CS 112 - Introduction to Computing II

Wayne Snyder
Computer Science Department
Boston University

Today

Object-Oriented Programming Concluded

Stacks, Queues, and Priority Queues as Abstract Data Types
Reference types: Basic Principles of References/Pointers
String type as a reference type

Array resizing

Next Time

Queues continued: Implementing a Queue with a Ring (Circular) Buffer

ON Uy
o= "//%

ALSE

Computer Science

Object-Oriented Design (. b

ON Uy
o= "//%

ALSE

Computer Science

Summary: The most important things to remember about Object-Oriented Design are:

>
>

The advantages of information hiding are:

>
>
>

Divide up your problem and its solution into parts (=classes & objects).

When you divide, make the interactions (method calls and field references) as simple
and easy to understand as possible;

Make the interface follow KISS -- provide as few public methods as possible;
Use Information Hiding: Hide as much about your implementation as you possibly
can. If you are not sure whether to make something public or private, make it
private;

Your code is easier to understand, and hence to use, and reuse;

Users can't get used to “back-door” ad-hoc features of your code;

By separating the (simple) behavior of your system from the messy details of its
implementation, you can change the actual implementation any time you

want---as long as it behaves the same, this is a huge advantage for maintenance
2

and reuse.

6/1/17

Object-Oriented Design: Design Patterns o Jing

Computer Science

640,!" Un;
Q‘ 4 N

ALSS

Over the years, system designers have defined a number of standard design patterns
for the parts and interactions of a program. The most basic pattern is a single file

implementing a simple task:
Stand-Alone Program:

Printday

Rules:
» Everything is static;

public class PrintDay {

public static void main(String[] args)
int day = 1;
int month = 1;
int year = 1970;

int y@ = year - (14 - month) / 12;

int x = y0 + y@/4 - y@/100 + y@/400
int m@ = month + 12 * ((14 - month)
int d@ = (day + x + (31*m@)/12) % 7

String[] dayOfWeek = {"Sunday", "Mo|
System.out.println("Unix\'s birthdq

}
» Main(...) is public; N
» ALL OTHER members are private;
» Uses no libraries!
3
. . . . %/ &)
Object-Oriented Design: Design Patterns e

Computer Science

A “stand-alone program” is not very useful! More common is a program which uses the
standard Java libraries as a Client to accomplish some task:

Client: Histogram

Scanner

O?’%

Client Rules:

» Everything is static;

» Main(...) is public & controls exgcution;
» ALL OTHER members are private;

» Uses standard Java libraries.

import java.util.Scanner;
public class Histogram {

r private static final int MAX_NUMBERS = 20;

private static void printHeading() {
System.out.println("\nWelcome to the Histogram Progran
System.out.println("This program will print out a hist]
System.out.println("input by the user; enter up to " 4

}

private static void printHistogram(int[] histogram) {

public static void main(String[] args) {
printHeadingQ);
Scanner userInput = new Scanner(System.in);

6/1/17

6/1/17

ON u,
2 "//%

Object-Oriented Design: Design Patterns Lo Jn

Computer Science

ALISS

A client may use standard Java libraries (Scanner, Math, String, Character,) or may

use a static library written by the user: o .
Static Library: Bigint

Client: HWO03Client

static add(...)

—

Static Library Rules:
» Everything is static;
Client Rules:

» Interface is small & public;
> Everything is static; > Implementation is private;
» Main(...) is public & controls execution; > Stores no local data;
> ALL OTHER members are private; > May itself use libraries;
» May use standard Java libraries; > Static main used to store testing
» May use programmer-defined static libraries; code. ;
» Does not define any objects.
o"‘ON UM%
Object-Oriented Design: Design Patterns omE
COM

A client may also use one or more Objects it creates dynamically to hold data and related
algorithms, called an Abstract Data Type:

Static Library: Bigint

static add(...) Static Library Rules:

» Everything is static;
Client: HWO03Client

/ Interface is small & public;
ADT- S Implementation is private;
Stores no local data;
May itself use libraries;
<\> S=[234,..] Static main used to store test
union(...)
intersection(..)

