CS 112 — Introduction to Computing II

Wayne Snyder
Computer Science Department
Boston University

Today:

Fields vs local variables and scope
Program Structure; the keyword static
Classes vs objects

Creating and using objects

Next time: Creating Java programs with multiple files; public vs private;
Object-Oriented Design; Abstract data types; Stacks and Queues.

Reading assignments arebe posted on the web site!
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A Java class can be thought of as a container for methods:
OverloadTest.java
public class OverloadTest { —
static int sum(int n, int m) {
System.out.println("Calling sum(int n, int m)..."); Method
return (n+m);
}
static double sum(double x, double y) {
System.out.println("Calling sum(double x, double y)..."); Method
return (x+y);
}
public static void main(String[] args) {
= Class
System.out.println("\nTry sum(2,3)...");
int n = sum(2, 3);
System.out.println("Returns " + n);
System.out.println("\nTry sum(2.3, 3.1)..."); |
double x = sum(2.3, 3.1); Method
System.out.println("Returns " + x);
System.out.println("\nTry sum(2, 3.1)...");
double y = sum(2, 3.1);
System.out.println("Returns " + y); 5
}
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The contents of a class can be in any order, as far as execution is concerned:
usually main is last, and the other members of the class are organized for
readability: put related methods next to each other.

public class OverloadTest {

public class OverloadTest {
static double sum(double x, double y) {
public static void main(String[] args) { System.out.println("Calling sum(double x, double y)...");
return (x+y);

System.out.println("\nTry sum(2,3)..."); }
int n = sun(2, 3); ) o )
System.out.println("Returns " + n); public static void main(String[] args) {
System.out.println("\nTry sum(2.3, 3.1)..."); System.out.printin("\nTry sum(2,3)...");
double x = sum(2.3, 3.1); int n = sun(z, 3);
System.out.println("Returns " + x); System.out.println("Returns " + n);
System.out.println("\nTry sum(2, 3.1)..."); System.out.println("\nTry sum(2.3, 3.1)...");
double y = sum(2, 3.1); double x = sum(2.3, 3.1);
System.out.println("Returns " + y); System.out.println("Returns " + x);
}
System.out.println("\nTry sum(2, 3.1)...");
|static int sumCint n, int m) { double y = sum(2, 2;1); i
System.out.println("Calling sum(int n, int m)..."); System.out.println("Returns " + y);
return (n+m); }
}
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A class can also hold variables, which are called fields (go figure!), and can
even hold other class definitions (called inner classes). We will focus on fields
for now. Let’s consider a class MyMath, which will provide some basic math
functions:

bli 1 MyMath
public class MyMath { > run MyMath

static double add(double x, double y) { add(2,3) => 5.0
return (x + y);

}

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z,3));
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Suppose we add a method which calculates the log,(..) of a double:

Recall:

public class MyMath {
, loga(B) * logg(C) = loga(C)
static double add(double x, double y) {

) return (x + yJ; soifA=eand B =2:
static double log2(double x) { log,(C) = log(C) / log(2)
return Math.log(x) / Math.log(2.2);
}
public static void main(String[] args) { > run MyMath
S intln("add(2,3) dd(2,3)) add(2,3) => 5.0
ystem.out.println("a y = "+ a , H _
System.out.println("10g2(2,3) => " + 10g2(8.0)); 1092(8‘0) => 3.0
1
}
d;ONUM¢
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But it is inefficient to calculate Math.log(2.0) each time, so we add it as a field
to the container:

public class MyMath {
static double logOfTwo = Math.log(2.0); =

static double add(double x, double y) {
return (x + y);

}

static double log2(double x) {
return Math.log(x) / 10g0fTWO; (s
b

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z,3));
System.out.println("1og2(8.0) => " + log2(8.0));
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Since we can put it anywhere, we put it near its only use the program:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static double log0fTwo = Math.log(2.9); —
static double log2(double x) {
return Math.log(x) / 1og0fTwo; (s
}
public static void main(String[] args) {
System.out.println("add(2,3) => " + add(2,3));
System.out.println("1og2(8.0) => " + log2(8.0));
}
}
O‘?‘ON u’V/L
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One more refinement: logOfTwo is actually being used as a constant value,
which should never change: to make sure we don’t change it, we make it final:

public class MyMath {

static double add(double x, double y) {
return (x + y);

}
stat ouble 1og0fTwo = Math.log(Z2.9);

static double log2(double x) {
return Math.log(x) / log0fTwo;
}

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z2,3));
System.out.println("10g2(8.0) => " + log2(8.0));

