Notes on Organizing Java Code:
Packages, Visibility, and Scope

CS 112 - Wayne Snyder

Java programming in large measure is a process of defining entities (i.e., packages,
classes, methods, or fields) by name and then using those names in various contexts,
and the rules for how we go about this determine how we organize our code. In this
set of notes, we will consider these rules in detail; in particular, we want to
understand, for each entity, the following:

1) What is the scope of the definition (the locations in code that the definition
can be used) and what mechanisms exist for extending or modifying that
scope?

2) How do we refer to the entity, i.e., what is the syntax of the name when it is
used?

3) What happens if we have multiple definitions of a name?

4) What is the lifetime of the definition, i.e.,, when does it begin to be visible and
when does its visibility end?

The purpose of this study is first to understand the details of how we use class and
class member definitions as we write lines of Java code, but secondly we want to
understand how these rules allow us to structure large Java projects following the
object-oriented philosophy.

Packages and the file system

The environment in which you run Java on your computer consists of files of Java
code (ending in .java) containing class definitions, compiled Java classes (files
ending in .class), and rules for how a particular piece of code will execute; most of
these rules involve how to name classes and how to refer to one class from another
class. In this set of notes we will consider broadly how code is organized on your
computer, focussing in particular on the notion of a package.

The main folder where you store your Java code is sometimes referred to as the
workspace, and it is organized hierarchically as follows:

Workspace
Packages (subfolders)
Files
Classes
Members: fields, methods and nested classes

Your workspace (or working directory) may contain subfolders to organize your
Java code, and these are any number of packages, and packages are typically
organized in a hierarchical structure (the dotted names correspond to the folder
structure) but each package is a separate entity and so this hierarchy is just for
keeping your files organized in the file system: there is no concept of a “subpackage”
and this hierarchy has no effect anything we discuss in these notes. If you don’t
specify a package when you create a class, it is put in the default or nameless
package, as you can see with the class TestDefault below.

For example, consider the following files and folders in our workspace, which
we will use as a running example:

Workspace
TestDefault.java

alpha

:

TestAlpha.java

o
D
—
|85}

TestBeta.java

o
B
D

Testl.java
one.two
Test12.java
one.two.three
Test123.java

(where the folders are underlined). This might appear in your Mac as follows:

@ wayne
< 22| =m0 o [#5- B- Q
DEVICES
I ibisk
- Macintosh HD
WinZip Mac Edition &
SHARED

£ Wayne's Time Capsule Desktop

PLACES
A Music
Sl12 Name 4 Date Modified Size | Kind
<20 5] Desktop Today, 8:21 AM - Folder
B3 Deskeop Documents Apr 7, 2011 8:48 PM -~ Folder
6] Downloads Today, 8:19 AM -~ Folder
7\ Applications Library Feb 17,2011 3:36 PM -~ Folder
Documents Movies Aug 25, 2010 2:35 PM -~ Folder
Dropbox Music May 6, 2011 12:19 PM — Folder
SEARCH FOR Personal Apr 22,2011 3:02 PM - Folder
©) Today & Pictures Feb 15, 2011 10:40 PM - Folder
Yesterday Public Mar 24, 2011 11:36 PM - Folder
*) Past Week Sites Aug 20, 2010 2:39 PM - Folder
Workspace Today, 8:48 AM - Folder
(3] All Images
alpha Today, 8:46 AM -~ Folder
(2] All Movies
Al Documents) TestAlphajava Apr 1, 2011 3:00 PM 4KB Java Document
beta Today, 8:46 AM - Folder
| TestBetajava Apr 1, 2011 3:00 PM 4KB Java Document
one Today, 8:45 AM -~ Folder
one.two Today, 8:46 AM -~ Folder
one.wo.three Today, 8:46 AM -~ Folder
% Test123.java Apr 1, 2011 3:00 PM 4KB Java Document
| Test12java Apr 1, 2011 3:00 PM 4KB Java Document
. Testljava Apr 1, 2011 3:00 PM 4 KB Java Document

. TestDefault.java Today, 8:32 AM 4KB Java Document

Packages: Making a file part of a package

A .java file contains one or more class definitions, and to be in a package it must be
in the appropriate folder, as described above, and also must contain a package
statement, e.g., if Test1. java is in package one, it must begin with the line:

package one;
and if Test123.java is in package one.two.three, it begins with the line:
package one.two.three;

A file with no package declaration is in the default package.

