
10/2/16 

1 

Computer Science 

CS 112 – Introduction to Computing II  

 
 

Today 

Queues 

Implementing a queue using a Circular (or Ring)  Buffer;  

Deques  

Priority Queues 

Reading: Wikipedia article on “Circular Buffers” 

 

Next:   

Analysis of Algorithms: How to measure the running time of algorithms 

Iterative sorting: Selection Sort and Insertion Sort 

 

Wayne Snyder 
Computer Science Department 

Boston University 

Computer Science 

2 

Queue ADT 

The Queue ADT is a simple variant of a stack which makes a simple change which in 
fact changes everything: instead of moving items in and out of the same “end” of the list, 
as in a stack:

 
 
 
 
      Instead you use different ends of the list: 
     
 
 
 

Enqueue Dequeue 



10/2/16 

2 

Computer Science 

3 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office!), I’ll only give a brief example: 

 

 
 
 
 
          
 
 
 

Enqueue Dequeue 

Computer Science 

4 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

 
 
 
 
          
 
 
 

Enqueue Dequeue 5 



10/2/16 

3 

Computer Science 

5 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

enqueue(7);   

 
 
 
 
          
 
 
 

Enqueue Dequeue 5 7 

Computer Science 

6 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

enqueue(7);  

enqueue(2);  

 
 
 
 
          
 
 
 

Enqueue Dequeue 5 7 2 



10/2/16 

4 

Computer Science 

7 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

enqueue(7);  

enqueue(2);  

int k = dequeue();  

 

  

 
 
 
 
          
 
 
 

Enqueue Dequeue 

k = 5 

7 2 

Computer Science 

8 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

enqueue(7);  

enqueue(2);  

int k = dequeue();  

enqueue(8);  

  

  

 
 
 
 
          
 
 
 

Enqueue Dequeue 

k = 5 

7 2 8 



10/2/16 

5 

Computer Science 

9 

Queue ADT 

This means that instead of reversing the order of the items, as with a stack, they remain 
in the same order; since you have stood in lines many times at Starbucks (or outside my 
office), I’ll only give a brief example: 

 

enqueue(5); 

enqueue(7);  

enqueue(2);  

int k = dequeue();  

enqueue(8); 

enqueue( dequeue() )  

  

  

 
 
 
 
          
 
 
 

Enqueue Dequeue 

k = 5 

2 8 7 

Computer Science 

10 

Queue ADT 

Queues occur all the time, in real life: 

 

 

 

 

 

 

And in computer systems (CPUs and Networks): 

 

 

 

 

In fact, anywhere where one service is desired by many, and must be fairly distributed...   

there is a whole branch of math called “queueing theory” which you will learn about in CS 
237 and CS 350..... 

 

  

  

 
 
 
 
          
 
 
 



10/2/16 

6 

Computer Science 

Queue ADT 

The informal interface for a Queue is similar to that for a stack: 

 

public void enqueue(int n) --  Insert n at the read of the queue 

 

public int dequeue() --  Remove the integer at the front of the queue and return it 

 

public int peek() --  Return the number at the front of the queue without removing it 

 

public int size() -- Return the number of integers in the queue 

 

public boolean isEmpty() – Return true if the queue is empty and false otherwise 

 

 

 
 

Enqueue Dequeue 

Computer Science 

12 

Array-based Implementation of Queues 

The Java Interface (subject of today’s lab) for such an ADT is as follows:

// Queueable Interface

public interface Queueable {

void enqueue(int n);     // insert at the rear of the queue

int dequeue();           // Remove and return head of queue

     int peek();              // Return head of queue without removing

boolean isEmpty();

int size();              // returns number of integers in queue

}

 
 
 
 
    How to implement this with arrays? 
 
 
 
 

Enqueue Dequeue 



10/2/16 

7 

Computer Science 

13 

Array-based Implementation of Integer Queues 

To implement an array-based queue for ints, here is the first thing you might think of.....

