1.1 Solving equations

Most math skills boil down to being able to manipulate and solve
equations. Solving an equation means finding the value of the un-
known in the equation.

Check this shit out:

xP—4 =45

To solve the above equation is to answer the question “What is x?”
More precisely, we want to find the number that can take the place
of x in the equation so that the equality holds. In other words, we're
asking,

“Which number times itself minus four gives 45?”

That is quite a mouthful, don’t you think? To remedy this verbosity,
mathematicians often use specialized symbols to describe math op-
erations. The problem is that these specialized symbols can be very
confusing. Sometimes even the simplest math concepts are inacces-
sible if you don’t know what the symbols mean.

What are your feelings about math, dear reader? Are you afraid
of it? Do you have anxiety attacks because you think it will be too
difficult for you? Chill! Relax, my brothers and sisters. There’s noth-
ing to it. Nobody can magically guess the solution to an equation
immediately. To find the solution, you must break the problem into
simpler steps. Let’s walk through this one together.

To find x, we can manipulate the original equation, transforming
it into a different equation (as true as the first) that looks like this:

x = only numbers.

That's what it means to solve an equation: the equation is solved be-
cause the unknown is isolated on one side, while the constants are
grouped on the other side. You can type the numbers on the right-
hand side into a calculator and obtain the numerical value of x.

By the way, before we continue our discussion, let it be noted: the
equality symbol (=) means that all that is to the left of = is equal to
all that is to the right of =. To keep this equality statement true, for
every change you apply to the left side of the equation, you must
apply the same change to the right side of the equation.

To find x, we need to manipulate the original equation into its
final form, simplifying it step by step until it can’t be simplified any
further. The only requirement is that the manipulations we make
transform one true equation into another true equation. In this ex-
ample, the first simplifying step is to add the number four to both
sides of the equation:

X2 —4 +4=145 +4,

which simplifies to
x? = 49.

Now the expression looks simpler, yes? How did I know to perform
this operation? I wanted to “undo” the effects of the operation —4.
We undo an operation by applying its inverse. In the case where the
operation is the subtraction of some amount, the inverse operation
is the addition of the same amount. We’ll learn more about function
inverses in Section 1.4.

We're getting closer to our goal of isolating x on one side of the
equation, leaving only numbers on the other side. The next step is to
undo the square x? operation. The inverse operation of squaring a
number x2 is to take its square root 4/, so that’s what we’ll do next.

We obtain
Va2 = +/49.

Notice how we applied the square root to both sides of the equation?
If we don’t apply the same operation to both sides, we’ll break the
equality!

The equation Vx2 = /49 simplifies to

5| =7:

What's up with the vertical bars around x? The notation |x| stands
for the absolute value of x, which is the same as x except we ignore
the sign that indicates whether x is positive or negative. For example
5| = 5and | — 5| = 5, too. The equation |x| = 7 indicates that both
x = 7 and x = —7 satisfy the equation x? = 49. Seven squared is 49,
72 = 49, and negative seven squared is also 49, (—7)2 = 49, because
the two negative signs cancel each other out.
The final solutions to the equation x2 — 4 = 45 are

r=7 and x = -7.

Yes, there are two possible answers. You can check that both of the
above values of x satisfy the initial equation x? — 4 = 45.

If you are comfortable with all the notions of high school math
and you feel you could have solved the equation x*—4 = 45 on
your own, then you can skim through this chapter quickly. If on the
other hand you are wondering how the squiggle killed the power
two, then this chapter is for you! In the following sections we will
review all the essential concepts from high school math that you will
need to power through the rest of this book. First, let me tell you
about the different kinds of numbers.
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1.2 Numbers

In the beginning, we must define the main players in the world of
math: numbers.

Definitions

Numbers are the basic objects we use to count, measure, quantify,
and calculate things. Mathematicians like to classify the different
kinds of number-like objects into categories called sets:

e The natural numbers: N = {0,1,2,3,4,5,6,7, ... }

The integers: Z = {...,—3, -2, =1.,0,1,2,8,.-+}

The rational numbers: Q = 53—, 272—, 1.5,0.125,-7, ...}

e The real numbers: R = {—1,0,1, \2,e,m, 494..., ...}
The complex numbers: C = {-1,0,1,i,1 44,2 +3i,... }

These categories of numbers should be somewhat familiar to you.
Think of them as neat classification labels for everything that you
would normally call a number. Each group in the above list is a set.
A set is a collection of items of the same kind. Each collection has
a name and a precise definition for which items belong in that col-
lection. Note also that each of the sets in the list contains all the sets
above it, as illustrated in Figure 1.2. For now, we don’t need to go
into the details of sets and set notation, but we do need to be aware
of the different sets of numbers.
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Figure 1.2: An illustration of the nested containment structure of the dif-
ferent number sets. The set of natural numbers is contained in the set of
integers, which in turn is contained in the set of rational numbers. The set of
rational numbers is contained in the set of real numbers, which is contained
in the set of complex numbers.

Why do we need so many different sets of numbers? Each set of
numbers is associated with more and more advanced mathematical
problems.

The simplest numbers are the natural numbers IN, which are suf-
ficient for all your math needs if all you're going to dois count things.
How many goats? Five goats here and six goats there so the total is
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| I goats. The sum of any two natural numbers is also a natural num-
ber.