9/20/16
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One more refinement: logOfTwo is actually being used as a constant value,
which should never change: to make sure we don’t change it, we make it final,
so that if we accidentally try to modify it, we will get an error:

static final double logOfTwo = Math.log(Z2.@);

static double log2(double x) {
log0fTwo = 0.6931;
return Math.log(x) / logOfTwo;

1 error found:

File: /Users/waynesnyder/Dropbox/Documents/Teaching/CS 112/Lectures & Course
Materials/MyMath.java [line: 11]

Error: /Users/waynesnyder/Dropbox/Documents/Teaching/CS 112/Lectures & Course
Materials/MyMath.java:11: cannot assign a value to final variable logOfTwo

| Interactions = Console CompilerOutput Find/Replace |
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Summary: a Java class is a container for methods (including main), fields, and
final fields (constants). Fields can be initialized just like local variables, but final
fields can not be modified after initialization:
public class MyMath { The entities declared in a
. class are called its
static double add(double x, double y) { .
return (x + y); members; for now we
} have:
methods
static final double logOfTwo = Math.log(Z2.0); fields
static double log2(double x) { final fields (constants)

return Math.log(x) / log0fTwo;
}

static double z = 8.0; // just an example  {—
public static void main(String[] args) {

System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e——
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Scope of the members of a class: Since order does not matter, the scope of a
method or a field is the entire class:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static final double logOfTwo = Math.log(Z2.0);
static double log2(double x) {
return Math.log(x) / log0fTwo; jl(l:ope of
}
members
static double z = 8.0; // just an example  (u—
public static void main(String[] args) {
System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e
}
1
O‘?‘ON U/V/e«
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Scope of the members of a class: Since order does not matter, the scope of a
method or a field is the entire class:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static final double logOfTwo = Math.log(Z2.0);
static double log2(double x) {
return Math.log(x) / log0fTwo; Scope of
} add,
logOfTwo,
static double z = 8.0; // just an example — (u— log2, z,
public static void main(String[] args) { and main.
System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e——
}
1
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Scope of the members of a class: Since order does not matter, the scope of a

method or a field is the entire class:
> run MyMath

add(2,3) = 5.0

public class MyMath { 1092(8.0) => 3.0
static double add(double x, double y) {
return (x + y); Scope of x, y
}
static double log2(double x) { s .
return Math.log(x) / logOfTwo; cope of X
}
Scope of
public static void main(String[] args) { add
System.out.println("add(2,3) => " + add(2,3)); logOfTwo,
System.out.println("1og2(8.0) => " + log2(z)); log2, z,
) and main.
static final double log0fTwo = Math.log(2.0); —
static double z = 8.0; // just an example =
1
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Scope of the members of a class: Since order does not matter, the scope of a

method or a field is the entire class:

> run MyMath

public class MyMath { Qdd(2,3) => 5.0
log2(8.0) => 3.0

static double add(double x, double y) {
return (x + y);
} The scope rule for

members means
you can call a

static double log2(double x) { me.thOd to initilize
return Math.log(x) / logOfTwo; a field!

static final double logOfTwo = Math.log(2.0);

}
static double z(= log2(256.0); // just an example

public static void main(String[] args) {

System.out.println("add(2,3) == " + add(Z2,3));
System.out.println("10g2(8.0) => " + log2(z));
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Summary:
A Java class is an unordered container for its members (methods and fields);

The scope of a member declaration is the entire class (more on this later),
unlike local variables inside methods, whose scope is from the declaration to
the next unmatched right curly brace;

Fields can be initialized just like local variables, even using methods in the
class, but final fields can not be modified after initialization.

MyMath

add
logOfTwo
log2
z
main
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What about the keyword static?

There are two different ways classes can be used to compute:
The first is as a static container for its members.

When an entity is static it:

1. Is created when you first run the program;

2. Has a single instance which exists during the entire run of your program;
and

3. Is destroyed only when your program terminates.
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There is in fact a static region of your program in memory: this region contains
all static members of classes; other regions of memory are dynamic and store
values of local variables in method calls and entities created by new:
RAM
Static Memory: Only thing
e that can change here is
[oa Static Region: holds your values of fields.
=) code and all static
"“;// members of classes.
The Heap: holds entities ™|
created by new (e.g.,
- arrays). Dynamic Memory: for
anything else that
Free memory changes during execution.
Run-Time Stack: holds
values of local variables
during method calls |
& UN"«\
. . o
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So we can think of a running program as existing in two different “worlds,”
static and dynamic:
Static World Dynamic World
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When you run your program, a static instance of your class is created, exists
for the entire run, and is destroyed only when your program terminates:
Static World Dynamic World
MyMath
add
logOfTwo
log2
z
main
O"‘ON UN’L
2
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When you create a new entity using new, it exists in the Dynamic world; entities in the
Static World are called Classes and entities in the Dynamic world are called Objects.