Client Rules: Abstract Data Type Rules:

» Everything is static; > Interface is small & pUbllC,
Implementation is private;
Stores data and related algorithms;

Y

Y V V V

Main(...) is public;
ALL OTHER members are private;
May use standard Java libraries; May itself use libraries;

M -defi i . . .
_ay L_Jse programmer-defined static Main used to store testing code, and is only
libraries; 6

Defines objects as Abstract Data Types. static member

YV V V

>
>
>
>

v

6/1/17

S %
Object-Oriented Design: Design Patterns o
Computer Science

ALISS

Sometimes this is called the Client/Server Model:

Client: Controls
execution of whole @ Servers (store data with
program. associated algorithms
used by client)
Math /

<:> ‘\\s 125,..]
€ > reverse(..)
Bigint

“Wayne”
. . get(...)
Libraries: Store code

used by client.

&QNUM@
Abstract Data Types: The Stack ADT Lo
Computer Science

ALISS

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can
only modify the top of the stack!

Stack Interface (informal):

void Push(int n) - Put integer n on top of the stack

int Pop() - Remove top integer and return it

int Peek () - Return the top integer without removing it

int size() - Return the number of integers in the stack

boolean isEmpty () - Returns true iff stack has no members
Push Pop

ON y,
O"‘ ’V/%

Abstract Data Types: The Stack ADT b (1 L n

ALISS

Computer Science

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)
int Pop()
int Peek ()

push(5); int size()
boolean isEmpty ()

5
9
O“"ON U/\/,%
Abstract Data Types: The Stack ADT ; :._‘ T
Coﬁgu;er Science

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)

int Pop()

int Peek ()
push(5); int size()

push(7); boolean isEmpty ()

10

6/1/17

ON y,
O"‘ ’V/%

Abstract Data Types: The Stack ADT

ALISS

Computer Science

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)

int Pop()
int Peek()
pusEE ? ;; int size()
us ; .
gush(Z); boolean isEmpty ()
2
7
5
1
O"‘ON UN’L
9 <
Abstract Data Types: The Stack ADT [im %
Corﬁguter Science

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)

int Pop()
int Peek()
pusEE ? ;; int size()
pus ;)
push(2); boolean isEmpty ()
int n = pop();

12

6/1/17

O"‘ON U/\/,%
Abstract Data Types: The Stack ADT il (o i
Computer Science

ALISS

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)

int Pop()
int Peek()
pusEE ? ;; int size()
us ; .
gush(Z); boolean isEmpty ()
int n = pop();
int m = pop();
5
13
0"‘0N UN’L
9 <
Abstract Data Types: The Stack ADT RIS
Computer Science

The Stack ADT is perhaps the simplest: it defines how a pile of objects works: you can

only modify the top of the stack!
Stack Interface:

void Push(int n)

int Pop()
int Peek()
pus:E ? ;; int size()
us ; .
gush(2); boolean isEmpty ()
int n = pop();
int m = pop();
inti = pop(); n:

3

14

6/1/17

6/1/17

ON y,
O"‘ Nlb«‘

Abstract Data Types: The Stack ADT FIA ,n\

ALISS

Computer Science

Applications of Stacks:

Reversing an array or a String

Keeping track of nested or recursive structure

Parenthesis Matching

Evaluating an arithmetic expression

Run-time Stack to keep track of method/function calls

[Examples on Board]

ON y,
O"‘ Nlb«‘

Abstract Data Types: The Stack ADT FIA ’nl

ALISS

Computer Science

Applications of Stacks:

Reversing an array or a String

Keeping track of calls waiting

Parenthesis Matching

Expression Evaluation

Run-time Stack to keep track of method/function calls

Problems with Stacks:

Underflow: Trying to pop() or peek() and empty stack! Solution: check if empty before
doing a peek or pop!

Overflow: Pushing too many numbers and causing an ArrayIndexOutOfBoundsException!

Solution: Array Resizing.....

ON y,
O"‘ ’V/%

Reference types: Data in Computer Memory

ALISS

Computer Science

To understand the notion of references (also called pointers), we need to understand how
computer memory works to organize data:

Computer instructions say things

0 2 like:
RAM: | -
2 13 “Put a 3 in location 8.
3 23 e
4 34 RAM[8] = 3;
232
2 5 “Add the numbers in locations 8
and 9 and put the sum in location
7 6 o
8 3 '
9 10 RAM[2] = RAM[8] + RAM[9]
10 -78
" 3 This is why arrays are so common
12 4 and so efficient: RAM is just a big
13 5 array!
14 5
15 -1 Access time = about 107 secs 17
18 2
O"‘ON UN’L
. <,
Reference types: Data in Computer Memory g0 (o oo %
Corﬁguter Science
When you create variables in Java (or any programming language), these are “nicknames” or
shortcut ways of referring to locations in RAM:
0 5 intx; // same as RAM[8]
RAM: inty; // same as RAM[9]
1 5
- 2 13 intz, //same as RAM[2]
3 23 . .
These 4 37 /I now the previous computation
“shortcut” _ // would be
names for 5 232
primitive types 6 2 x=3
can not 7 6 - 10-
. y =10;
qangeduns 83
’ 9 10
10 -78 When we draw our diagrams
1 3 of variables, we are really
12 4 just giving a shortcut view of
13 5 RAM without the addresses:
14 5)
15 E x: | 3 | N
1A 2

6/1/17

ON u,
o= "//%

Reference types: Objects/Classes in Computer Memory 1 .

Computer Science

ALISS

BUT Reference Types (arrays, Strings, objects — anything you can use the word new to create
new instances of) are references or pointers to their values: they store the location of the
value, not the value itself.

0 2 int x;
1 5 inty;
- 2 13 int z;
A i ?g int[JA={11,3,4};
: Point P = new Point(5, -1);
5 232 ' w Point(s, -1)
6 2 A
P: 7 14 N\
X 8 3 AlQ]: 11
y: 9 10 A[1]: 3
10 11 A2]: 4
11 3 |
12 4 p
13 8 ™~
14 5
15 -1 19
1A 2
0,3(0[’4 UN/L
Q <
Reference types: Objects/Classes in Computer Memory e %
Co‘mg;.lter Science
Now we can change the “meaning” of the reference variable by assigning it a new location; in
fact, new returns the new location, which is stored in the reference variable as its “value.”
0 2
1 3 int[A={11,3,4};
- 2 13 Point P = new Point(5, -1);
A i 23 ‘ A = new int[2];
: P = new Point(2,3);
5 0 S @3)
6 0 A
P: 7 0 N\
X 8 3 AlQ]: 0
y: 9 10 A[1]: 0
10, 11 :
1 3 |
124 4 k
13 8
14! 5 :
15 | -1 : 20
1A 2

6/1/17

10

ON u,
o= "//%

Reference types: Objects/Classes in Computer Memory 1 .

Computer Science

ALISS

Now we can change the “meaning” of the reference variable by assigning it a new location; in
fact, new returns the new location, which is stored in the reference variable as its “value.”

0 2
1 int[JA={11,34}
z: 2 13 Point P = new Point(5, -1);
A i 23 A = new int[2];
. | P = new Point(2,3);
5 0 D (2,3)
6 0 A
P: 7 0 N
X: 8 3 A[0]: 0
Y N 10 A1 0
Old object: 10 11
objects are
“garbage” and " 3
the memory will 12 4 P
be reclaimed by 13 8 -
the “garbage
collection” and 14 5
reused. 15 1 N
1a)
040!" U/v,%
Reference Types: String L
Co‘mg;.lter Science

We have seen two different reference types so far in this course:

The first is Strings:

public class Strings{

public static void main(String[] args) {
String s = "hi there";
String t = new String("hi there");
String u = "Hi There!";

System.out.println(
System.out.println(
System.out.println(
System.out.println(

.equals(t));

.equalsC u) J;
=t);
== u);

nw wnunn

22

6/1/17

1

6/1/17

ON u,
o= "//%

Reference Types: String .

Computer Science

ALISS

We have seen two different reference types so far in this course:

The first is Strings:

public class Strings{

public static void main(String[] args) {

String s = "hi there";
String t = new String("hi there");
String u = "Hi There!"; .

g ’ > run Strings
System.out.println(s.equals(t)); true
System.out.println(s.equalsC u) J; false
System.out.println(s ==t); false
System.out.println(s == u);

} false
} equals checks for same structure;

== checks for same reference (pointing to same location). -

ON u,
o= "//%

Reference Types: String .

Computer Science

ALISS

We have seen two different reference types so far in this course:
The second is arrays:

Let’s look at how to solve the problem of stack overflow, using array resizing:

// replace S by array twice as big, but with same elements
private void resize() {
int[]J] T = new int[S.length * 2 J;
for (int 1 = 0; 1 < S.length; ++i) {
S[il = T[il;

}
S=T,;

24

12

