
1/25/16

1

Computer Science

CS 112 – Introduction to Computing II

Today: Administrivia and Motivation

Administrative Matters:

 Review of course design and course policies

Motivation: Two Algorithms for Searching An Array

 Sequential Search and Binary Search compared

Next Time: From Python to Java

Reading assignment will be posted on Piazza!

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Motivation: Two Algorithms for Searching an Array

This course is about learning to be computer scientists and
programmers. Our two main goals are

Learn object-oriented programming using Java;

Develop the tools to think scientifically about the design
and analysis of data structures and algorithms.

The second goal is by far the most important, and we will get a
sense for what the science of algorithms is today; next time we will
start to study Java in detail...

1/25/16

2

Computer Science

3

Motivation: Two Algorithms for Searching an Array

How do we think scientifically about the programs we write? Mostly
this is by analyzing how they use resources (time, space,
hardware, power, other algorithms). We will focus in this class on
understanding the running time of algorithms.

As an example, let’s consider an unsorted list of integers:

 0 1 2 3 4 5 6 7 8 9

How would we determine if a given integer, say , is in the list?

This problem is called “sequential search” or “linear search.”

Let’s consider a Python implementation......

Computer Science

4

Motivation: Two Algorithms for Searching an Array

Sequential Search in Python:

>>> def seqSearch(A,n):
... for i in range(len(A)):
... if A[i] == n:
... print 'Found: ', n;
... return;
... print 'Not found: ', n;
...
>>> A = [78, 25, 2, 15, 26, 38, 7, 45, 12, 19];
>>> seqSearch(A,19);
Found 19
>>> seqSearch(A,29);
Not found: 29

1/25/16

3

Computer Science

5

Motivation: Two Algorithms for Searching an Array

How would we analyze this algorithm?

We are basically interested in how long it takes to find an
arbitrary member of the list......

 0 1 2 3 4 5 6 7 8 9

Here are the kinds of questions we want to answer:

How many “basic operations” (e.g., comparing one integer
to another) does it take to find the integer (or not),
expressed as a function of N = number of data items.

 In the worst case?
 In the best case?
 In the average case?

Computer Science

6

Motivation: Two Algorithms for Searching an Array

How would we analyze this algorithm mathematically?

We are basically interested in how long it takes to find an
arbitrary member of the list......

 0 1 2 3 4 5 6 7 8 9

Here are the kinds of questions we want to answer:

How many “basic operations” (e.g., comparing one integer
to another) does it take to find the integer (or not),
expressed as a function of N = number of data items.

 In the worst case? N 10
 In the best case? 1 1
 In the average case? (N+1)/2 5.5

1+2+...+N =
N(N+1)/2

N = number
of data items
= 10

1/25/16

4

Computer Science

7

Motivation: Two Algorithms for Searching an Array

Digression on summing the series 1 + 2 + ... + N:

Computer Science

8

Motivation: Two Algorithms for Searching an Array

Now let’s consider how things change when we sort the list
into ascending order:

 0 1 2 3 4 5 6 7 8 9

Now how would we determine if a given integer, say , is
in the array?

The best way to do this is called “binary search.”

Again let’s consider the Python implementation......

1/25/16

5

Computer Science

9

Motivation: Two Algorithms for Searching an Array

>>> def binSearch (A,n):
... return binSearchAux(A,n,0,len(A)-1)
...
>>> def binSearchAux(A,n,left,right):
... if right < left:
... return False;
... else:
... mid = (left+right) // 2;
... if n == A[mid]:
... return True;
... elif n < A[mid]:
... return binSearchAux(A,n,left,mid-1);
... else:
... return binSearchAux(A,n,mid+1,right);
...

>>> A = [2, 7, 12, 15, 19, 25, 26, 38, 45, 78];

>>> binarySearch(A,15);
True

>>> binarySearch(A,29);
False

Computer Science

10

Motivation: Two Algorithms for Searching an Array

How would we analyze this algorithm mathematically?

Again, we want to count the number of “basic operations”
such as comparisons:

 0 1 2 3 4 5 6 7 8 9

 In the worst case?
 In the best case?
 In the average case?

1/25/16

6

Computer Science

11

Motivation: Two Algorithms for Searching an Array

How would we analyze this algorithm mathematically?

Again, we want to count the number of “basic operations”
such as comparisons:

 0 1 2 3 4 5 6 7 8 9

 In the worst case? floor(log2(N)) + 1 floor(3.32) + 1 = 4

 In the best case? 1 1
 In the average case? approx. 0.87 * log2(N) 2.89

RECALL:

logA B = C

 iff

AC = B

floor(M) = largest
integer ≤ M

Computer Science

12

Motivation: Two Algorithms for Searching an Array

How to derive the log(N) bound on the worst case:

Let us count the approximate size of the sublist to be
searched in the worst case at each call of the function:

Original List: N/1 = N/20
After 1 comparison: N/2 = N/21

After 2 comparisons: N/4 = N/22

After X comparisons: N/N = 1 = N/2x

So for what X does N = 2x ? Clearly, X = log2(N).
The answer to the question “how many times can I divide
N by 2 before I get 1” is “approximately log2(N).”

A more precise analysis gives us floor(log2(N)) + 1, but we
will be satisfied with the approximate answer of log2(N) in
this class......

RECALL:

log2 B = C

 iff

2C = B

log is the functional
inverse of the
exponential function:

 log2(x)

B C

 2x

log2(2x) = x

2log(x) = x

1/25/16

7

Computer Science

13

Motivation: Two Algorithms for Searching an Array

How would we analyze this algorithm experimentally?

Again, we want to count the number of “basic operations”
such as comparisons, but in this case we will run the
program with sample data (randomly generated lists) and
actually count the number of comparisons.

Hopefully, our mathematical and experimental results
are consistent!!

Computer Science

14

Experiments with Sequential and Binary Search

1/25/16

8

Computer Science

15

Experiments with Sequential and Binary Search

Worst = floor(log2(N)) + 1

Avg = ~ 0.87 * log2(N)

Computer Science

16

Experiments with Sequential and Binary Search

The Punchline:
Understanding data structures and
algorithms scientifically can make the
difference between a good solution
and a bad solution, or between
success and failure for a
programming task!
It also will enable you to survive your
first “coding interview”!