As soon as you start using subtraction (the inverse operation of
addition), you start running into negative numbers, which are num-
bers outside the set of natural numbers. If the only mathematical op-
crations you will ever use are addition and subtraction, then the set of
integers Z = {...,—2,-1,0,1,2,...} will be sufficient. Think about
il. Any integer plus or minus any other integer is still an integer.

You can do a lot of interesting math with integers. There is an en-
lire field in math called number theory that deals with integers. How-
cver, to restrict yourself solely to integers is somewhat limiting—a
rotisserie menu that offers 1 of a chicken would be totally confusing.

If you want to use division in your mathematical calculations,
you’ll need the rationals Q. The set of rational numbers corresponds
lo all numbers that can be expressed as fractions of the form 7 where
m and n are integers, and n # 0. You can add, subtract, multiply,
and divide rational numbers, and the result will always be a rational
number. However, even the rationals are not enough for all of math!

In geometry, we can obtain irrational quantities like V2 (the di-
agonal of a square with side 1) and 7 (the ratio between a circle’s
circumference and its diameter). There are no integers x and y such
that v/2 = %, therefore we say that /2 is irrational (not in the set Q).
An irrational number has an infinitely long decimal expansion that
doesn’t repeat. For example, 7 = 3.141592653589793 . .. where the
dots indicate that the decimal expansion of 7t continues all the way
(o infinity.

Combining the irrational numbers with the rationals gives us all
the useful numbers, which we call the set of real numbers R. The set
IR contains the integers, the rational numbers Q, as well as irrational
numbers like /2 = 1.4142135. . .. By using the reals you can compute
pretty much anything you want. From here on in the text, when I say
number, I mean an element of the set of real numbers IR.

The only thing you can’t do with the reals is to take the square
root of a negative number—you need the complex numbers C for
that. We defer the discussion on complex numbers until Section 1.14.

Operations on numbers

Addition

You can add numbers. I'll assume you're familiar with this stuff:
2+3=5 45+56=101, 9999 +1 = 10000.

You can visualize numbers as sticks of different length. Adding num-
bers is like adding sticks together: the resulting stick has a length




14 MATH FUNDAMENTALS

equal to the sum of the lengths of the constituent sticks, as illustrated
in Figure 1.3.

L | J+I 1 1 ] = L Il 1 1 ] PR |

Figure 1.3: The addition of numbers corresponds to adding lengths.

Addition is commutative, which means that a + b = b + a. In other

words, the order of the numbers in a summation doesn’t matter. Itis
also associative, which means that if you have a long summation like
a + b + ¢ you can compute it in any order (a +b) + ¢ or a + (b+c),
and you’'ll get the same answer.

Subtraction

Subtraction is the inverse operation of addition:
2—-3=-1, 45-56=-11, 999-1=998.

Unlike addition, subtraction is not a commutative operation. The
expression a — b is not equal to the expression b — 4, or written math-
ematically:

a—-b#b—a.

Instead we have b —a = —(a — b), which shows that changing the
order of 2 and b in the expression changes its sign.
Subtraction is not associative either:

(a—b)—c#a—(b—c).
For example (7 —2) —3 = 2 while7 — (2-3) = 8.
Multiplication
You can also multiply numbers together:

ab=a+a+---+a=b+b+---+b.

b times a times

Note that multiplication can be defined in terms of repeated addi-
tion.

The visual way to think about multiplication is as an area calcu-
lation. The area of a rectangle of width a and height b is equal to ab.
A rectangle with a height equal to its width is a square, and this is
why we call aa = a2 “a squared.”
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I'ipure 1.4: The area of a rectangle with width 3 m and height 2m is equal to
(", which is equivalent to six squares with area 1 m? each.

Multiplication of numbers is also commutative, ab = ba, and asso-

lalive, abc = (ab)c = a(bc). In modern math notation, no special
ymbol is required to denote multiplication; we simply put the two

lnctors next to each other and say the multiplication is implicit. Some

other ways to denote multiplication are a - b, a x b, and, on computer
yulems, a = b.

Division
I 'ivision is the inverse operation of multiplication.

a/b = % —a+b= oneb™of a.
Whatever a is, you need to divide it into b equal parts and take one
inh part.
Division is not a commutative operation since 4/b is not equal to
I /i, Division is not associative either: (2 +b) +c¢ # a + (b +c). For
evample, whena = 6, b = 3, and ¢ = 2, we get (6/3)/2 = 1 while
h/(3/2) = 4.
Note that you cannot divide by 0. Try it on your calculator or
tomputer. It will say “error divide by zero” because this action
imply doesn’t make sense. After all, what would it mean to divide
oimething into zero equal parts?

I vponentiation

I'he act of multiplying a number by itself many times is called expo-
nentution. We denote “a exponent n” using a superscript, where n is
Il number of times the base a is multiplied by itself:

a®=aaa---a.
—

n times

I words, we say “a raised to the power of n.”

lo visualize how exponents work, we can draw a connection be-
Iween the value of exponents and the dimensions of geometric ob-
jectn. ligure 1.5 illustrates how the same length 2 corresponds to
ditlerent geometric objects when raised to different exponents. The
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number 2 corresponds to a line segment of length two, which is a ge-
ometric object in a one-dimensional space. If we add a line segment
of length two in a second dimension, we obtain a square with area 22
in a two-dimensional space. Adding a third dimension, we obtain a
cube with volume 22 in a three-dimensional space. Indeed, raising a
base a to the exponent 2 is commonly called “a squared,” and raising
a to the power of 3 is called “a cubed.”