 
 
 
 
    
 
 
 int dequeue() {

   int temp = A[front];
   ++front;
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}

next front 

9 6 5 4 3 2 1 08 7

A: 592

void enqueue(int k) {
   A[next] = k;
   ++next;
}

int size() {
   return (next – front);
}

Computer Science 

14 

Array-based Implementation of Integer Queues 

But there is an obvious problem, and not so trivial..... running off the end of the array!

 
 
 
 
    
 
 
 

int dequeue() {
   int temp = A[front];
   ++front;
   return temp;
}

Boolean isEmpty() {
   return (size() == 0);
}

next front 

9 6 5 4 3 2 1 08 7

A: 592

void enqueue(int k) {
    A[next] = k;
    ++next;
}
int size() {
   return (next – front);
}

25 91 7-3 10



10/2/16 

8 

Computer Science 

15 

Array-based Implementation of Integer Queues 

What solutions could we come up with for this problem? 

 

Well, there are several: 

 

Bad:  Resize the array so you don’t run off the end.  But then your array grows 
and grows and grows! 

 

Good: Each time you dequeue, shift all the data over (similarly with how a queue 
is managed in Starbucks: when the person at the head of the line leaves, 
everyone moves up!).  A natural solution, but if the queue is very large, each 
dequeue takes a long time, since you have to touch every data item and move it.  

 

 
 
 
 
    
 
 
 

Computer Science 

16 

Array-based Implementation of Integer Queues 

So, if you have: 

 

 

 

 

 

 

    And you dequeue the -3, , you need to shift the queue members to the right (towards 0) 
one slot: 
 

next front 

9 6 5 4 3 2 1 08 7

A: -3 15 25 91 7-3 200

next front 

9 6 5 4 3 2 1 08 7

A: 1 5525 91 7-3 200



10/2/16 

9 

Computer Science 

17 

Array-based Implementation of Integer Queues 

 

Good: Each time you dequeue, shift all the data over (similarly with how a queue 
is managed in Starbucks: when the person at the head of the line leaves, 
everyone moves up!).  A natural solution, but if the queue is very large, each 
dequeue takes a long time, since you have to touch every data item and move it. 

 

Problem:  For EVERY dequeue, you have to move EVERY number; we would like 
to avoid constantly moving the items….. so:  

 

Best:  Consider the array to be in a circle, with each end “glued” together, so that 
you never run off the array….. 

 
 
 
 
    
 
 
 

Computer Science 

18 

Array-based Implementation of Queues 

In the ring or circular buffer approach, when we reach the end of the array we wrap 
around to the beginning:

next = 0 
front = 0 

9

6
5 4

3

2

1
0

8

7

A: 

int size = 0;
int front = 0; 
int next = 0;  

size = 0  

In the fill count 
version of  
circular buffer, we 
keep track of the 
number of 
elements: 

How do we move the pointers front and next around the ring? 



10/2/16 

10 

Computer Science 

19 

Array-based Implementation of Queues 

The standard solution is to wrap around to the beginning of the array, creating a 
circular buffer:

next = 0 
front = 0 

9

6
5 4

3

2

1
0

8

7
int size = 0;
int front = 0; 
int next = 0;  

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

next = nextSlot(next); 

Computer Science 

20 

Array-based Implementation of Queues 

The standard solution is to wrap around to the beginning of the array, creating a 
circular buffer:

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

next = 0 
front = 0 

9

6
5 4

3

2

1
0

8

7
int size = 0;
int front = 0; 
int next = 0;  

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}



10/2/16 

11 

Computer Science 

21 

Array-based Implementation of Queues 

void enqueue(int n) {
     A[next] = n;
     next = nextSlot(next);
     ++size; 
}

next = 1 

front = 0 

9

6
5 4

3

2

1
0

8

7

size = 1  
enqueue(5);