Packages: Using classes in the same package

When you want to refer to classes in the same package, you simply use their simple
names (you have doubtless been doing this all along for files in the default package).
However, when you want to use a public class in the same project, but in a different
package, you have basically two choices:

1) You can use the full name with the package and the class name. For example,
in the figure, to declare a Test12 class instance from package one. two
from inside Test123, you can write

one.two.Testl2 t2;

This will work from any class in the project, including classes in the default
package.!

2) You can import the class and then simply use the name of the class; for
example, to create an instance of Test1 inside Test123, you could write
the following (as seen in the figure):

import one.Testl;
Testl t=newTestl();

To import all the public classes in a package, you can use a wildcard in place of the
class name, e.g., we could have imported all public classes in package one using:

import one.*;

(since there was only one class in any case, these would be equivalent).

Important note: When you import with the wildcard *, you get only the classes in
that package/folder and no others; e.g., when you import one. * you do not

1 However, there is no way to refer to classes in the default package from a different package, which
is a good reason to avoid the default package!

automatically get the classes in one.two and one.two.three. You have to list all
the packages separately you want to import. Again, the only reason for the
hierarchical organization of packages is to organize your folders---there is no effect
on the process of finding definitions of names.

Multiple definitions of a class and the buildpath

When you compile your Java code, the compile has to find the classes that you have
referred to in your code, and to do this, it uses the buildpath, which is simply a list of
folders to look in, one after the other, for classes. The first place it looks is in your
workspace, and the second place is in the Java library that came with your compiler
(this is where basic things like the Math class are stored); you can change the
buildpath if you like, but that is outside the scope of these notes.

What happens when you have two classes with the same name? The rule is
very simple: a class may not be redefined within its visibility, with the exception of
multiple definitions in packages that are listed on the buildpath, in which case the
Java compiler will use the first definition that it comes to in going down the
buildpath. Thus, you may redefine the class Math and provide your own definition
of the method pow () , and put it in your buildpath before the JRE, and this is the
one that will be used by default. In every other case, the Java compiler will complain
if you have multiple definitions for a name (as you have no doubt experienced!).

Access modifiers: public, private, and package access

Now we can understand the visibility of classes defined in files in a package. There
are two possibilities:

1) Aclassis declared as public: there are no restrictions on its visibility; it can
be used by any other class that can find it (e.g., in the same package, or in
another package that has the appropriate buildpath).

2) Aclass is declared as protected: this has to do with subclasses, and will be
dealt with late in the course when we discuss inheritance.

3) Aclass is declared without either of these access modifiers: in this case, the
default is “package access,” which means that it is visible only in its own
package. The class can not be imported or named by its full package name in
another package, and no modification of the buildpath will make it accessible
from another project; for example, in the figure if we removed the public
modifiers from the definitions of Test1, Test12, or TestAlpha, we would
geta “not visible”errorin Test123.

For members (i.e., fields, methods, and inner classes), we have four possibilities:

1) The member is declared as public: itis visible wherever the class is visible;

2) The member is delcared as protected: again, we shall deal with this later;

3) The member is declared as private, and it is visible inside the class only,
and invisible outside the curly braces of the class;

4) The member is declared without a modifier, and has package access; this
means it is visible inside the package only.

How to organize your classes in files

Finally, there is the matter of how classes are arranged in the files. Recall that a
package is really a folder which contains files which contain definitions of classes.
There can be more than one class definition per file, but we have the following
restrictions on public classes:

1) There can be at most one public class per file;
2) A public class must have the same name as the file (with the .java suffix); and
3) Main methods can only occur in public classes.

Itis a good idea to put any substantial class in its own file, and to have multiple
classes in a file only when they are very closely related to each other; if they are only
used in one class in that file, then they should be made into inner classes.

Visibility of class fields and local variables [Optional]

We will now consider the issue of visibility in the case of local variables, fields, and
then the combination of these two.

Local Variables in Methods

The rule for local variables defined inside methods is actually quite simple: the
scope of a local variable definition is from the point of the definition to the end of
the closest enclosing pair of curly braces, and you may not redefine a variable within
its scope. Definitions inside the heading of for loops, and parameters in methods,
have scope from the point of definition to the end of the curly braces enclosing the
loop or method. For example, here is the scope of the six local variables in a silly
method; note carefully that j and k are both defined twice, but not redefined inside
their scope, so there is no problem (e.g., the two j’s are different variables):

static void silly(int m) { m
int i = 4; m i
m i
for(int j=0; j<10; j++) { m i J
int k = 2; m ! J k
k=k+1+ 3j; m i J k
} m i
m i
for(int j=0; j<20; j++) { m i J
int k = 9; m ! J k
k=k+1-3; m i J k

3

A variable must be initialized before its first use (there is no default initialization for
local variables).