The geometrical analogy about one-dimensional quantities as
lengths, two-dimensional quantities as areas, and three-dimensional
quantities as volumes is good to keep in mind.

L L
2l_p 224 3-8

Figure 1.5: Geometric interpretation for exponents 1, 2, and 3. A length
raised to exponent 2 corresponds to the area of a square. The same length
raised to exponent 3 corresponds to the volume of a cube.

Our visual intuition works very well up to three dimensions, but
we can use other means of visualizing higher exponents, as demon-
strated in Figure 1.6.

Operator precedence

There is a standard convention for the order in which mathematical
operations must be performed. The basic algebra operations have
the following precedence:

1. Parentheses

2. Exponents

3. Multiplication and Division
4. Addition and Subtraction

If you're seeing this list for the first time, the acronym PEMDAS
and the associated mnemonic “Please Excuse My Dear Aunt Sally,”
might help you remember the order of operations.

For instance, the expression 5 - 32 + 13 is interpreted as “First find
the square of 3, then multiply it by 5, and then add 13.” Parentheses
are needed to carry out the operations in a different order: to multi-
ply 5 times 3 first and then take the square, the equation should read
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ligure 1.6: Visualization of numbers raised to different exponents. Each box
in this grid contains a" dots, where the base a varies from one through five,
and the exponent 1 varies from one through five. In the first row we see
(hat the number a = 1 raised to any exponent is equal to itself. The second
iow corresponds to the base a = 2 so the number of dots doubles each time
we increase the exponent by one. Starting from 2! = 2 in the first column,
we end up with 25 = 32 in the last column. The rest of the rows show how
oxponentiation works for different bases.

(' 3)2 + 13, where parentheses indicate that the square acts on (5 - 3)
i a whole and not on 3 alone.

lixercises

I'l.1 Solve for the unknown x in the following equations:
N3x+2-5=4+2 b) jx—3=+3+12-+3
o7t +1=8-2 d)5x—2+3=3x-5

»I 1.2 Indicate all the number sets the following numbers belong to.

a 2 b) V-3 J8+4 d) 32 e) 5
1'1.3 Calculate the values of the following expressions:
a) 233 -3 b) 23(3 - 3) o) 352(6-7 - 41)
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1.3 Variables

In math we use a lot of variables and constants, which are placeholder
names for any number or unknown. Variables allow us to perform
calculations without knowing all the details.

Example You're having tacos for lunch today and wondering how
many you can eat without going over your caloric budget. Your goal
is to eat 800 calories for lunch and you want to do the calculation
before getting to the restaurant because you fear your math abilities
might be affected in the presence of tacos. You're not sure how many
calories each taco contains, so you invent the variable ¢ to denote this
unknown. You also define the variable x to represent the number
of tacos you will eat, and come up with the equation 800 = cx to
represent the total number of calories of your lunch. Solving for x,
you find the total number of tacos you should order is x = §29. If the
restaurant serves tacos that contain ¢ = 200 calories each, then you

should order x = % = 4 of them. If the restaurant serves only giant

tacos worth ¢ = 400 calories each, then you can only eat x = 2;8—8 =2
of them. Observe we were able to solve for x even before knowing

the value of c.

Variable names
There are common naming patterns for variables:

e x: name used for the unknown in equations. We also use x to
denote function inputs and the position of objects in physics.

e i,j,k,m,n: common names for integer variables

e a,b,c,d: letters near the beginning of the alphabet are often
used to denote constants (fixed quantities that do not change).

e 0,¢: the Greek letters theta and phi are used to denote angles

e C: costs in business, along with P for profit, and R for revenue

e X: capital letters are used to denote random variables in prob-
ability theory

Variable substitution

We can often change variables and replace one unknown variable with
another to simplify an equation. For example, say you don’t feel
comfortable around square roots. Every time you see a square root,
you freak out until one day you find yourself taking an exam trying
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lo solve for x in the following equation:

6
5—4/x
Pon’t freak out! In crucial moments like this, substitution can help

with your root phobia. Just write, “Let # = 4/x” on your exam, and
voila, you can rewrite the equation in terms of the variable u:

- VX

6 =u
5—u

which contains no square roots.
The next step to solve for u is to undo the division operation.
Multiply both sides of the equation by (5 — u) to obtain

5—%(5 _ o) = ufB—u)),

which simplifies to
6 = 5u — u°.

Iiis can be rewritten as the equation #? — 5u + 6 = 0, which in turn
van be rewritten as (u — 2)(u — 3) = 0 using the techniques we’ll learn
in Hection 1.6.
We now see that the solutions are u; = 2 and uy = 3. The last
fepr is to convert our u-answers into x-answers by using u = Vx,
which is equivalent to x = u2. The final answers are x; = 22 = 4 and
i1 ¥ = 9. Try plugging these x values into the original square root
ijtiation to verify that they satisfy it.

{ ompact notation

wimbolic manipulation is a powerful tool because it allows us to
manape complexity. Say you're solving a physics problem in which
oi're told the mass of an object is m = 140 kg. If there are many
lepn in the calculation, would you rather use the number 140 kg
i vach step, or the shorter symbol m? It's much easier to use m
thioughout your calculation, and wait until the last step to substi-
Hife the value 140 kg when computing the final numerical answer.

