
6/1/17

1

Computer Science

CS 112 – Introduction to Computing II

Today

Object-Oriented Programming Concluded

Stacks, Queues, and Priority Queues as Abstract Data Types

Reference types: Basic Principles of References/Pointers

String type as a reference type

Array resizing

Next Time

 Queues continued: Implementing a Queue with a Ring (Circular) Buffer

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Object-Oriented Design

Summary: The most important things to remember about Object-Oriented Design are:

Ø  Divide up your problem and its solution into parts (=classes & objects).

Ø  When you divide, make the interactions (method calls and field references) as simple

and easy to understand as possible;

Ø  Make the interface follow KISS -- provide as few public methods as possible;

Ø  Use Information Hiding: Hide as much about your implementation as you possibly

can. If you are not sure whether to make something public or private, make it
private;

The advantages of information hiding are:

Ø  Your code is easier to understand, and hence to use, and reuse;

Ø  Users can’t get used to “back-door” ad-hoc features of your code;

Ø  By separating the (simple) behavior of your system from the messy details of its

implementation, you can change the actual implementation any time you
want---as long as it behaves the same, this is a huge advantage for maintenance
and reuse.

6/1/17

2

Computer Science

3

Object-Oriented Design: Design Patterns

Over the years, system designers have defined a number of standard design patterns
for the parts and interactions of a program. The most basic pattern is a single file
implementing a simple task:

Stand-Alone Program:

Rules:
Ø  Everything is static;
Ø  Main(…) is public;
Ø  ALL OTHER members are private;
Ø  Uses no libraries!

Printday

 static main(…)

Computer Science

4

Object-Oriented Design: Design Patterns

A “stand-alone program” is not very useful! More common is a program which uses the
standard Java libraries as a Client to accomplish some task:

Client:

Client Rules:
Ø  Everything is static;
Ø  Main(…) is public & controls execution;
Ø  ALL OTHER members are private;
Ø  Uses standard Java libraries.

Histogram

 static main(…)
Scanner

6/1/17

3

Computer Science

5

Object-Oriented Design: Design Patterns

A client may use standard Java libraries (Scanner, Math, String, Character, ….) or may
use a static library written by the user:

Client:

Client Rules:
Ø  Everything is static;
Ø  Main(…) is public & controls execution;
Ø  ALL OTHER members are private;
Ø  May use standard Java libraries;
Ø  May use programmer-defined static libraries;

Ø  Does not define any objects.

HW03Client

 static main(…)

Static Library: BigInt

 static add(…)

Static Library Rules:
Ø  Everything is static;
Ø  Interface is small & public;
Ø  Implementation is private;
Ø  Stores no local data;

Ø  May itself use libraries;
Ø  Static main used to store testing

code.

Computer Science

6

Object-Oriented Design: Design Patterns

A client may also use one or more Objects it creates dynamically to hold data and related
algorithms, called an Abstract Data Type:

Client: HW03Client

 static main(…)

Static Library: BigInt
 static add(…) Static Library Rules:

Ø  Everything is static;

Ø  Interface is small & public;
Ø  Implementation is private;

Ø  Stores no local data;

Ø  May itself use libraries;

Ø  Static main used to store testing code.

Client Rules:
Ø  Everything is static;

Ø  Main(…) is public;

Ø  ALL OTHER members are private;

Ø  May use standard Java libraries;
Ø  May use programmer-defined static

libraries;

Ø  Defines objects as Abstract Data Types.

ADT: S

 S = [2,3,4,…]
union(…)
intersection(..)

Abstract Data Type Rules:
Ø  Interface is small & public;

Ø  Implementation is private;
Ø  Stores data and related algorithms;

Ø  May itself use libraries;

Ø  Main used to store testing code, and is only

static member

6/1/17

4

Computer Science

7

Object-Oriented Design: Design Patterns

Sometimes this is called the Client/Server Model:

Client: Controls
execution of whole
program.

Servers (store data with
associated algorithms
used by client)

Math

BigInt

static main(…)

 1, 5, 7…
 sum(..)

[2,5,…]
 reverse(..)

“Wayne”
get(…)

Libraries: Store code
used by client.

Computer Science

8

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface (informal):

void Push(int n) – Put integer n on top of the stack

int Pop() – Remove top integer and return it

int Peek() – Return the top integer without removing it

int size() – Return the number of integers in the stack

boolean isEmpty() – Returns true iff stack has no members

6/1/17

5

Computer Science

9

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);

5

Computer Science

10

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);
push(7);

5

7

6/1/17

6

Computer Science

11

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);
push(7);
push(2);

5

7

2

Computer Science

12

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);
push(7);
push(2);
int n = pop();

5

 2 n:

7

6/1/17

7

Computer Science

13

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);
push(7);
push(2);
int n = pop();
int m = pop();

5

 2 n:

 7 m:

Computer Science

14

Abstract Data Types: The Stack ADT

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface:

void Push(int n)

int Pop()

int Peek()

int size()

boolean isEmpty()

push(5);
push(7);
push(2);
int n = pop();
int m = pop();
int i = pop();

