CS 112 — Introduction to Computing II

Wayne Snyder
Computer Science Department
Boston University

Today
Queues
Implementing a queue using a Circular (or Ring) Buffer;
Deques
Priority Queues

Reading: Wikipedia article on “Circular Buffers”

Next:
Analysis of Algorithms: How to measure the running time of algorithms
Iterative sorting: Selection Sort and Insertion Sort ZXON Uy
9 &
7
=1
2
e
,,
Queue ADT ot [[e
a2 T <
Computer Science

The Queue ADT is a simple variant of a stack which makes a simple change which in
fact changes everything: instead of moving items in and out of the same “end” of the list,
as in a stack:

Push Pop

Instead you use different ends of the list:

Enqueue) = Dequeue

10/2/16

ON u,
2 "//%

ALISS

Queue ADT .

Computer Science

This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office!), I'll only give a brief example:

Enqueue = Dequeue
3
O"‘ON UN/L
2
Queue ADT o e

Computer Science

This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:

enqueue(5);

Enqueue) 5 = Dequeue

10/2/16

10/2/16

O"‘ON UN’L
) ®
Queue ADT Sl Lo et
Computer Science
This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:
enqueue(5);
enqueue(7);
ENQUEUE s, 7 5 m— Dequeue
5
ON u,
470‘3‘ Nlb“;
Queue ADT gl Lo Jom®
Computer Science

This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:

enqueue(5);
enqueue(7);

enqueue(2);

ENQUEUE sy 2 7 5) Dequeue

10/2/16

O"‘ON UN’L
) ®
Queue ADT ao [o
Computer Science
This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:
enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();
ENQUEUE s, 2 7 m— Dequeue
k=5
7
ON U,
470‘3‘ Nlb“;
Queue ADT gl Lo Jom®
Computer Science

This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();
enqueue(8);

ENQUEUE sy 8 2 7) Dequeue

k=5

ON u,
o= "//%

ALISS

Queue ADT .

Computer Science

This means that instead of reversing the order of the items, as with a stack, they remain
in the same order; since you have stood in lines many times at Starbucks (or outside my
office), I'll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();
enqueue(8);

enqueue(dequeue())

ENQUEUE s, 7 8 2 m— Dequeue
k=5
9
N
05(0, u"//b%
Queue ADT o am
Computer Science

Queues occur all the time, in real life:

Figere 1: Socple Operssing Syvtem
In fact, anywhere where one service is desired by many, and must be fairly distributed...
there is a whole branch of math called “queueing theory” which you will learn about in CS

237 and CS 350.....
10

10/2/16

‘J(ON Uy,
N)
Queue ADT ot
ComgumrSc@nce
The informal interface for a Queue is similar to that for a stack:
public void enqueue (int n) -- Insert n at the read of the queue
public int dequeue () -- Remove the integer at the front of the queue and return it

public int peek () -- Return the number at the front of the queue without removing it

public int size () -- Return the number of integers in the queue

public boolean isEmpty() - Return true if the queue is empty and false otherwise

Enqueue) = Dequeue

Array-based Implementation of Queues (1l i e

ol A
Computer Science

The Java Interface (subject of today’s lab) for such an ADT is as follows:

// Queueable Interface

public interface Queueable {

void enqueue(int n);
int dequeue();

int peek();

boolean isEmpty();

int size();

// insert at the rear of the queue
// Remove and return head of queue
// Return head of queue without removing

// returns number of integers in queue

Enqueue s, |

| ——, Dequeue

How to implement this with arrays?

12

10/2/16

ON y,
0‘:‘ ’V/%

Array-based Implementation of Integer Queues 1 Y

9 8 7 6 5 4 3 2 1 0

T I

next front
void enqueue(int k) { int dequeue() {
Alnext] = k; int temp = A[front];
++next; ++front;
} return temp;
}
int size() {
return (next — front); boolean isEmpty() {
} return (size() == 0);
} 13

ON y,
0‘:‘ ’V/%

3.4

ALIS

Array-based Implementation of Integer Queues "

B ladialn

Computer Science

But there is an obvious problem, and not so trivial..... running off the end of the array!

9 8 7 6 5 4 3 2 1 0

A: ol 1| -3

T T

next front int dequeue() {

int temp = A[front];
++front;

return temp;

}

void enqueue(int k) {
A[next] = k;
++next;

}

int size() {

Boolean isEmpty() {
return (next — front);

return (size() == 0);

} }

14

10/2/16

10/2/16

ON y,
O"‘ Nlb«‘

Array-based Implementation of Integer Queues FIA ,n\

ALISS

Computer Science

What solutions could we come up with for this problem?

Well, there are several:

Bad: Resize the array so you don't run off the end. But then your array grows
and grows and grows!

Good: Each time you dequeue, shift all the data over (similarly with how a queue
is managed in Starbucks: when the person at the head of the line leaves,
everyone moves up!). A natural solution, but if the queue is very large, each
dequeue takes a long time, since you have to touch every data item and move it.

15

ON y,
O"‘ Nlb«‘

Array-based Implementation of Integer Queues FIA ,n\

ALISS

Computer Science

So, if you have:

9 8 7 6 5 4 3 2 1 0

A: 5 11| -3
? ?
next front

And you dequeue the -3, , you need to shift the queue members to the right (towards 0)
one slot:

9 8 7 6 5 4 3 2 1 0

A: 5 | 1

1

next front
16

10/2/16

ON y,
O"‘ Nlb«‘

Array-based Implementation of Integer Queues

ALISS

Computer Science

Good: Each time you dequeue, shift all the data over (similarly with how a queue
is managed in Starbucks: when the person at the head of the line leaves,
everyone moves up!). A natural solution, but if the queue is very large, each
dequeue takes a long time, since you have to touch every data item and move it.

Problem: For EVERY dequeue, you have to move EVERY number; we would like
to avoid constantly moving the items..... so:

Best: Consider the array to be in a circle, with each end “glued” together, so that
you never run off the array.....

17

ON y,
O"‘ Nlb«‘

Array-based Implementation of Queues o [
Computer Science
In the ring or circular buffer approach, when we reach the end of the array we wrap
around to the beginning: front=0
next =0 In the fill count
A: | l / version of
! circular buffer, we

keep track of the
number of
elements:

size =0

int size = 0;
int front = 0;
int next = 0;

How do we move the pointers front and next around the ring?

18

ON y,
O"‘ Nlb«‘

Array-based Implementation of Queues [o il
Corﬁguter Science
The standard solution is to wrap around to the beginning of the array, creating a
circular buffer: front=0

next=0

14

int size = 0;
int front = 0;
int next = 0;

// To move a pointer:

int nextSlot(int k) {

return ((k + 1) % A.length); next = nextSlot(next);

} 19
O"‘ON UN’L
. @ G
Array-based Implementation of Queues o [
Computer Science
The standard solution is to wrap around to the beginning of the array, creating a
circular buffer: front=0
next=0
14
[
int size = 0; 3
int front = 0;
int next = 0;
// To move a pointer: void enqueue(int n) {
A[next] = n;
int nextSlot(int k) { next = nextSlot(next);
return ((k + 1) % A.length); ttsize;
} 20

10/2/16

10

10/2/16

Array-based Implementation of Queues (. i

ON y,
)3 4%
&) %

ALISS

Computer Science

enqueue(5);

// To move a pointer

int nextSlot(int k) {

return ((k + 1) % A.length);

size =1

oid enqueue(int n) {
A[next] = n;
next = nextSlot(next);

} ++size;
}
21

O“"ON UN’L

- Q <

Array-based Implementation of Queues [[il

Computer Science
front=0

enqueue(5);
enqueue(7);

// To move a pointer

int nextSlot(int k) {

return ((k + 1) % A.length);

