CS 112 — Introduction to Computing II

Wayne Snyder
Computer Science Department
Boston University

Today:

Fields vs local variables and scope
Program Structure; the keyword static
Classes vs objects

Creating and using objects

Next time: Creating Java programs with multiple files; public vs private;
Object-Oriented Design; Abstract data types; Stacks and Queues.

Reading assignments arebe posted on the web site!

ON y,
O"‘ Nlb«‘

ALISS

Computer Science

B ?
Java Program Structure: Class = Container : L maS
W p. Gacoully <
Computer Science
A Java class can be thought of as a container for methods:
OverloadTest.java
public class OverloadTest { —
static int sum(int n, int m) {
System.out.println("Calling sum(int n, int m)..."); Method
return (n+m);
}
static double sum(double x, double y) {
System.out.println("Calling sum(double x, double y)..."); Method
return (x+y);
}
public static void main(String[] args) {
= Class
System.out.println("\nTry sum(2,3)...");
int n = sum(2, 3);
System.out.println("Returns " + n);
System.out.println("\nTry sum(2.3, 3.1)..."); |
double x = sum(2.3, 3.1); Method
System.out.println("Returns " + x);
System.out.println("\nTry sum(2, 3.1)...");
double y = sum(2, 3.1);
System.out.println("Returns " + y); 5
}
3 -

ON y,
O"‘ Nlb«‘

9/20/16

,69‘0.!4 Unp
S O

Java Program Structure: Class = Container [~

Computer Science

ALSS

The contents of a class can be in any order, as far as execution is concerned:
usually main is last, and the other members of the class are organized for
readability: put related methods next to each other.

public class OverloadTest {

public class OverloadTest {
static double sum(double x, double y) {
public static void main(String[] args) { System.out.println("Calling sum(double x, double y)...");
return (x+y);

System.out.println("\nTry sum(2,3)..."); }
int n = sun(2, 3);) o)
System.out.println("Returns " + n); public static void main(String[] args) {
System.out.println("\nTry sum(2.3, 3.1)..."); System.out.printin("\nTry sum(2,3)...");
double x = sum(2.3, 3.1); int n = sun(z, 3);
System.out.println("Returns " + x); System.out.println("Returns " + n);
System.out.println("\nTry sum(2, 3.1)..."); System.out.println("\nTry sum(2.3, 3.1)...");
double y = sum(2, 3.1); double x = sum(2.3, 3.1);
System.out.println("Returns " + y); System.out.println("Returns " + x);
}
System.out.println("\nTry sum(2, 3.1)...");
|static int sumCint n, int m) { double y = sum(2, 2;1); i
System.out.println("Calling sum(int n, int m)..."); System.out.println("Returns " + y);
return (n+m); }
}
,69‘0.— Unp
Java Program Structure: Class = Container L maS

Computer Science

A class can also hold variables, which are called fields (go figure!), and can
even hold other class definitions (called inner classes). We will focus on fields
for now. Let’s consider a class MyMath, which will provide some basic math
functions:

bli 1 MyMath
public class MyMath { > run MyMath

static double add(double x, double y) { add(2,3) => 5.0
return (x + y);

}

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z,3));

9/20/16

ON u,
o= "//%

Java Program Structure: Class = Container u

Computer Science

ALISS

Suppose we add a method which calculates the log,(..) of a double:

Recall:

public class MyMath {
, loga(B) * logg(C) = loga(C)
static double add(double x, double y) {

) return (x + yJ; soifA=eand B =2:
static double log2(double x) { log,(C) = log(C) / log(2)
return Math.log(x) / Math.log(2.2);
}
public static void main(String[] args) { > run MyMath
S intln("add(2,3) dd(2,3)) add(2,3) => 5.0
ystem.out.println("a y = "+ a , H _
System.out.println("10g2(2,3) => " + 10g2(8.0)); 1092(8‘0) => 3.0
1
}
d;ONUM¢
2
Java Program Structure: Class = Container o i o
ComgﬁmrScwnce

But it is inefficient to calculate Math.log(2.0) each time, so we add it as a field
to the container:

public class MyMath {
static double logOfTwo = Math.log(2.0); =

static double add(double x, double y) {
return (x + y);

