
Computer Science

CS 112 – Introduction to Computing II

Today: Java basics:
Compilation vs Interpretation
Program structure
Statements
Values
Variables
Types
Operators and Expressions

Next Time: Java Statements, conditionals, and loops
Reading assignments will be posted on the web site!

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Compilation vs Interpretation

Python is an example of an interpreted language; the primary
workflow is to interact with the interpreter as a fancy calculator with
lots of features:

Computer Science

3

Compilation vs Interpretation

Java is an example of a language which is compiled; before
running any code, your program (ending in .java) must be
transformed into a lower-level form (an “executable file” ending in
.class), and which is then passed to the interpreter, which runs the
program and produces output:

Computer Science

4

Java Basic Program Structure

Java programs are organized as classes (more on these next
week!) stored in files with the suffix “.java”, and with code written
inside methods delimited by curly braces; each program must have
a method called main, which contains the code that will be
executed when you run your program:

public class SampleProgram {

public static void main(String[] args) {

// Here is code that is executed when
// you run your program.

}

}

SampleProgram.java

Class name is same as
file name

Curly braces enclose
classes and methods

Class Method

Computer Science

5

Java Comments

Java has comments, exactly like Python, but with a different
syntax:

Python: Java:

“”” and # /* …. */ and //

Computer Science

6

Java Statements

In Python, we compute by evaluating expressions, which yield a value, which
is then printed out.

In Java, we compute by executing statements, which have an effect on the
state of the program: they assign a value to a variable, or print a value out, or
otherwise change something in the system.

Python: Java:

Assignment
Statements

Note: All Java statements end in
semicolon.

Computer Science

Java Statements

It is often useful to understand the effect of a sequence of assignment
statements by tracing the values of the variables, which change after each
statement. The collection of all values is the state of the program:

Computer Science

8

Java Values and Types

A Data Type (or just Type) is a collection of values and associated operations.

Java is a Strongly-Typed language supporting many different types:

String “hi there” “”

Computer Science

9

Java Values and Types

However, in CS 112 we will only use the following types:

Computer Science

10

Java Values and Types

Literal values are similar to Python:

int 4 -5

double 3.4 -2.34e10

char ‘a’ ‘\n’ ‘\t’ // single quotes for chars

boolean true false // note lower case

String “hi there” // must use double quotes

Note that String is capitalized

Computer Science

11

Java Values and Types

Python is “weakly typed”: values have types but variables do not; variables are
just names for any value you want and can be reused for any values; the only
errors occur when variables have not yet been assigned values:

Computer Science

12

Java Values and Types

Java is strongly-typed in that

All variables must be declared with a type before
being used and can only be used for that type of
value:

Computer Science

13

Java Values and Types

During compilation, the types are checked and errors will be reported with line
numbers and terse explanations:

Computer Science

14

Java Values and Types

This might seem unduly rigid, but the philosophy of strongly-typed languages is
that specifying types makes programmers more careful about variables, and
bugs and errors can be found during compilation, not when the program is
running.

Values can be converted from one type to another implicitly or explicitly:

Widening Conversions (implicit):

Narrow types (less information) Wider types (more information)

Example: int double

double x;
x = 4; // 4 is widened to 4.0 and then assigned

No error!

Computer Science

15

Java Values and Types

This might seem unduly rigid, but the philosophy of strongly-typed languages is
that specifying types makes programmers more careful about variables, and
bugs and errors can be found during compilation, not when the program is
running.

Values can be converted from one type to another implicitly or explicitly:

Widening Conversions (implicit):

Narrow types (less information) Wider types (more information)

Example: int double

double x;
x = 4; // 4 is widened to 4.0 and then assigned

Example 2: char int
int x;
x = ‘A’; // ‘a’ is converted to its Unicode

// value 65 and assigned to x

Computer Science

16

Java Values and Types

This might seem unduly rigid, but the philosophy of strongly-typed languages is
that specifying types makes programmers more careful about variables, and
bugs and errors can be found during compilation, not when the program is
running.

Values can be converted from one type to another implicitly or explicitly:

Narrowing Conversions (you must specify a cast or else get an error):

Wider types (more information) Narrower types (less information)

Example: double int

int x;
x = 4.5;

Error!