5

 2 n:

 7 m:

 5 i:

6/1/17

8

Computer Science

Abstract Data Types: The Stack ADT

Applications of Stacks:

Reversing an array or a String

Keeping track of nested or recursive structure

Parenthesis Matching

Evaluating an arithmetic expression

Run-time Stack to keep track of method/function calls

[Examples on Board]

Computer Science

Abstract Data Types: The Stack ADT

Applications of Stacks:

Reversing an array or a String

Keeping track of calls waiting

Parenthesis Matching

Expression Evaluation

Run-time Stack to keep track of method/function calls

Problems with Stacks:

Underflow: Trying to pop() or peek() and empty stack! Solution: check if empty before
doing a peek or pop!

Overflow: Pushing too many numbers and causing an ArrayIndexOutOfBoundsException!

 Solution: Array Resizing…..

6/1/17

9

Computer Science

17

Reference types: Data in Computer Memory

To understand the notion of references (also called pointers), we need to understand how
computer memory works to organize data:

9

6
5
4
3
2
1
0

8
7

RAM: 2
5
13
23
-34
232
2
6
3
10

9

16
15
14
13
12
11
10

8
7

-78
3
4
5
5
-1
2
6
5
3

Computer instructions say things
like:

“Put a 3 in location 8:”

RAM[8] = 3;

“Add the numbers in locations 8
and 9 and put the sum in location
2:”

RAM[2] = RAM[8] + RAM[9]

This is why arrays are so common
and so efficient: RAM is just a big
array!

Access time = about 10-7 secs

Computer Science

18

Reference types: Data in Computer Memory

When you create variables in Java (or any programming language), these are “nicknames” or
shortcut ways of referring to locations in RAM:

9

6
5
4
3
2
1
0

8
7

RAM:

9

16
15
14
13
12
11
10

8
7

int x; // same as RAM[8]
int y; // same as RAM[9]
int z; // same as RAM[2]

// now the previous computation
// would be

x = 3;
y = 10;
z = x + y; x:

y:

z:

2
5
13
23
-34
232
2
6
3
10
-78
3
4
5
5
-1
2
6
5
3

These
“shortcut”
names for
primitive types
can not
change during
execution.

When we draw our diagrams
of variables, we are really
just giving a shortcut view of
RAM without the addresses:

x: 3

6/1/17

10

Computer Science

19

Reference types: Objects/Classes in Computer Memory

BUT Reference Types (arrays, Strings, objects – anything you can use the word new to create
new instances of) are references or pointers to their values: they store the location of the
value, not the value itself.

9

6
5
4
3
2
1
0

8
7

2
5
13
23
10
232
2
14
3
10

9

16
15
14
13
12
11
10

8
7

11
3
4
8
5
-1
2
6
5
3

x:
y:

z:

A:

P:
A

11
3
4

P
x:

y:

5

-1

int x;
int y;
int z;

int [] A = { 11, 3, 4 };
Point P = new Point(5, -1);

A[0]:
A[1]:
A[2]:

Computer Science

20

Reference types: Objects/Classes in Computer Memory

9

6
5
4
3
2
1
0

8
7

2
3
13
23
5
0
0
0
3
10

9

16
15
14
13
12
11
10

8
7

11
3
4
8
5
-1
2
6
5
3

x:
y:

z:

A:

P:
A

0
0

P
x:

y:

2

3

.....
int [] A = { 11, 3, 4 };
Point P = new Point(5, -1);

A = new int[2];
P = new Point(2,3);

A[0]:
A[1]:

Now we can change the “meaning” of the reference variable by assigning it a new location; in
fact, new returns the new location, which is stored in the reference variable as its “value.”

6/1/17

11

Computer Science

21

Reference types: Objects/Classes in Computer Memory

9

6
5
4
3
2
1
0

8
7

2
3
13
23
5
0
0
0
3
10

9

16
15
14
13
12
11
10

8
7

11
3
4
8
5
-1
2
6
5
3

x:
y:

z:

A:

P:
A

0
0

P
x:

y:

2

3

.....
int [] A = { 11, 3, 4 };
Point P = new Point(5, -1);

A = new int[2];
P = new Point(2,3);

A[0]:
A[1]:

Now we can change the “meaning” of the reference variable by assigning it a new location; in
fact, new returns the new location, which is stored in the reference variable as its “value.”

Old objects are
“garbage” and
the memory will
be reclaimed by
the “garbage
collection” and
reused.

Computer Science

22

Reference Types: String

We have seen two different reference types so far in this course:

The first is Strings:

6/1/17

12

Computer Science

23

Reference Types: String

We have seen two different reference types so far in this course:

The first is Strings:

equals checks for same structure;

== checks for same reference (pointing to same location).

Computer Science

24

Reference Types: String

We have seen two different reference types so far in this course:

The second is arrays:

Let’s look at how to solve the problem of stack overflow, using array resizing:

