
10/6/16

1

Computer Science

CS 112 – Introduction to Computing II

Today

 Conclusions on Iterative Sorting:

 Complexity of Insertion Sort

 Recursive Sorting Methods and their Complexity:

 Mergesort

Conclusions on sorting algorithms and complexity

Next Time:

Introduction to Linked Lists: Reference types on steroids!

Iterative algorithms on Linked Lists

(Reading: On the web site)

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Conclusions on Complexity of Iterative Sorts

Recall why Selection sort (in all cases) is Θ(N2) :

for (int i = 0; i < N; i++) {

 for (int j = i+1; j < N; j++) {

 …. Θ(1) ….
 }

}

7
2
1
8
5

1
2
7
8
5

1
2
7
8
5

1
2
5
8
7

1
2
5
7
8

0 … i … N-1

j
N2 / 2 – N/2
= Θ(N2)

i+1

N-1

10/6/16

2

Computer Science

3

Sorting: Insertion Sort

Now let’s look at Insertion Sort…..

Let’s count the number of calls to less(...) in the worst case, which in fact is a reverse
sorted list....

Observe that the outer loop runs N-1 times, and less is called

 1 time, then 2 times, then (N-2) times, then finally (N-1) times.

public static void insertionSort(int[] a) {

 int N = a.length;

 for (int i = 1; i < N; i++) {

 for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {

 swap(a, j, j-1);

 }

 }

}

Computer Science

4

Complexity of Insertion Sort

8
7
5
2
1

7
8
5
2
1

5
7
8
2
1

2
3
7
8
1

1
2
5
7
8

Now let’s look at the diagram, coloring a slot blue if it was compared with the
new key being inserted:

 1 + 2 + 3 + 4 = 10 calls to less(...)

It is the same as for Selection Sort: N2/2 – N/2 calls to less(....)

This is for a reverse sorted list! What about an already sorted list?

10/6/16

3

Computer Science

5

Complexity of Insertion Sort

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

For an already sorted list, Insertion Sort does something very smart: it just
checks to see that each key is not less than the one above it, and doesn’t go
any further!

 1 + 1 + 1 + 1 = 4 calls to less(...)

Computer Science

6

For the best case of Insertion Sort, we only do N-1 comparisons---one comparison per loop---
to check that the given item is already in the correct place, so it is Θ(N)

Punchline: Insertion Sort adapts to its input, and can less work than Selection Sort, except in
the worst case of a reverse-sorted list, where they both do the same!

0 … i … N-1

j
N-1

Conclusions on Complexity of Iterative Sorts

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

1
2
5
7
8

10/6/16

4

Computer Science

7

What about the Average Case?

For the worst case of Insertion Sort, observe that the worst thing that can happen is
each number we insert is the smallest we have seen so far:

So at each step of the outer loop, the new item goes all the way up to the top:

Conclusions on Complexity of Iterative Sorts

8
7
5
2
1

7
8
5
2
1

5
7
8
2
1

2
3
7
8
1

1
2
5
7
8

N2 / 2 = Θ(N2)

Computer Science

8

For the Average Case of Insertion Sort, observe that when we insert an arbitrary
number into a ordered list, on average we go half way up:

 insert k into 13 10 9 7 6 4 3 2

So at each step of the outer loop, on average the new item goes half way up to the
top:

N2 / 4 = Θ(N2)

Conclusions on Complexity of Iterative Sorts

10/6/16

5

Computer Science

9

Iterative Sorting: Conclusions on Time Complexity

Algorithm Worst-
case
Input

Worst-
case
Time

Best-
case
Input

Best-
case
Time

Average-
case
Input

Average-
case
Time

Selection
Sort

Any!

Θ(N2)

Any!

Θ(N2)

Any!

Θ(N2)

Insertion
Sort

Reverse
Sorted
List

Θ(N2)

Already
Sorted
List

Θ(N)

Random
List

Θ(N2)

Conclusions:
o  Selection Sort is inflexible and does Θ(N2) comparisons in all cases;
o  Insertion Sort in the worst case does no better than Selection Sort, but adapts

to its input: it performs better the “more sorted” the input it; in the case of an
already sorted list, it simply checks that the list is sorted.

Computer Science

10

Recursive Sorting: Merge Sort

Merge Sort is a relative simple application of recursive (Divide and Conquer) reasoning
to the problem of sorting:

Divide into two
smaller
subproblems:

Solve
subproblems
recursively:

Put the
(sub)solutions
together into a
solution:

10/6/16

6

Computer Science

11

Merge Sort

Merge Sort is a relative simple application of bottom up recursive (Divide and Conquer)
reasoning to the problem of sorting:

Base Case: If the list is empty or has only one element, stop;
Recursive Case: If the list has 2 or more elements, divide in half (best you can), sort each
separately, and then merge the two sorted lists into one sorted list:

 4 8 6 1 7 2 3 5

divide: 4 8 6 1 7 2 3 5

conquer: (recursive calls)

 1 4 6 8 2 3 5 7

merge: 1 2 3 4 5 6 7 8

Computer Science

12

Complexity of Merge Sort

 4 8 6 1 7 2 3 5 Divide and
 Conquer
 4 8 6 1 7 2 3 5

 4 8 6 1 7 2 3 5

 4 8 6 1 7 2 3 5

 4 8 1 6 2 7 3 5

 1 4 6 8 2 3 5 7

 1 2 3 4 5 6 7 8

10/6/16

7

Computer Science

13

Sorting: Merge Sort

 private static void merge(Comparable [] a, Comparable [] aux, int lo, int mid, int hi) {
 // copy to aux[]
 for (int k = lo; k <= hi; k++) {
 aux[k] = a[k];
 }

 // merge back to a[]

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid) a[k] = aux[j++]; // left side exhausted
 else if (j > hi) a[k] = aux[i++]; // right side exhaused
 else if (less(aux[j], aux[i])) a[k] = aux[j++]; // smallest on right side
 else a[k] = aux[i++]; // minimal on left side
 }
 }

 // mergesort a[lo..hi] using auxiliary array aux[lo..hi]

 private static void mergeSort(Comparable [] a, Comparable [] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 mergeSort(a, aux, lo, mid);
 mergeSort(a, aux, mid + 1, hi);
 merge(a, aux, lo, mid, hi);
 }

 private static void mergeSort(int[] a) {
 int[] aux = new int[a.length];
 mergeSort(a, aux, 0, a.length-1);
 }

Computer Science

14

Complexity of Merge Sort

Let’s count the number of comparisons (calls to less)

Observe that less is called in only one place, in merge, so we start by thinking about what
happens when we merge two ordered lists.

What is the best thing that can happen when merging two ordered lists?

All the elements in one list are less than the elements in the other list, e.g., in an already
ordered list:

 1 2 3 4 5 6 7 8

How many comparisons?

10/6/16

8

Computer Science

15

Complexity of Merge Sort

Let’s count the number of comparisons (calls to less)

Observe that less is called in only one place, in merge, so we start by thinking about what
happens when we merge two ordered lists.

What is the best thing that can happen when merging two ordered lists?

All the elements in one list are less than the elements in the other list, e.g., in an already
ordered list:

 1 2 3 4 5 6 7 8

How many comparisons? 4 (in general: Θ(N) for N elements)

Computer Science

16

Complexity of Merge Sort

What is the WORST thing that can happen when merging two ordered lists?

The rightmost elements in each list are the two largest elements: and the last comparison must
compare these two:

 1 2 3 7 5 6 4 8

So every element except for the largest has to be compared before moving down.
How many comparisons?

10/6/16

9

Computer Science

17

Complexity of Merge Sort

What is the WORST thing that can happen when merging two ordered lists?

The rightmost elements in each list are the two largest elements: and the last comparison must
compare these two:

 1 2 3 7 5 6 4 8

So every element except for the largest has to be compared before moving down.
How many comparisons? 7 (in general: N-1 or Θ(N) for N elements)

Conclusion: Merge takes linear time, Θ(N), in the number of comparisons.

Check: Suppose we count the number of moves (assignments)? Then obviously each element
is moved once per merge, giving N = Θ(N) moves.

Punchline: Merge takes linear time: Θ(N).

Computer Science

18

Complexity of Merge Sort

Now: how many times is Merge called?

Or:

How many times can you divide a list of size N in half when you Divide before Conquering?

