CS 112 – Introduction to Computing II

Wayne Snyder Computer Science Department Boston University

Today: Administrivia and Motivation Administrative Matters: Review of course design and course policies Motivation: Two Algorithms for Searching An Array Sequential Search and Binary Search compared Next Time: From Python to Java Reading assignment will be posted on Piazza!

Motivat	ion:	Two	Alg	jorit	hms	for	Sea	archi	ng a	an	Array	ON UNILE ST
How v	vould	wea	anal	yze	this	algo	rithr	n?				
We ar arbitra	e bas ary m	sicall emb	y int er of	eres f the	ted i list	in hc	ow Io	ong i	tak	es	to find an	
	0	1	2	3	4	5	6	7	8	9)	
	78	25	2	15	26	38	7	45	12	1	9	
Here a How r to and expres	Here are the kinds of questions we want to answer: How many "basic operations" (e.g., comparing one integer to another) does it take to find the integer (or not), expressed as a function of N = number of data items.											
	In the worst case? In the best case? In the average case?										5	

Motivation: Two Algorithms for Searching an Array	Computer Science
How would we analyze this algorithm mathematically? We are basically interested in how long it takes to find an arbitrary member of the list	
0 1 2 3 4 5 6 7 8 9 78 25 2 15 26 38 7 45 12 19 Here are the kinds of questions we want to answer:	N = number of data items = 10
How many "basic operations" (e.g., comparing one integer to another) does it take to find the integer (or not), expressed as a function of N = number of data items.	1+2++N = N(N+1)/2
In the worst case? N 10 In the best case? 1 1 In the average case? $(N+1)/2$ 5.5	6

Motivation: Two Algorithms for Searching an Array									
Digression	on summing the series 1 + 2 + + N:								
	I really like the proof of								
	$\sum_{i=1}^n i = rac{n(n+1)}{2}$								
	in which $1+2+\cdots+(n-1)+n$ is written forwards then backwards and summed. It is claimed that Gauss had come up with this when he was just a child, although contested.								
	The proof								
	Let								
	$s=1+2+\dots+(n-1)+n.$								
	Clearly,								
	$s=n+(n-1)+\dots+2+1.$								
	Sum to get								
	$2s=\underbrace{(n+1)+(n+1)+\dots+(n+1)+(n+1)}_{n ext{ times }}.$								
	Hence,								
	2s=n(n+1),								
	and								
	$s=rac{n(n+1)}{2}.$								
		7							

Motivation: Two Algorithms for Searching an Array												
Now let's consider how things change when we sort the list into ascending order:												
	0	1	2	3	4	5	6	7	8	9		
	2	7	12	15	19	25	26	38	45	78		
Now how would we determine if a given integer, say 15 , is in the array?												
I ne best way to do this is called "binary search."												
Again let's consider the Python implementation												

Motivation: Two Algorit	hms for S	earchi	ng an Array	Computer Science						
				RECALL:						
How to derive the log(N	How to derive the log(N) bound on the worst case:									
Let us count the appro searched in the worst c	Let us count the approximate size of the sublist to be searched in the worst case at each call of the function:									
				2 ^c = B						
Original List:	N/1	=	N/2 ⁰							
After 1 comparison:	N/2	=	N/2 ¹	log is the functional						
After 2 comparisons:	N/4	=	N/2 ²	inverse of the exponential function:						
After X comparisons:	N/N = 1	=	N/2 ^x	$\log_2(x)$						
So for what X does N = The answer to the ques	So for what X does N = 2^{x} ? Clearly, X = $\log_2(N)$. The answer to the question "how many times can I divide									
N by 2 before I get 1" is	N by 2 before I get 1" is "approximately log ₂ (N)."									
A more precise analysis will be satisfied with the this class	s gives us f e approxima	loor(log ate ans	$g_2(N)$) + 1, but we over of $log_2(N)$ in	$2^{\log(x)} = x $ 12						