1.4 Functions and their inverses

we naw in the section on solving equations, the ability to “undo”
Inctions is a key skill for solving equations.
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Example Suppose we're solving for x in the equation

fx)=¢

where f is some function and ¢ is some constant. We're looking for
the unknown x such that f(x) equals c. Our goal is to isolate x on
one side of the equation, but the function f stands in our way.

By using the inverse function (denoted f —1) we “undo” the effects
of f. We apply the inverse function f ~1 to both sides of the equation

to obtain
FAEEN =)

By definition, the inverse function f ~1 performs the opposite action
of the function £, so together the two functions cancel each other out.
We have f~1(f(x)) = x for any number x.

Provided everything is kosher (the function f ~1 must be defined
for the input c), the manipulation we made above is valid and we
have obtained the answer x = f~1(c).

The above example introduces the notation f ~1 for denoting the
inverse function. This notation is inspired by the notation for recipro-
cals. Recall that multiplication by the reciprocal number a~lis thein-
verse operation of multiplication by the number a: g =g =%
In the case of functions, however, the negative-one exponent does

not refer to “one over-f(x)” as in f%f = (f(x))~}; rather, it refers to

the inverse function. In other words, the number f~*(y) is equal to

the number x such that f(x) = y.
Be careful: sometimes an equation can have multiple solutions.

For example, the function f(x) = x2 maps two input values (x and
—x) to the same output value x2 = f(x) = f(—x). The inverse func-
tion of f(x) = x?is f~1(y) = /¥y, but both x = +4/cand x = —4/C
are solutions to the equation x> = c. In this case, this equation’s
solutions can be indicated in shorthand notation as x = ++/c.

Formulas

Here is a list of common functions and their inverses:

inverse f ()

function f(x) <
x+2 © x-—2
2x < %x
—1x = —1x
P e VX
2* < log,(x)

1.4 FUNCTIONS AND THEIR INVERSES 21

3x+5 < i(x-5)
a* < log,(x)
exp(x) =¢* <« In(x) =log,(x)
sin(x) < sin~!(x) = arcsin(x)
cos(x) < cos I (x) = arccos(x)

I'he function-inverse relationship is symmetric—if you see a function
on one side of the above table (pick a side, any side), you'll find its
inverse on the opposite side.

Don’t be surprised to see —1x < —1x in the list of function in-
verses. Indeed, the opposite operation of multiplying by —1 is to
multiply by —1 once more: (—(—x) = x).

lixample 1

Il you want to solve the equation x —4 = 5, you can apply the inverse
function of x — 4, which is x + 4. After adding four to both sides of
(he equation, x — 4 + 4 = 5 + 4, we obtain the answer x = 9.

lixample 2

I.el’s say your teacher doesn’t like you and right away, on the first
day of class, he gives you a serious equation and tells you to find x:

logs (3 +4/64/x — 7) = 34 + sin(8) — ¥(1).

See what I mean when I say the teacher doesn’t like you?

. First, note that it doesn’t matter what ¥ (the Greek letter psi) is,
since x is on the other side of the equation. You can keep copying
(1) from line to line, until the end, when you throw the ball back
lo the teacher. “My answer is in terms of your variables, dude. You
po figure out what the hell ¥ is since you brought it up in the first
place!” By the way, it’s not actually recommended to quote me ver-
batim should a situation like this arise. The same goes with sin(8).
It you don’t have a calculator handy, don’t worry about it. Keep the
expression sin(8) instead of trying to find its numerical value. In

peneral, try to work with variables as much as possible and leave the

numerical computations for the last step.
| Okay, ‘enough beating about the bush. Let’s just find x and get
it over with! On the right-hand side of the equation, we have the

sum of a bunch of terms with no x in them, so we’ll leave them as

they are. On the left-hand side, the outermost function is a logarithm
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base 5. Cool. Looking at the table of inverse functions, we find the
exponential function is the inverse of the logarithm: a* < log,(x).
To get rid of logs, we must apply the exponential function base 5 to
both sides:

51985 (3+v6ﬁ—7) _ g34+sin(8)—¥(1)
which simplifies to

344/68/x—7= 534+sin(8)——‘l’(1),

since 5* cancels logs x.
From here on, it is going to be as if Bruce Lee walked into a place
with lots of bad guys. Addition of 3 is undone by subtracting 3 on

both sides:
/6\/E - 534+Si1’1(8)—‘¥(1) -3,

To undo a square root we take the square:

)T =T = (534+sin(8)—‘l’(1) _ 3)2 )
Add 7 to both sides,

o (534+sin(8)—‘1’(1) B 3)2 L7
divide by 6

VI = % ((534+sin(8)—‘1’(1) » 3)2 L 7) i

and square again to find the final answer:

2
e E ((534+sin(8)—‘[’(1) _ 3)2 5 7)] _

Did you see what I was doing in each step? Next time a function

stands in your way, hit it with its inverse so it knows not to challenge .

you ever again.

Discussion

The recipe I have outlined above is not universally applicable. Some

times x isn’t alone on one side. Sometimes x appears in several places
in the same equation. In these cases, you can’t effortlessly work yout
way, Bruce Lee-style, clearing bad guys and digging toward x—you
need other techniques.
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The bad news is there’s no general formula for solving compli-
caled equations. The good news is the above technique of “digging
loward the x” is sufficient for 80% of what you are going to be do-
iy, Tou can get another 15% if you learn how to solve the quadratic
ttiation:

ax?2 +bx+c=0.

We'll show a formula for solving quadratic equations in Section 1.6.
Lolving cubic equations like ax® + bx? + cx + d = 0 using a formula
It also possible, but at this point you might as well start using a com-
juiter to solve for the unknowns.

I'here are all kinds of other equations you can learn how to solve:
¢ijations with multiple variables, equations with logarithms, equa-
finns with exponentials, and equations with trigonometric functions.
I principle of “digging” toward the unknown by applying inverse
functions is the key for solving all these types of equations, so be sure
I practice using it.

I xercises

114 Solve for x in the following equations:
Wy 6 b) logs(x) = 2 dlogyy(vx) =1

I 15 1ind the function inverse and use it to solve the problems.
4l Solve the equation f(x) = 4, where f(x) = 4/x.
I Solve for x in the equation g(x) = 1, given g(x) = e~ %*.

I.5 Basic rules of algebra

I iportant that you know the general rules for manipulating
siinbers and variables, a process otherwise known as—you guessed
it aluebra. This little refresher will cover these concepts to make
e yvou're comfortable on the algebra front. We'll also review some
dprtant algebraic tricks, like factoring and completing the square
Il are useful when solving equations. ’
I et'n define some terminology for referring to different parts of
tatl expressions. . When an expression contains multiple things
wlidedd together, we call those things terms. Furthermore, terms are
wally composed of many things multiplied together. When a num-
Lor e oblained as the product of other numbers like x = abc, we
v lactors into a, b, and ¢.” We call 4, b, and c the factors of x.

Lven any three numbers g, b, and ¢, we can apply the following
dpebinde properties:
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g v el + ga el = 0
term term
expression
equation

Figure 1.7: Diagram showing the names used to describe the different parts
of the equation abc 4 de = 0.

1. Associative property: a +b+c = (a+b)+c=a+ (b +c) and
abc = (ab)c = a(bc)

2. Commutative property: a + b = b+ a and ab = ba
3. Distributive property: a(b +c) = ab +ac

We use the distributive property every time we expand brackets. For
example a(b + ¢ +d) = ab+ac +ad. The brackets, also known as
parentheses, indicate the expression (b + ¢ + d) must be treated as a
whole; as a factor consisting of three terms. Multiplying this expres-
sion by a is the same as multiplying each term by a.

The opposite operation of expanding is called factoring, which
consists of rewriting the expression with the common parts taken
out in front of a bracket: ab + ac = a(b + c). In this section, we'll
discuss all algebra operations and illustrate what they’re capable of.

Example Suppose we are asked to solve for ¢ in the equation
7(3 + 4t) = 11(6t — 4).

Since the unknown ¢ appears on both sides of the equation, it is not

immediately obvious how to proceed.
To solve for ¢, we can bring all ¢ terms to one side and all constant
terms to the other side. First, expand the two brackets to obtain

21 + 28t = 66t — 44.

Then move things around to relocate all ts to the equation’s right- '

hand side and all constants to the left-hand side:
21 + 44 = 66t — 28t.

We see ¢ is contained in both terms on the right-hand side, so we can
“factor it out” by rewriting the equation as
21 + 44 = (66 — 28).

The answer is within close reach: t = é})——f—%‘é = %.
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I'vpanding brackets

livevpand a bracket is to multiply each term inside the bracket by the
I tor outside the bracket. The key thing to remember when expand-
iy, brackets is to apply the distributive property: a(x +y) = ax + ay.
I'on longer expressions, we may need to apply the distributive prop-
11y neveral times, until there are no more brackets left:

(a+b)(x+y+z)=alx+y+2z)+bx+y+2z)
= ax +ay + az + bx + by + bz.

\ler expanding the brackets in this expression, we end up with six
(i one term for each of the six possible combinations of prod-
i in hetween the terms in (4 + b) and the terms in (x + y + z).

I he distributive property is often used to manipulate expressions
unlaining different powers of the variable x. For instance,

(X+3)(x+2) = x(x+2)+3(x+2) = x* + 22+ 3x +6.

We can use the commutative property on the second term x2 = 2x,
il combine the two x terms into a single term to obtain

(x+3)(x+2) = x> +5x + 6.

I bracket-expanding and simplification techniques demonstrated
ihove are very common in math, and I recommend you solve some
\pebira practice problems to get the hang of them. Most math text-
hioke skip simplification steps and jump straight to the answer, since
iy assume readers are capable of doing simplifications on their
it It would be too long (and annoying) to show the simplifica-
tionn lor each expression. For example, the sentence “We can rewrite
' | 4)(x +2) as x% 4+ 5x + 6,” is the short version of the longer sen-
ltnce, “We can apply the distributive property twice on (x +3)(x +2)
Ilion combine the terms with the same power of x to get x* +5x + 6.”
I's not unusual for people to make math mistakes when expand-
Iy, brackets and manipulating long algebra expressions. To avoid
iintakes, use a step-by-step approach and apply only one operation
i vach step. Write legibly and keep the equations “organized” so it’s
vany 1o check the calculations performed in each step. Consider this

lightly-more-complicated algebraic expression and its expansion:

(v 1 a)(bx? + cx + d) = x(bx® + cx +d) + a(bx® + cx +d)
= bx® + cx? +dx + abx® +acx +ad
= bx3 + (c + ab)x? + (d + ac)x + ad.



26 MATH FUNDAMENTALS 1.5 BASIC RULES OF ALGEBRA 27

I vample Suppose we're asked to describe the properties of the
linction f(x) = x? —5x + 6. Specifically, we're asked to find the
fiinclion’s roots, which are the values of x for which the function
vijnals zero.

l'actoring the expression x? — 5x 4 6 helps us see its properties
imore clearly, and makes our job of finding the roots of f(x) easier.
Ihe lactored form of this quadratic expression is

Note how we sorted the terms in the final expressmn according to
the different powers of x, with the terms containing x? grouped to-
gether, and the terms containing x grouped together. This approach
helps keep things organized when dealing with expressions contain-
ing many terms.

Factoring

Factoring involves “taking out” the common parts of a complicated flx) = x? —5x+6=(x—2)(x—3).
expressmn in order to make the expression more compact. Suppose
we're given the expression 6x%y + 15x. We can simplify this expres-
sion by taking out the common factors and moving them in front of
a bracket. Let’s see how to do this, step by step.

The expression 6x%y + 15x has two terms. Let’s split each term

into its constituent factors:
6x2y +15x = (3)(2)(x)(x)y + (5)(3)x.

Since factors x and 3 appear in both terms, we can factor them out like
this:

"ow we can see at a glance that the values of x for which f(x) = 0
ey 2and x = 3. When x = 2, the factor (x — 2) is zero and hence
[(v) 0. Similarly, when x = 3, the factor (x — 3) is zero so f(x) = 0.

I low did we know that the factors of x*> — 5x + 6 are (x — 2) and
(1 3)in the above example? For simple quadratics like the one
ihove, we can simply guess the values of p and g in the equation
" 5y +6 = (x+ p)(x +q). Before we start guessing, let’s look at
(hi expanded version of the product between (x+p)and (x + q):

_ &2
6x2y + 15x = 3x(2xy + 5). (x+p)(x+q)=x"+(p+qg)x+pq.

fote the linear term on the right-hand side contains the sum of the
inknowns (p + g), while the constant term contains their product pq.
Il we want the equation x2 — 5x + 6 = x? + (p + 4)x + pq to hold, we
it find two numbers p and g4 whose sum equals —5 and whose
prodduct equals 6. After a couple of attempts we find p = —2 and
il 3. This guessing approach is an effective strategy for many of
(he lactoring problems we will likely be asked to solve, since math
lachers often choose simple numbers like +1, £2, £3, or 14 for the
vonstants p and g. For more complicated quadratic expressions, we'll
need Lo use the quadratic formula, which we’ll talk about in Sec-
ton 1.6.

The expression on the right shows 3x is common to both terms.
Here’s another example of factoring—notice the common factors
are taken out and moved in front of the bracket:

2x%y + 2x + 4x = 2x(xy + 1+ 2) = 2x(xy + 3).

Factoring quadratic expressions

A quadratic expression is an expression of the form ax? + bx + c. The
expression contains a quadratic term ax?, a linear term bx, and a con-
stant term c. The numbers 4, b, and c are called coefficients: the
quadratic coefficient is 4, the linear coefficient is b, and the constant
coefficient is c.

To factor the quadratic expression ax? + bx + c is to rewrite it as
the product of a constant and two factors like (x + p) and (x + ¢):

{ ommon quadratic forms

I v1's look at some common variations of quadratic expressions you
imipht encounter when doing algebra calculations.
I'he quadratic expression x> — p? is called a difference of squares,
il it can be obtained by multiplying the factors (x + p) and (x — p):

(x+p)(x—p) =2° =2F tpf —p* =x* — p°.

Ihere’s no linear term because the —xp term cancels the +px term.
\1y lime you see an expression like 52 = p2 , you can know it comes
from a product of the form (£ + p)(x — p).

ax® + bx + ¢ = a(x + p)(x + q).

Rewriting quadratic expressions in factored form helps us better un-
derstand and describe their properties.
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A perfect square is a quadratic expression that can be written as
the product of repeated factors (x + p):

24 2px+pt = (x+p)x+p) = (x+p)

Note x2 —2qx + % = (x — q)? is also a perfect square.

Completing the square

In this section we’ll learn about an ancient algebra technique called
completing the square, which allows us to rewrite any quadratic ex-
pression of the form x2 4+ Bx + C as a perfect square plus some
constant correction factor (x + p)? + k. This algebra technique was
described in one of the first books on al-jabr (algebra), written by
Al-Khwarizmi around the year 800 CE. The name “completing the
square” comes from the ingenious geometric construction used by
this procedure. Yes, we can use geometry to solve algebra problems!

We assume the starting point for the procedure is a quadratic ex-
pression whose quadratic coefficient is one, 1x2 + Bx + C, and use
capital letters B and C to denote the linear and constant coefficients.
The capital letters are to avoid any confusion with the quadratic ex-
pression ax® + bx + ¢, for which a # 1. Note we can always write
ax? + bx + c as a(x? + Lx + £) and apply the procedure to the expres-
sion inside the brackets, identifying % with B and £ with C.

First let’s rewrite the quadratic expression x2 + Bx + C by split-
ting the linear term into two equal parts:

2+ Bx+3x+C
We can interpret the first three terms geometrically as follows: the x?
term corresponds to a square with side length x, while the two %x
terms correspond to rectangles with sides g- and x. See the left side

of Figure 1.8 for an illustration.
X X

x 5 %

Figure 1.8: To complete the square in the expression x2 + Bx + C, we need
to add the quantity (5)?, which corresponds to a square (shown in darker
colour) with sides equal to half the coefficient of the linear term. We also
subtract (%)2 so the overall value of the expression remains unchanged.