Fields in Classes

The situation for fields is somewhat different, since the fields are definitions of the
members available in a class, and are not so obviously part of an executable region
of code. Here the rule is: a field definition has scope over the entire class, but may be
redefined as part of a method or nested class; initializations (if they are done in the
definition, and not in the constructor) take place in the order of the fields in the
class.

Although the usual practice is to provide explicit initialization values in the
constructor, we may do it in the definition in the class itself, in which case the
initializations take place in the order of the fields (as if they were executable
statements in a method). Thus, a method may refer to a field that is defined
anywhere in the class, but field initialization may only use the definitions above it in
the list of fields. Fields are initialized to @ or null or false by default. For example,
in the following class, n is initialized to @, m would be initialized to 4, k to 4, and p to
5; the diagram shows the scope of each of the fields, and the underlined names show
the “scope” of the sequential initialization. Thus, if we were to change the
initialization of “k =n + p” it would be an error, since the definition of p occurs
below the definition of k.

public class TestDefault {

int n; n m k p
int m = 44 n m k p
n m k p
int sillyMethod(int q) { n m k p q
return g + n + m + k; n m k p q
} n m k p
n m k p
int k =n + m; n m k p
int p=m+ 1; n m k p

We saw above that we may not redefine a local variable in its scope. However, it
is possible to redefine a field name inside its scope, by reusing the name as a local
variable or a field in a nested class. This is sometimes useful, since the name may be
descriptive in a way that is identical in two contexts (e.g., “i”, “counter”, “next”).
Reusing common names may be easier and less confusing than coming up with new
names. The basic idea when reusing field names, or when mixing fields and local
variables, is that a use of a name refers to the closest enclosing definition. For

example, in the following (contrived) example, there is a field i which is superceded

by a local variable in a method and a field inside an inner class, creating two holes in
the outermost definition of i; the nested class field is in turn superceded by a local
variable of the same name. Each column of i’s showing the scope is a distinct
variable:

public class TestDefault {

int i =1; // field i
class TestIt { i
int 1 = 2; // field

// here 1 == 2
int testItMethod() {

int i = 3; // local variable i
// here i == 3 i
return i; i
}
}
i
int testDefaultMethod() { i
int i = 4; // local variable i
// here i == i
TestIt t = new TestIt(); i
return i; // prints 4 i
//return this.i; prints 1 i
//return t.i; prints 2 i
//return t.testItMethod(); prints 3 i

public static void main (String [] cmd) {
TestDefault d = new TestDefault();
System. out.println(d.testDefaultMethod());

e e e

A significant issue when redefinition is allowed is how we may refer to the various
definitions. Of course, the default is to use the closest enclosing definition. However,
we can also refer in some cases to other defintions, as shown in the comments
attached to the various alternative return statements in testMethod() above:

1) return i yields 4 using the default rule;

2) return this.i yields 1, as the keyword this refers to the current instance
of the class where this method was defined (just go outward until you hit a
definition of a field 1);

3) return t.i yields 2, as this is a field defined inside t, which is an instance of
TestIt; and

4) return t.testItMethod() yields 3, asthe method returns the value of its
local variable.

Note that you may not refer to the field i in TestDefault from within the scope of
the field i in TestIt, since this would refer to its own current instance; we will see
later in the course that this will be possible when using static classes.

[End Optional]

Lifetime of Definitions: Static vs Instance Fields and Methods

Up to this point, we have not engaged with our fourth question with which we
began, i.e., when do definitions come into being and when do they end? In Java this
question is very simply answered:

1) When a member of a class is declared with the static keyword, there is
exactly one instance of that member, which is created automatically before
the program begins to run, and exists until the program terminates.

2) When member of a class is declared without the static keyword, then an
instance of that member is created by the constructor for each instance of the
class that is created; its lifetime is the lifetime of the instance.

In addition to the temporal issue of lifetime, it is very important to note that static
members have only one instance, and although all instances of the class may use it,
they all use that single instance.