}

| size = 2
-
I

oid enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

22

1

10/2/16

Array-based Implementation of Queues

S SOPY Ve
Computer Science

front=0

next =8

enqueue(5); /\:
enqueue(7);
enqueue(1l2);
enqueue(-3);
enqueue(5);
enqueue(0);
enqueue(34);
enqueue(9);

// To move a pointer

int nextSlot(int k) {
return ((k + 1) % A.length);

oid enqueue(int n) {
A[next] = n;
next =

} ++size;

size =8

nextSlot (next);

23

Array-based Implementation of Queues

el P A,
Computer Science

front=0

next =8

// To move a pointer

int nextSlot(int k) {
return ((k + 1) % A.length);

int dequeue() {

oid enqueue(int n) {
A[next] = n;
next =

} ++size;

size =8

int temp = A[front];
front = nextSlot(front);
--size;

return temp;

nextSlot (next);

24

12

ON y,
d? Nh%

3.4

Array-based Implementation of Queues ol [ol
Computer Science
next=8 front = 1 size=7
—!
dequeue() => 5

int dequeue() {
int temp = A[front];
front = nextSlot(front);

--size;
return temp;
7 }
6 3
5
// To move a pointer: «
void enqueue(int n) {
int nextSlot(int k) { A[next] = n;
return ((k + 1) % A.length); next = nextSlot(next);
} ++size;
}
25

ON y,
d? Nh%

3.4

Array-based Implementation of Queues -
y p Q R
Computer Science
int [] A = new int[10];
size = 2 %nt size = 0;)
int front = 0; int next = 0;
next = 8

int nextSlot(int k) {
return ((k + 1) % A.length);

}

void enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

}

int size() {
return size;

}

dequeue(); => 5
dequeue(); => 7
dequeue(); => 12
dequeue(); => -3
dequeue(); => 5
dequeue(); => 0

// can still underflow!

int dequeue() {
int temp = A[front];
front = nextSlot(front);
--size;
return temp;

}

boolean isEmpty() {
return (size() == 0);

}
26

10/2/16

13

ON y,
d? Nh%

Array-based Implementation of Queues Ll sm %
Computer Science |
int []1 A = new int[10];
SiZe - 6 int size = 0;

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);

Etc....

next = 2

int front = 0; int next = 0;

int nextSlot(int k) {
return ((k + 1) % A.length);
}

void enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

}

int size() {
return size;

}

// can still underflow!

int dequeue() {
int temp = A[front];
front = nextSlot(front);
--size;
return temp;

}

boolean isEmpty() {

return (size() == 0);
}
27
d;ON UM%
- <,
Array-based Implementation of Queues [[dwa®
Computer Science
Note: Can’t distinguish full or int 112 = new int[10];

enqueue(2);
enqueue(45);
enqueue(2);
enqueue(0);
enqueue(l);
enqueue(2);
enqueue(3);
enqueue(4);

empty from the pointers
alone, that is why we keep
track of the size!

size =10

int front = 0; int next = 0;

int nextSlot(int k) {
return ((k + 1) % A.length);

}

void enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

}

int size() {
return size;

}

// can still underflow!

int dequeue() {
int temp = A[front];
front = nextSlot(front);
--size;
return temp;

}
boolean isEmpty() {
return (size() == 0);
}
28

10/2/16

14

ON y,
d? Nh%

3.4

Array-based Implementation of Queues gl (o i
Computer Science
Note: Can’t distinguish full or e L] B 7 mew dnel1017

enqueue(2);
enqueue (45)
enqueue(2);
enqueue(0);
enqueue(l);
enqueue(2);
enqueue(3);
enqueue(4);

~e

empty from the pointers
alone, that is why we keep
track of the size!

size=0
>
front=6
next =6

i
int front = 0; int next = 0;

int nextSlot(int k) {
return ((k + 1) % A.length);
}

void enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

}

int size() {
return size;

}

// can still underflow!

int dequeue() {
int temp = A[front];
front = nextSlot(front);
--size;
return temp;

}

boolean isEmpty() {
return (size() == 0);