The square with area x2 and the two rectangles can be positioned to
form a larger square with side length (x + 2). Note there’s a small
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T ] B . .
jriece of sides 5 by % missing from the corner. To complete the square,
. 2 ; ,
we can add a term (£)° to this expression. To preserve the equality,
7
we also subtract (8) from the expression to obtain:

4+ Bx+8x 4

2B fae ()2 —(B) +C

===

- @B - @

I'he right-hand side of this equation describes the area of the square
with side length (x + 2), minus the area of the small square (g)z,
j'lus the constant C, as illustrated on the right side of Figure 1.8.

We can summarize the entire procedure in one equation:

2
M @
Ihere are two things to remember when you want to apply the
tomplete-the-square trick: (1) choose the constant inside the bracket
lo be £ (half of the linear coefficient), and (2) subtract (g)2 outside
Ihe bracket in order to keep the equation balanced.

x2+Bx+C=(x —|—% )2 +C —(—3)2.
— —

“olving quadratic equations

“nippose we want to solve the quadratic equation x> + Bx + C = 0.
I"s not possible to solve this equation with the digging-toward-the-x
Wl rroach from Section 1.1 (since x appears in both the quadratic term
1~ and the linear term Bx). Enter the completing-the-square trick!

lixample Let’s find the solutions of the equation x% 4+ 5x + 6 = 0.

I'he coefficient of the linear term is B = 5, so we choose % = % for

{he constant inside the bracket, and subtract (—123)2 = (%)2 outside the

bracket to keep the equation balanced. Completing the square gives
2 +5x+6=(x+ %)2+6— 3)*=o.

Next we use fraction arithmetic to simplify the constant terms in the
¢xpression: 6 — (%)2 =6- % = 24—5 = % = _Tl = —0.25.
We're left with the equation

(x+25)2-025=0,

which we can now solve by digging toward x. First move 0.25 to

lhe right-hand side to get (x +2.5)* = 0.25. Then take the square
root on both sides to obtain (x +2.5) = +0.5, which simplifies to
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x = —2.5 4 0.5. The two solutions are x = —2.5+0.5 = —2and x =
—2.5-0.5 = —3. You can verify these solutions by substituting the
values in the original equation (—2)? + 5(—2) + 6 = 0 and similarly
(=3)2 + 5(—3) + 6 = 0. Congratulations, you just solved a quadratic
equation using a 1200-year-old algebra technique!

In the next section, we’ll learn how to leverage the complete-the-
square trick to obtain a general-purpose formula for quickly solving
quadpratic equations.

Exercises

E1.6 Factor the following quadratic expressions:

a)x2—8x+7 b) x2 +4x +4 Ax2—9

Hint: Guess the values p and g in the expression (x + p)(x + g).
E1.7 Solve the equations by completing the square.
a)x? +2x—-15=0 b) x? +4x+1=0

1.6 Solving quadratic equations

What would you do if asked to solve for x in the quadratic equation
2x2 = 4x + 6? This is called a quadratic equation since it contains
the unknown variable x squared. The name comes from the Latin
quadratus, which means square. Quadratic equations appear often,
so mathematicians created a general formula for solving them. In
this section, we’ll learn about this formula and use it to put some
quadratic equations in their place.

Before we can apply the formula, we need to rewrite the equation
we are trying to solve in the following form:

ax? +bx+c=0.

This is called the standard form of the quadratic equation. We obtain
this form by moving all the numbers and xs to one side and leaving
only 0 on the other side. For example, to transform the quadratic
equation 2x? = 4x + 6 into standard form, we subtract 4x + 6 from
both sides of the equation to obtain 2x% — 4x — 6 = 0. What are the
values of x that satisfy this equation?
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Ouadratic formula

I'he solutions to the equation 2x? + bx + ¢ = 0 fora # 0 are

—b + Vb* — 4ac —b — V/b? — 4ac
Xp=—————— and e
2a 2a
I he quadratic formula is usually abbreviated x = =itv/b=—dac Vzgz_‘m, where

Ihe sign “£” stands for both “+” and “—.” The notation “+” al-
lows us to express both solutions x; and x; in one equation, but you
hould keep in mind there are really two solutions.

Let’s see how the quadratic formula is used to solve the equation
'"\* ~4x — 6 = 0. Finding the two solutions requires the simple me-
¢hanical task of identifying a = 2, b = —4, and ¢ = —6, then plugging
(hese values into the two parts of the formula:

i} _4+/F—4(2)(=6) _4+\/16+48_4+\/64_3
L 4 B 4 -5
x2=4— 2-42)(-6) 4-v16+48 464 .
4 - 4 T TR

We can easily verify that value x; = 3 and x, = —1 both satisfy the
original equation 2x? = 4x + 6.

I'roof of the quadratic formula

livery claim made by a mathematician comes with a proof, which is
o step-by-step argument that shows why the claim is true. It’s easy
lo see where a proof starts and where a proof ends in mathematical
lexts. Each proof begins with the heading Proof (usually in italics)
and has the symbol “[0” at its end. The purpose of these demarca-
lions is to give readers the option to skip the proof. It’s not necessary
lo read and understand the proofs of all math statements, but read-
ing proofs can often lead you to a more solid understanding of the
material.