Static Fields

The best way to see how this works is with an example: the following class
represents a line and contains a static field counting how many instances have been
created:

class Line {
static int count = @; // keeps track of how many lines exist
public int order; // when was this one created
public double x, double y;

public Line(double x, double y) {

order = ++count;
this.x = x; this.y = yj;

}

public class LineTest {
public static void main(String[] args) {

Line 11 = new Line(0.0, 0.0);
Line 12 = new Line(2.3, 3.4); // Now ll.count == 2 and 12.order == 2
Line 13 = new Line(1.2, 6.7); // Now 1ll.count == 3 and 12.order == 2

We may illustrate this as follows, where we show a static region of memory which
exists during the entire program lifetime, and a dynamic region of memory where
(possibly multiple) instances of a class are created and (perhaps) destroyed:

Line

@

11 12 13
When referring to members of classes, it is very important to realize that there are
multiple instances of non-static members (one for each class instances), and that
these must be referred either locally inside the methods of the class instances, or
from outside through the name of the instance, e.g,, 11.order, 12.x, etc. A static

member may be referred in the same way as a non-static member BUT ALSO
through the name of the class, e.g., Line. count.

Static Memory ‘ Dynamic Memory

Note that instance fields may be initialized by the constructor, but static fields
have no explicit constructor, and must be initialized in the class definition itself (as
we see with count above).

Static Methods

We may also define static methods, in which case there is exactly one instance of the
method, with all its local variables (which are themselves static); for example,
main() is always a static method. Again, any instance may refer to a static method by
its simple name inside the class, by the instance from outside the class, and through
the name of the class. However, there is an important restriction to keep in mind
with static methods: a static method may not refer to a non-static member except
through the name of the instance, because there may be no such instances, or
multiple instances. A example will make this clear. Here is the Line class with a
non-static method which calculates the length of the line:

class Line {

static int count = @; // keeps track of how many lines exist
public int order; // when was this one created
public double x, double y;

public Line(double x, double y) {
order = ++count;
this.x = x; this.y = yj;

}

double length() {
return Math.sqrt(x*x + y*y); // sqrt is a static method of class Math!

3
3

public class LineTest {
public static void main(String[] args) {
Line 11 = new Line(0.0, 0.0);
Line 12 = new Line(2.3, 3.4);
// Now 12.length() would return 4.104875150354758

}
We could call 1ength() inside another method of Line, or call it through the name of
its instance. But what would happen if we made length() static?

static double length() {
return Math.sgrt(x*x + y*y);

}

The answer is that we would get four compile-time errors “Can not make a static
reference to the non-static field ..., ” one for each occurrence of x and y. Clearly, this
definition makes no sense: which x and y are intended? However, a static method

static int getCount() {
return count;

}

would generate no errors. We may imagine the code for static methods as living in
the static memory instance of the class, and the non-static methods as living in each
instance, and so a method may refer only to fields in its own instance:

Line

@

11 12 13 -

Static Memory ‘ Dynamic Memory

Why are static fields and methods useful? Firstly, some utility methods, such as
those in the Math class, have no need for any local data, and hence the class is just a
container for a bunch of commonly-used functions; it is more efficient to have only
one instance of this class rather than having to create an instance every time we
want to use the Math methods. Second, sometimes, as with the field count above, it
is useful to have some “global” information that all class instances can use.

Summary

1)

2)

3)

4)

5)

6)

7)

8)

9)

The information hierarchy is workspace : projects : packages : files : classes :
members. We may have a hierarchy of nested classes as fields inside classes
or as local variables in methods.

Packages are stored in a hierarchical file system in their projects
corresponding to the structure of their (dot-separated) compound names.

Files can contain any number of classes, but at most one public class, which
has to have the same name as the file; public static main methods can only
occur in such public classes.

Public entities are visible anywhere their definer is, private entities are
visible only in their own class, and the default visibility is inside one’s own
package.

Classes can refer to classes in the same package by their simple names, can
refer to classes in the same project but different packages by importing the
package or prefixing the name of the package, and projects can refer to each
other by extending the buildpath.

Classes may not be redefined within their visibility, with the exception of
multiple definitions existing on the buildpath, in which case the compiler
uses the first definition encountered.

The scope of a local variable is from the point of definition to the end of the
closest enclosing right brace, or, in the case of method or loop parameters, to
the end of the loop or method; local variables may not be redefined within
their scope.

The scope of a field in a class is the entire class (except for holes-in-scope
produced by redefinitions), but initializations take place in the field order.

Names of fields may be redefined by local variables in methods, or by fields
in nested classes; one may refer to fields outside of their scope only by using
the usual rules for referring to fields in instances of classes, the keyword
this being used to refer to the current instance of the closest enclosing class.

10) Static fields have exactly one instance, which exists for the entire running

time of the program, and which are accessible from inside any instance, and
from outside through an instance name, or through the name of the class.
Static methods may be referred to analogously, but may themselves only
refer to static fields.