}

static double log2(double x) {
return Math.log(x) / 10g0fTWO; (s
b

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z,3));
System.out.println("1og2(8.0) => " + log2(8.0));

9/20/16

og‘b,!q u’V/L
N\
Java Program Structure: Class = Container o Yo
TSI B
Computer Science
Since we can put it anywhere, we put it near its only use the program:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static double log0fTwo = Math.log(2.9); —
static double log2(double x) {
return Math.log(x) / 1og0fTwo; (s
}
public static void main(String[] args) {
System.out.println("add(2,3) => " + add(2,3));
System.out.println("1og2(8.0) => " + log2(8.0));
}
}
O‘?‘ON u’V/L
KA
Java Program Structure: Class = Container o Vo
MR el <
Computer Science

One more refinement: logOfTwo is actually being used as a constant value,
which should never change: to make sure we don’t change it, we make it final:

public class MyMath {

static double add(double x, double y) {
return (x + y);

}
stat ouble 1og0fTwo = Math.log(Z2.9);

static double log2(double x) {
return Math.log(x) / log0fTwo;
}

public static void main(String[] args) {

System.out.println("add(2,3) => " + add(Z2,3));
System.out.println("10g2(8.0) => " + log2(8.0));

9/20/16

ON u,
o= "//%

Java Program Structure: Class = Container 1 u

Computer Science

ALISS

One more refinement: logOfTwo is actually being used as a constant value,
which should never change: to make sure we don’t change it, we make it final,
so that if we accidentally try to modify it, we will get an error:

static final double logOfTwo = Math.log(Z2.@);

static double log2(double x) {
log0fTwo = 0.6931;
return Math.log(x) / logOfTwo;

1 error found:

File: /Users/waynesnyder/Dropbox/Documents/Teaching/CS 112/Lectures & Course
Materials/MyMath.java [line: 11]

Error: /Users/waynesnyder/Dropbox/Documents/Teaching/CS 112/Lectures & Course
Materials/MyMath.java:11: cannot assign a value to final variable logOfTwo

| Interactions = Console CompilerOutput Find/Replace |

ON u,
o= "//%

. Q
Java Program Structure: Class = Container O
Computer Science
Summary: a Java class is a container for methods (including main), fields, and
final fields (constants). Fields can be initialized just like local variables, but final
fields can not be modified after initialization:
public class MyMath { The entities declared in a
. class are called its
static double add(double x, double y) { .
return (x + y); members; for now we
} have:
methods
static final double logOfTwo = Math.log(Z2.0); fields
static double log2(double x) { final fields (constants)

return Math.log(x) / log0fTwo;
}

static double z = 8.0; // just an example {—
public static void main(String[] args) {

System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e——

9/20/16

og‘o, N up;

L
. &\
Java Program Structure: Scope of fields and methods e
Computer Science
Scope of the members of a class: Since order does not matter, the scope of a
method or a field is the entire class:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static final double logOfTwo = Math.log(Z2.0);
static double log2(double x) {
return Math.log(x) / log0fTwo; jl(l:ope of
}
members
static double z = 8.0; // just an example (u—
public static void main(String[] args) {
System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e
}
1
O‘?‘ON U/V/e«
. e
Java Program Structure: Scope of fields and methods e
Computer Science
Scope of the members of a class: Since order does not matter, the scope of a
method or a field is the entire class:
public class MyMath {
static double add(double x, double y) {
return (x + y);
}
static final double logOfTwo = Math.log(Z2.0);
static double log2(double x) {
return Math.log(x) / log0fTwo; Scope of
} add,
logOfTwo,
static double z = 8.0; // just an example — (u— log2, z,
public static void main(String[] args) { and main.
System.out.println("add(2,3) => " + add(2,3));
System.out.println("10g2(8.0) => " + log2(z)); (e——
}
1