Computer Science

17

Java Values and Types

This might seem unduly rigid, but the philosophy of strongly-typed languages is
that specifying types makes programmers more careful about variables, and
bugs and errors can be found during compilation, not when the program is
running.

Values can be converted from one type to another implicitly or explicitly:

Narrowing Conversions (you must specify or else get an error):

Wider types (more information) Narrower types (less information)

Example: double int

int x;
x = 4.5;

Error!

Must explicitly tell Java to truncate the
double value to an integer:

int x;
x = (int) 4.5; // x gets 4

Cast

Computer Science

18

Java Values and Types

double int char

Narrowing
(implicit)

Widening
(must use cast)

(int) (char)

Summary:

Computer Science

19

Java Values and Types

double int char

Narrowing
(implicit)

Widening
(must use cast)

(int) (char)

Summary:

boolean String

Strings and
booleans are
incompatible for
conversions –
must find a
work-around!

Computer Science

20

Java Values and Types

double int char

Narrowing
(implicit)

Widening
(must use cast)

(int) (char)

Summary:

boolean String

Strings and
booleans are
incompatible for
conversions –
must find a
work-around!

Computer Science

21

Java Values and Types

The Workaround: All the types have methods for turning their
values into Strings:

Computer Science

22

Java Values and Types

double int char

boolean

String

Narrowing

Widening

(int) (char)

Computer Science

23

Java Values and Types

Digression: You probably think this is a purely
academic matter, and making a type conversion
mistake will only lose you a few points on the
midterm….

Think again: In 1996, the Adriade 6 rocket exploded
after takeoff because of a bad type conversion in its
control code:

Computer Science

24

Java Operators

The operators are almost exactly the same as in Python:

Same:
+ addition +=
- subtraction -=
* multiplication *=
% modulus %=
== equals
!= not equal
< less
<= less or equal
> greater
>= greater or equal

Computer Science

25

Java Operators

When Java evaluates an overloaded operator, it automatically performs
widening conversions as necessary to make the operands fit the
operator:

Example: + is overloaded – it works for two ints or two doubles….

4 + 2.3

4.0 + 2.3 => 6.3
Widening
Conversion:

All the
arithmetic
operators in
java are
overloaded
for int and
double. Result is the wider

type!

Computer Science

26

Java Operators

Division is overloaded, but behaves differently for ints and doubles…..

Python: two different division operators:
/ floating-point division /=
// integer division

Java: division operator is “overloaded”:

/ returns an int if both operands are ints,
otherwise returns double:

5 / 2 => 2 5.0 / 2 => 2.5 5.0 / 2.0 => 2.5

5 / (double) 2 => 2.5

Computer Science

27

Java Operators

The boolean operators in Java look different (although they work exactly the
same):

Python: Java:

not !
and &&
or | |

Note that in both languages, and and or are lazy:

(false && X) => false (without evaluating X)
(true || X) => true (without evaluating X)

Example:

((4 < 6) && (5 >= 5)) => true // both < and >= are evaluated
((7 < 6) && (5 >= 5)) => false // only < needs to be evaluated

Computer Science

28

Java Operators

There is NO exponentiation operator in Java:

Python:
x ** 2 x squared

Java: have to use explicit math functions:

Math.pow(x,2) => returns double

You will become familiar with the explicit Math functions in HW 01.

Computer Science

29

Java Operators

Finally, Java has several useful increment and decrement operators
which Python lacks; these can be used as statements OR expressions:

Statements:
++x; x++ ; // same as x = x + 1 or x += 1
--x; x-- ; // same as x = x – 1 or x -= 1

Expressions:

++x has the value AFTER adding 1
x++ has the value BEFORE adding 1

x y z

int x = 4; 4 undef undef
int y = ++x; 5 5 undef
int z = x++ ; 6 5 5

Computer Science

30

Java Character Data Type

The char data type is useful when we manipulate Strings (which are
simply sequnces of chars. Here are the most useful methods in the
Character library:

Computer Science

31

Java Operators

The String data type is necessary for manipulating textual data and for
input and output:

Note that + is overloaded: it can be used for plus (int, double) or
concatenate (Strings).

Computer Science

32

Java String Data Type

Computer Science

33

Java String Data Type

Punchline:

(str.compareTo(str2) R 0) is equivalent to (str R str2)

where R is one of ==, !=, <, >, <= , >=

Computer Science

34

Java String Data Type