5

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

Computer Science 

22 

Array-based Implementation of Queues 

next = 2 

front = 0 

9

6
5 4

3

2

1
0

8

7

size = 2  
enqueue(5);
enqueue(7);

5

7

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
     A[next] = n;
     next = nextSlot(next);
     ++size; 
}



10/2/16 

12 

Computer Science 

23 

Array-based Implementation of Queues 

next = 8 front = 0 

9

6
5 4

3

2

1
0

8

7

A: 
size = 8  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);

5

7

12

-3

50

34

9

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
     A[next] = n;
     next = nextSlot(next);
     ++size; 
}

Computer Science 

24 

Array-based Implementation of Queues 

next = 8 front = 0 

9

6
5 4

3

2

1
0

8

7

A: 
size = 8  

5

7

12

-3

50

34

9

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

int dequeue() {
  int temp = A[front];
  front = nextSlot(front); 
  --size; 
  return temp;
}
 

void enqueue(int n) {
     A[next] = n;
     next = nextSlot(next);
     ++size; 
}



10/2/16 

13 

Computer Science 

25 

Array-based Implementation of Queues 

next = 8 
front = 1 

9

6
5 4

3

2

1
0

8

7

size = 7  

dequeue() => 5 5

7

12

-3

50

34

9

// To move a pointer:

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

int dequeue() {
  int temp = A[front];
  front = nextSlot(front); 
  --size; 
  return temp;
}
 

void enqueue(int n) {
     A[next] = n;
     next = nextSlot(next);
     ++size; 
}

Computer Science 

26 

Array-based Implementation of Queues 

next = 8 

front = 6 

9

6
5 4

3

2

1
0

8

7

A: 

size = 2  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);

dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5 
dequeue(); => 0
 
 

5

7

12

-3

50

34

9

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;  

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

int size() {
   return size;
} 

// can still underflow!
int dequeue() {
   int temp = A[front];
   front = nextSlot(front); 
   --size; 
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}



10/2/16 

14 

Computer Science 

27 

Array-based Implementation of Queues 

next = 2 

front = 6 

9

6
5 4

3

2

1
0

8

7

A: 

size = 6  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);
dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5 
dequeue(); => 0

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);

Etc....
 
 

2

0

12

-3

50

34

9

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;  

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

int size() {
   return size;
} 

// can still underflow!
int dequeue() {
   int temp = A[front];
   front = nextSlot(front); 
   --size; 
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}

2

45

Computer Science 

28 

Array-based Implementation of Queues 

next = 6 

front = 6 

9

6
5 4

3

2

1
0

8

7

size = 10  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);
dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5 
dequeue(); => 0

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);
enqueue(1);
enqueue(2);
enqueue(3);
enqueue(4);
 
 

2

0

1

2

34

34

9

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;  

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

int size() {
   return size;
} 

// can still underflow!
int dequeue() {
   int temp = A[front];
   front = nextSlot(front); 
   --size; 
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}

2

45

Note: Can’t distinguish full or 
empty from the pointers 
alone, that is why we keep 
track of the size! 



10/2/16 

15 

Computer Science 

29 

Array-based Implementation of Queues 

next = 6 

front = 6 

9

6
5 4

3

2

1
0

8

7

size = 0  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);
dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5 
dequeue(); => 0

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);
enqueue(1);
enqueue(2);
enqueue(3);
enqueue(4);
 
 

2

0

1

2

34

34

9

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;  

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

int size() {
   return size;
} 

// can still underflow!
int dequeue() {
   int temp = A[front];
   front = nextSlot(front); 
   --size; 
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}

2

45

Note: Can’t distinguish full or 
empty from the pointers 
alone, that is why we keep 
track of the size! 