9/20/16

,69‘0.!4 Unp
S O

Java Program Structure: Scope of fields and methods / L

Computer Science

ALSS

Scope of the members of a class: Since order does not matter, the scope of a

method or a field is the entire class:
> run MyMath

add(2,3) = 5.0

public class MyMath { 1092(8.0) => 3.0
static double add(double x, double y) {
return (x + y); Scope of x, y
}
static double log2(double x) { s .
return Math.log(x) / logOfTwo; cope of X
}
Scope of
public static void main(String[] args) { add
System.out.println("add(2,3) => " + add(2,3)); logOfTwo,
System.out.println("1og2(8.0) => " + log2(z)); log2, z,
) and main.
static final double log0fTwo = Math.log(2.0); —
static double z = 8.0; // just an example =
1
SON_Up>,
Vo 2O
Java Program Structure: Scope of fields and methods [e
b s <

Computer Science

Scope of the members of a class: Since order does not matter, the scope of a

method or a field is the entire class:

> run MyMath

public class MyMath { Qdd(2,3) => 5.0
log2(8.0) => 3.0

static double add(double x, double y) {
return (x + y);
} The scope rule for

members means
you can call a

static double log2(double x) { me.thOd to initilize
return Math.log(x) / logOfTwo; a field!

static final double logOfTwo = Math.log(2.0);

}
static double z(= log2(256.0); // just an example

public static void main(String[] args) {

System.out.println("add(2,3) == " + add(Z2,3));
System.out.println("10g2(8.0) => " + log2(z));

9/20/16

ON y,
O"‘ ’V/%

Java Program Structure: Class = container for fields and methods ; L im

ALISS

Computer Science

Summary:
A Java class is an unordered container for its members (methods and fields);

The scope of a member declaration is the entire class (more on this later),
unlike local variables inside methods, whose scope is from the declaration to
the next unmatched right curly brace;

Fields can be initialized just like local variables, even using methods in the
class, but final fields can not be modified after initialization.

MyMath

add
logOfTwo
log2
z
main

ON y,
O"‘ ’V/%

Java Program Structure: Static Containers : e

ALISS

Computer Science

What about the keyword static?

There are two different ways classes can be used to compute:
The first is as a static container for its members.

When an entity is static it:

1. Is created when you first run the program;

2. Has a single instance which exists during the entire run of your program;
and

3. Is destroyed only when your program terminates.

9/20/16

9/20/16

S UN"«\
. . o
Java Program Structure: Static Containers ; fim N
W p. Gacouly <
Computer Science
There is in fact a static region of your program in memory: this region contains
all static members of classes; other regions of memory are dynamic and store
values of local variables in method calls and entities created by new:
RAM
Static Memory: Only thing
e that can change here is
[oa Static Region: holds your values of fields.
=) code and all static
"“;// members of classes.
The Heap: holds entities ™|
created by new (e.g.,
- arrays). Dynamic Memory: for
anything else that
Free memory changes during execution.
Run-Time Stack: holds
values of local variables
during method calls |
& UN"«\
. . o
Java Program Structure: Static Containers ; - fim N
W p. Gacoully <
Computer Science

So we can think of a running program as existing in two different “worlds,”
static and dynamic:
Static World Dynamic World

O"‘ON UN’L
2
Java Program Structure: Static Containers [a2
Corﬁguter Science
When you run your program, a static instance of your class is created, exists
for the entire run, and is destroyed only when your program terminates:
Static World Dynamic World
MyMath
add
logOfTwo
log2
z
main
O"‘ON UN’L
2
Java Program Structure: Static Containers [a

Computer Science

When you create a new entity using new, it exists in the Dynamic world; entities in the
Static World are called Classes and entities in the Dynamic world are called Objects.

Static World Dynamic World
MyMath The array A:

. . 0: 1
int[] A = new int[6];

1: 1
A[0] = A[1] = 1; (0]
A[2] = 2; 2: 2
A[3] =
A[4] = 3: 3
A 4 5
o

5: 8

9/20/16

10

ON y,
O"‘ Nlb«‘

Java Program Structure: Programs spread over multiple files. ; i
W p. Gagoulny
Computer Science

ALISS

A Java class can be simply used as a Static container for its members, and used

by other programs; this is a way of creating your own libraries (such as Math);

just like the Math library, you refer to the methods using the name of the class:
Static World Dynamic World

logOfTwo

log2
z
main

main
MyMath.add(2,3)