N N/ 2 N/4 ….. 4 2 1

Let’s write it the other way:

 1 2 4 … N

Or:

 20 21 22 ….. 2log(N) = N

Answer: Θ (Log2 N)

10/6/16

10

Computer Science

19

Complexity of Merge Sort

So: Merge takes Θ(N) comparisons in all cases.
You can divide the list of size N in half Θ (Log2 N) times.
Punchline: Mergesort takes Θ (N * Log2 N) comparisons in all cases:

Subproblem
 size

Number of
Subproblems

(Initial Problem)

2  N/2 Θ(N/2 * 2) = Θ(N)

N/2 2 Θ(2 * N/2) = Θ(N)

N 1 Θ(1 * N) = Θ(N)

Number of
Comparisons

Θ (Log2 N)

Computer Science

20

Complexity of Merge Sort

BUT there is another issue other than Time Complexity here:

How much memory does Merge Sort require?

Note that we have to have ANOTHER ARRAY just as big to do the merge step:

So Merge Sort is faster than the iterative sorts in the worst case, but requires twice as much
storage. This may be a factor in large arrays!

2 5 7 9 1 3 6 8

1 2 3 5 6 7 8 9

10/6/16

11

Computer Science

21

Sorting: Conclusions on Time Complexity

Algorithm Worst-
case
Input

Worst-
case Time

Best-
case
Input

Best-case
Time

Average-
case
Input

Average-
case Time

Selection
Sort Any!

Θ(N2) Any!

Θ(N2)

Any!
Θ(N2)

Insertion
Sort

Reverse
Sorted
List

Θ(N2)

Already
Sorted
List

Θ(N)

Random
List

Θ(N2)

Mergesort Complica
ted!

Θ(N*log(N))

Already
Sorted
List

Θ(N*log(N))

Random
List

Θ(N*log(N))

Memory Usage: Selection Sort and Insertion Sort can be done “in place”
in the same array; Merge Sort requires an extra array just as big!

Computer Science

22

Comparing Sorting Algorithms

10/6/16

12

Computer Science

23

Comparing Sorting Algorithms

Computer Science

24

Comparing Sorting Algorithms

10/6/16

13

Computer Science

25

Comparing Sorting Algorithms

Computer Science

26

Comparing Sorting Algorithms

Insertion Sort

10/6/16

14

Computer Science

27

Comparison of Sorting Algorithms: Average Case

Computer Science

28

Timing Java Code

But is counting comparisons the best way to analyze algorithms? What about how much
TIME they take??

This turns out to be a complicated question, because the actual time depends on many, many
factors:
o  How fast is your processor? Do you have more than 1 processor?
o  How many other processes are running? (Example: the Java garbage collector!)
o  How much memory do you have? Does this affect really big inputs?
o  What operating system?
o  Etc., etc., etc.

To do this right, you have to specify ALL these parameters, and run a standard platform with
standard benchmarks; this is in fact done when testing new processors.

But assuming we are running two different algorithms on the same platform, we should be
able to get some interesting results. Let’s think about how to time Java code…..

10/6/16

15

Computer Science

29

Timing Java Code

Here is a simple way to time a region of Java code:

 long startTime = System.currentTimeMillis();

 // some code you want to time

 long endTime = System.currentTimeMillis();

 System.out.println(“Total execution time: “ + (endTime – startTime));

To get more precision, you can do the code 100000 times, then divide by 100000, etc.

Computer Science

30

Timing Java Code

 Here is a sample of what I wrote to time our sorting algorithms:

 for(int i = 5; i <= 200 ; i+=5){

 int[][] a = new int[100000][0];

 for(int j = 0; j < 100000; ++j)

 a[j] = genRandomArray(i);

 long startTime = System.currentTimeMillis();

 for(int j = 0; j < 100000; ++j)

 selectionSort(a[j]); // code to be timed goes here

 long endTime = System.currentTimeMillis();

 System.out.println(i + " " + (endTime - startTime));

 }

10/6/16

16

Computer Science

31

Timing Java Code: Average Case for Actual Time

Computer Science

32

Timing Java Code: Average Case for Actual Time

10/6/16

17

Computer Science

33

Timing Java Code