Computer Science 

30 

Array-based Implementation of Queues 

next = 6 

front = 6 

9

6
5 4

3

2

1
0

8

7

size = 0  

enqueue(5);
enqueue(7);
enqueue(12);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);
dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5 
dequeue(); => 0

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);
enqueue(1);
enqueue(2);
enqueue(3);
enqueue(4);
 
 

2

0

1

2

34

34

9

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;  

int nextSlot(int k) {
    return ((k + 1) % A.length);
}

void enqueue(int n) {
    A[next] = n;
    next = nextSlot(next);
    ++size; 
}

int size() {
   return size;
} 

// can still underflow!
int dequeue() {
   int temp = A[front];
   front = nextSlot(front); 
   --size; 
   return temp;
}

boolean isEmpty() {
   return (size() == 0);
}

2

45

Note: Can’t distinguish full or 
empty from the pointers 
alone, that is why we keep 
track of the size! 

Can solve overflow by 
resizing but it can still 
underflow! 



10/2/16 

16 

Computer Science 

31 

Array-based Implementation of Queues 

Circular or ring buffers are the standard technique for implementing queues and buffers in 
operating systems and many, many other applications!   
 

Computer Science 

32 

Queue ADT: Two Important Variations 

The Deque (“deck”) ADT is a “double-ended queue” in which you can insert or remove 
from either end; it is either a queue going in both directions, or two stacks stuck 
together: 

 

enqueueRear(k):    Insert the key k in the rear 

dequeueRear():      Remove and return the item from the rear of the list 

enqueueFront(k):    Insert the key k in the front 

dequeueFront():      Remove and return the item from the front of the list 

 
 
 
 
       
 
 
 

enqueueRear dequeueFront 

dequeueRear enqueueFront 



10/2/16 

17 

Computer Science 

33 

Queue ADT: Two Important Variations 

The Priority Queue ADT is a queue in which the list is always kept ordered; this is 
useful when elements in the queue have a different need or right for service; the only 
change is in the enqueue method; they are typically called by different names: 

 

insert(k):    Insert the key k in order in the list 

 

getMax():      Remove and return the item in the front of the list 

 
 
 
 
       
 
 
 

insert getMax 

Computer Science 

34 

Queue ADT: Two Important Variations 

The Priority Queue ADT is a queue in which the list is always kept ordered; this is 
useful when elements in the queue have a different need or right for service; the 

interface is usually defined with somewhat different names for the two basic operations, 

depending on whether it is a “maxQueue” (ordered so that biggest go to the front) or 
“minQueue” (smallest go to front).  

 

insert(k):    Insert the key k in order in the list  (cf. enqueue(k)) 

 

getMax() or getMin():      Remove and return the item in the front of the list (cf. 
dequeue()) 

 
 
 
 
       
 
 
 

insert(...) getMax()   
OR 
getMin() 



10/2/16 

18 

Computer Science 

35 

Priority Queue ADT 

 

insert(5); 

 
 
 
 
          
 
 
 

insert getMax 5 

Computer Science 

36 

Priority Queue ADT 

 

insert(5); 

insert(7);   

 
 
 
 
          
 
 
 insert getMax 7 5 



10/2/16 

19 

Computer Science 

37 

Priority Queue ADT 

 

insert(5); 

insert(7);  

insert(2);  

 
 
 
 
          
 
 
 

insert getMax 7 5 2 

Computer Science 

38 

Priority Queue ADT 

 

insert(5); 

insert(7);  

insert(2);  

int k = getMax();  

 

  

 
 
 
 
          
 
 
 

insert getMax 

k = 7 

5 2 



10/2/16 

20 

Computer Science 

39 

Priority Queue ADT 

 

insert(5); 

insert(7);  

insert(2);  

int k = getMax();  

enqueue(8);  

  

  

 
 
 
 
          
 
 
 

insert getMax 

k = 7 

8 5 2 

Computer Science 

40 

Priority Queue ADT 

 

insert(5); 

insert(7);  

insert(2);  

int k = getMax();  

insert(8); 

insert( getMax() )  

  

  

 
 
 
 
          
 
 
 

insert getMax 

k = 7 

8 5 2 