ON y,
O"‘ Nlb«‘

Java Program Structure: Programs spread over multiple files. ; i
Computer Science

ALISS

A Java class can be simply used as a Static container for its members, and used by other
programs; this is a way of creating your own libraries (such as Math); just like the Math
library, you refer to the methods using the name of the class, as long as both files are in

the same folder/directory:
CS112Homework

MyMath.java

public class MyMath {

static double add(double x, double y) { ClientOfMyMath java
return (x + y);
}

public class ClientOfMyMath {

static final double logOfTwo = Math.log(2.0); public static void main(String[] args) {

static double log2(double x) { System.out.println("MyMath.add(2,3) => "
return Math.log(x) / logOfTwo; + MyMath.add(2,3));
System.out.println("MyMath.10g2(8.0) => "
+ MyMath.log2(MyMath.z));

R . System.out.println("MyMath.log0fTwo => "
static double z = 8.0; // just an example + MyMath.1log0fTwo);

public static void main(String[] args) { }

System.out.println("add(2,3) => " + add(Z,3));
System.out.println("10g2(8.0) => " + log2(z));

9/20/16

1

G0
Java Program Structure: Programs spread over multiple files. a -

Computer Science

AuSY>

Note that you call your own static container library program just like you call other static
libraries in Java (String, Character, Math): you use the name of the class plus a dot *.”

public class MyMath {

static double add(double x, double y) { . :
return Ce ¥ public class ClientOfMyMath {
}

static final double log0fTwo = Math.log(2.0); public static void main(String[] args) {

static double log2(double x) {

, return Math.log(x) / 1og0fTwo; System.out.println("MyMath.add(2,3) => "
+ MyMath.add(Z,3));

seotic double 2 m B0 /7 et e System.out.println("MyMath.10g2(8.0) => "
public static void main(String[] args) { + MyMath.log2(MyMath.z));
System.out.println("add(2,3) => " + add(2,3)); System.out.println("MyMath.log0fTwo => "

System.out.println("10g2(8.9) => " + log2(2));

+ MyMath.log0fTwo);

Notice also that the library program still contains a main(...) method, and can still be run
like @ normal program. Usually, the main method of a library is used for testing code.

G
[/ &
Java Program Structure: Creating and using Objects [o Jin

Computer Science

AusY>

Creating Objects: Recall that when we declare an array in a method, we are creating a
new object that lives in dynamic memory:

Static World Dynamic World
MyMath The array A:
0: 1
int[] A = new int[6);
1 1
A[0] = A[1] = 15 (o]
A[2] = 2; 2 2
e
£ 3 3
4 5
mam
5 8

9/20/16

12

9/20/16

ON u,
o= "//%

Java Program Structure: Creating and using Objects Lo

Computer Science

ALISS

But, we can create new “classes” which contain members just like static classes.....

Static World Dynamic World

MyMath

add
logOfTwo
log2
z
main

Geometry

main

Point p = new Point()

ON u,
o= "//%

Java Program Structure: Creating and using Objects Lo

Computer Science

ALISS

But, we can create new “classes” which contain members just

like static classes..... > run Geometry
p= (2.3,4.5)
CS112Homework :
Geometry.java
public class Geometry {
public static void main(String[] args) {
inal double logOfTwo = Moth.log(2.0);
Point p = new Point(); static double log2Cdouble x) {
Yt S090e> / 10g0fTeo;
p.x = 2.3;)
p.y = 4.5; static double 2= -
plic static void meinCStringD) ergs) (
System.out.println("p = (" + p.x + "," + p.y +)" Etiostatit e o R et
} !
} ClientOfMyMath.java
public class ClientOfMMath {
Point.java public static void meinCStringl) args) (

System.out.printinC Myor

public class Point {

double x = 0.0; // create two doubles
double y = 0.0; // and initialize to 0.0 }
} }

13

Java Program Structure: Creating and using Objects

Computer Science

ON y,
O"‘ Nlb«‘

ALISS

But, we can create new “classes” which contain members just like static classes.....

Static World

Dynamic World

Geometry

MyMath

add
logOfTwo
log2
z

main

Main

Point p = new Point();
p.x=2.3;
p.y=4.5

9/20/16

14