Static World Dynamic World
MyMath The array A:

. . 0: 1
int[] A = new int[6];

1: 1
A[0] = A[1] = 1; (0]
A[2] = 2; 2: 2
A[3] =
A[4] = 3: 3
A 4 5
o

5: 8

9/20/16
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A Java class can be simply used as a Static container for its members, and used

by other programs; this is a way of creating your own libraries (such as Math);

just like the Math library, you refer to the methods using the name of the class:
Static World Dynamic World

logOfTwo

log2
z
main

main ....
MyMath.add(2,3)
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A Java class can be simply used as a Static container for its members, and used by other
programs; this is a way of creating your own libraries (such as Math); just like the Math
library, you refer to the methods using the name of the class, as long as both files are in

the same folder/directory:
CS112Homework

MyMath.java

public class MyMath {

static double add(double x, double y) { ClientOfMyMath java
return (x + y);
}

public class ClientOfMyMath {

static final double logOfTwo = Math.log(2.0); public static void main(String[] args) {

static double log2(double x) { System.out.println("MyMath.add(2,3) => "
return Math.log(x) / logOfTwo; + MyMath.add(2,3));
System.out.println("MyMath.10g2(8.0) => "
+ MyMath.log2(MyMath.z));

R . System.out.println("MyMath.log0fTwo => "
static double z = 8.0; // just an example + MyMath.1log0fTwo);

public static void main(String[] args) { }

System.out.println("add(2,3) => " + add(Z,3));
System.out.println("10g2(8.0) => " + log2(z));

9/20/16
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Note that you call your own static container library program just like you call other static
libraries in Java (String, Character, Math): you use the name of the class plus a dot *.”

public class MyMath {

static double add(double x, double y) { . :
return Ce ¥ public class ClientOfMyMath {
}

static final double log0fTwo = Math.log(2.0); public static void main(String[] args) {

static double log2(double x) {

, return Math.log(x) / 1og0fTwo; System.out.println("MyMath.add(2,3) => "
+ MyMath.add(Z,3));

seotic double 2 m B0 /7 et e System.out.println("MyMath.10g2(8.0) => "
public static void main(String[] args) { + MyMath.log2(MyMath.z));
System.out.println("add(2,3) => " + add(2,3)); System.out.println("MyMath.log0fTwo => "

System.out.println("10g2(8.9) => " + log2(2));

+ MyMath.log0fTwo);

Notice also that the library program still contains a main(...) method, and can still be run
like @ normal program. Usually, the main method of a library is used for testing code.

G
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Creating Objects: Recall that when we declare an array in a method, we are creating a
new object that lives in dynamic memory:

Static World Dynamic World
MyMath The array A:
0: 1
int[] A = new int[6);
1 1
A[0] = A[1] = 15 (o]
A[2] = 2; 2 2
e
£ 3 3
4 5
mam
5 8

9/20/16
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But, we can create new “classes” which contain members just like static classes.....

Static World Dynamic World

MyMath

add
logOfTwo
log2
z
main

Geometry

main ....

Point p = new Point()
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But, we can create new “classes” which contain members just

like static classes..... > run Geometry
p= (2.3,4.5)
CS112Homework :
Geometry.java
public class Geometry {
public static void main(String[] args) {
inal double logOfTwo = Moth.log(2.0);
Point p = new Point(); static double log2Cdouble x) {
Yt S090e> / 10g0fTeo;
p.x = 2.3; )
p.y = 4.5; static double 2= -
plic static void meinCStringD) ergs) (
System.out.println("p = (" + p.x + "," + p.y + )" Etiostatit e o R et
} !
} ClientOfMyMath.java
public class ClientOfMMath {
Point.java public static void meinCStringl) args) (

System.out.printinC Myor

public class Point {

double x = 0.0; // create two doubles
double y = 0.0; // and initialize to 0.0 }
} }

13
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But, we can create new “classes” which contain members just like static classes.....

Static World

Dynamic World

Geometry

MyMath

add
logOfTwo
log2
z

main

Main ....

Point p = new Point();
p.x=2.3;
p.y=4.5
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