}
29

Array-based Implementation of Queues

ON y,
d? Nh%

ALISS

, A . u
‘I‘?j{-;ﬁ!ﬁ;ﬁ;ﬂ
Computer Science

enqueue(2);
enqueue (45)
enqueue(2);
enqueue(0);
enqueue(l);
enqueue(2);
enqueue(3);
enqueue(4);

~e

Note: Can't distinguish full or
empty from the pointers
alone, that is why we keep
track of the size!

size=0
N
front=6

next =6
Can solve overflow by
resizing but it can still
underflow!

int [] A = new int[10];
int size = 0;
int front = 0; int next = 0;

int nextSlot(int k) {
return ((k + 1) % A.length);
}

void enqueue(int n) {
A[next] = n;
next = nextSlot(next);
++size;

}

int size() {
return size;

}

// can still underflow!

int dequeue() {
int temp = A[front];
front = nextSlot(front);
--size;
return temp;

}

boolean isEmpty() {
return (size() == 0);

}
30

10/2/16

15

Array-based Implementation of Queues / L)

Computer Science

Circular or ring buffers are the standard technique for implementing queues and buffers in
operating systems and many, many other applications!

W crodar fer == —

Weo Images Maps Shopping More- Search tods

Queue ADT: Two Important Variations (L)

Computer Science

The Deque (“deck”) ADT is a “double-ended queue” in which you can insert or remove
from either end; it is either a queue going in both directions, or two stacks stuck

together:

enqueueRear(k): Insert the key k in the rear

dequeueRear(): Remove and return the item from the rear of the list
enqueueFront(k): Insert the key k in the front

dequeueFront(): Remove and return the item from the front of the list

enqueueRear
\ |
dequeueRear /

dequeueFront
el

enqueueFront

32

10/2/16

16

ON y,
O"‘ ’V/%

Queue ADT: Two Important Variations b [T

ALISS

Computer Science

The Priority Queue ADT is a queue in which the list is always kept ordered; this is
useful when elements in the queue have a different need or right for service; the only
change is in the enqueue method; they are typically called by different names:

insert(k): Insert the key k in order in the list

getMax(): Remove and return the item in the front of the list

insert — — getMax

33

ON y,
O"‘ ’V/%

Queue ADT: Two Important Variations [] e

ALISS

Computer Science

The Priority Queue ADT is a queue in which the list is always kept ordered; this is
useful when elements in the queue have a different need or right for service; the
interface is usually defined with somewhat different names for the two basic operations,
depending on whether it is a “*maxQueue” (ordered so that biggest go to the front) or
“minQueue” (smallest go to front).

insert(k): Insert the key k in order in the list (cf. enqueue(k))

getMax() or getMin(): Remove and return the item in the front of the list (cf.
dequeue())

insert(...) —| — getMax()
OR

getMin()

34

10/2/16

17

T A o/ AN
Priority Queue ADT ~Nn
Comg;.lt‘er Science
insert(5);
insert — —) getMax
35
T A 5/ NG\
Priority Queue ADT o
Comg;.lt‘er Science
insert(5);
insert(7);
insert — —) getMax

36

10/2/16

18

10/2/16

040!" Ups
T A L) <
Priority Queue ADT o
Comg;.lter Science
insert(5);
insert(7);
insert(2);
iNSert m— 2 5 7 — getMax
37
040!" Ups
T A L) <
Priority Queue ADT M%
Comg;.lter Science
insert(5);
insert(7);
insert(2);

int k = getMax();

iNSert m— 2 5 — getMax

38

19

ON u,
2 "//%

3.4

Priority Queue ADT o am®
Corlng;.lter Science
insert(5);
insert(7);
insert(2);
int k = getMax();
enqueue(8);
insert — 5 — getMaX
k=7
39
&= UM%
Priority Queue ADT ol %
Corlng;.lter Science
insert(5);
insert(7);
insert(2);
int k = getMax();
insert(8);
insert(getMax())
insert —, 5 — getMaX

40

10/2/16

20

