the relationship of the vocal
tract resonances to the operating frequency.

THE HARMONICA

On the basis of a small signal model of the vibrating reed first
introduced by Backus [2], Fletcher [3] has given expressions for
admittance of reeds near the threshold blowing pressure.

The admittance of the reed Y,, seen from the passive system, is
given by

= (1-B)/{|Py|/zU,)cos ¢, — W(R a/b|X, |)sin ¢] (A3)

g
5
@
[
@

= the blowing pressure in the mouth referred to atmospheric

= the magnitude of the constant part of the volume flow

= the frequency of vibration

the resonance frequency of the reed

the length of the mass of air bounded by the reed opening

= the width of the reed

= the unblown displacement of the reed toward the inside of
the instrument

= the equilibrium displacement of the reed toward the inside of
the instrument

=X, — (§/MW2P,

, = the effective mass of the reed

, = the effective area of the reed

z = reed parameters that relate to the pressure/volume relation

that is assumed in the model

D, = the reed damping coefficient

A =[S,(Py/zX JWW,D,1/{M,[(W;>

B = I[S/(P,y/zX {W2 — W3]/ {M(W2 —

and the phase, ¢,, of the admittance is

ST

XoTo
I
{II]

X

1

<0 gX

~W?) + (D,WW,12]}
W3 + (D,WW,)1}

([Po]/1zU)A + WIR, (a/b}|X,|{B — 1)

Ad
(|P, 172U )1 — B) + WIR, (a/b)[X,[JA i

¢ =

Equations (A3} and (A4) are generalisations of Fletcher's results
to allow positive or negative pressures in the pipe. When P,/X,
positive, the reed is a closing reed and, when P, o/ X, IS negatvve |t is
opening.

The real and imaginary parts of Y, are

RE{Y,) = Y,cos¢, (A5)
IMY,) = Y, sin ¢, (A6)

and the condition that RE (Y,) be negative is essentially that (1 — B) be
negative.

For a model of the harmonica in which both the opening and the
closing reed contribute to the generation of sound, we take the
volume flow velocity in the channel to be the complex sum of the
velocities through the two reeds. Since the pressure acting on both
reeds is essentially the same, (that is the two reed generators are
acoustically in parallel) we can write

RELY,(W)] = RELY,(W,W,X,)I + REIY,(W,,W,=X_)] (A7)

IMIYL (W) = IMIY (W, W, X )] + IMIY, (W, W, ~X,)]  (A8)
tang, = IMIY,{(W)]/ RELY,(W)] (A9)
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where

Y}, = the admittance of the two reed harmonica seen from the mouth
¢y, = theacoustic phase of the two reed harmonica

W, = theresonant frequency of the top plate reed

W,, = the resonant frequency of the bottom plate reed

We have assumed in equations (A7) and (A8) that the physical
parameters of both the reeds are the same and that they only differ
in the sign of the equilibrium opening and in their resonance frequency.
This is only a computational aid, and in any case it is a good
approximation since the reeds in the same channel, sounding at
nearby pitches, are very similar in dimensions.

There are apparently four cases to consider:

1. P, positive and W, < W, This applies to blow notes 1—86.
(LOW BLOW)

2. P, positive and W, > W,. This applies to blow notes 7—10.
(HIGH BLOW)

3. P, negative and W, < W,. This applies to draw notes 1—86.
(LOW DRAW)

4. P, negative and W, > W,. This applies to draw notes 7—10.
HIGH DRAW) :

However, because of the invariance of equation (A3) under the
simuitaneous change of sign of P, and X, if we use the same pair of
resonance frequencies, case 1 and 4 would yield an identical
admittance function as would cases 2 and 3. That is to say, there are
only the two distinct cases considered in the text.