[ want you to see the proof of the quadratic formula because it’s
an important result that you'll use very often to solve math problems.

Reading the proof will help you understand where the quadratic for-

mula comes from. The proof relies on the completing-the-square
technique from the previous section, and some basic algebra oper-
ations. You can totally handle this!
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Proof. We're starting from the quadratic equation ax? +bx +c =0,
and we’re making the additional assumption that 4 # 0. We want to
find the value or values of x that satisfy this equation.

The first thing we want to do is divide by 4 to obtain the equiva-
lent equation

b &
x4+ -x+-=0.
a a

We are allowed to divide by a since we assumed that a # 0. _
Next we apply the complete the square trick to the quadratic ex-
pression, to obtain an equivalent expression of the form (x42)%+2.
Recall that the trick for completing the square is to choose the num-
ber inside the bracket to be half the coefficient of the linear term of
the quadratic expression, which is 2_[; in this case. We must also sub-
tract the square of this term outside the bracket in order to maintain
the equality. After completing the square, we're left with the follow-

ing equation:
x+ L] ’ 2.8~ .l 0
2a a 422

From here, we use the standard digging-toward-the-x procedure.
Move all constants to the right-hand side,

2¢)  4a®> a’

and take the square root of both sides to undo the square function:

b B2
X+ — = +A[ —~.
2a 402 a
Since any number and its opposite have the same square, taking the
square root gives us two possible solutions, which we denote using
the “+” symbol.

Next we subtract % from both sides of the equation to isolate x

and obtain x = —£ + ;ﬁ% — £, We tidy up the mess under the
square root, % =2 = 4%22— — L = bz;ﬁ“ = Vbzzf‘”c, and
add the fractions on the right-hand side to obtain x = =hiybr—tac VZZZ"W.
The solutions to the quadratic equation ax? + bx +c = 0are
—b + V/b* —4ac —b—/b? — 4ac
R T b T

This completes the proof of the quadratic formula.
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I he expression b? — 4ac is called the discriminant of the equation.
I e discriminant tells us important information about the solutions
ol the equation ax? + bx + ¢ = 0. The solutions x; and x, correspond
i» 1eal numbers if the discriminant is positive or zero: b? — 4ac > 0.
When the discriminant is zero (b? — 4ac = 0), the equation has only
one solution since x1 = xp = —E;b. If the discriminant is negative,
I dac < 0, the quadratic formula requires computing the square
rool of a negative number, which is not allowed for real numbers.

\llernative proof

I prove the quadratic formula, we don’t necessarily need to show
Il algebra steps we followed to obtain the formula as outlined
ihove. The quadratic formula states that x; and x are solutions.
lo prove the formula is correct we can simply plug x; and x; into
(he equation ax? + bx + ¢ = 0 to verify that x; and x; are solutions.
Verify this on your own.

Applications
I'he golden ratio

I he golden ratio is an essential proportion in geometry, art, aesthet-

i, biology, and mysticism, and is usually denoted as ¢ = 1—+2—‘/5 =
|.6180339. ... This ratio is determined as the positive solution to the
(uadratic equation

¥ —x—1=0.

Applying the quadratic formula to this equation yields two solu-
lions,

_1-45 1

and Xy = =——.

2 ()

You can learn more about the various contexts in which the golden
ratio appears from the Wikipedia article on the subject.

1+4/5
= 2 =@

X1

ixplanations

. Multiple solutions

Often, we are interested in only one of the two solutions to the
(quadratic equation. It will usually be obvious from the context
of the problem which of the two solutions should be kept and
which should be discarded. For example, the time of flight of a ball
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thrown in the air from a height of 3 metres with an initial veloc-
ity of 12 metres per second is obtained by solving the equation
(—4.9)t? + 12t + 3 = 0. The two solutions of the quadratic equation
are t; = —0.229 and t, = 2.678. The first answer t; corresponds to
a time in the past so we reject it as invalid. The correct answer is £,
The ball will hit the ground after ¢ = 2.678 seconds.

Relation to factoring

In the previous section we discussed the quadratic factoring operation
by which we could rewrite a quadratic function as the product of a
constant and two factors:

f(x) = ax? + bx + ¢ = a(x — x1)(x — x2).

The two numbers x; and x, are called the roots of the function: these
points are where the function f(x) touches the x-axis. '

You now have the ability to factor any quadratic equation: use the
quadratic formula to find the two solutions, x; and xp, then rewrite
the expression as a(x — x1)(x — x2). ,‘

Some quadratic expressions cannot be factored, however. These
“unfactorable” expressions correspond to quadratic functions whose
graphs do not touch the x-axis. They have no real solutions (no
roots). There is a quick test you can use to check if a quadratic func-
tion f(x) = ax? + bx + ¢ has roots (touches or crosses the x-axis) or
doesn’t have roots (never touches the x-axis). If b? — 4ac > 0 then
the function f has two roots. If b? — 4ac = 0, the function has only
one root, indicating the special case when the function touches the
x-axis at only one point. If b — 4ac < 0, the function has no roots.
In this case, the quadratic formula fails because it requires taking the
square root of a negative number, which is not allowed (for now).
We'll come back to the idea of taking square roots of negative num-
bers in Section 1.14 (see page 96).

Links

[ Algebra explanation of the quadratic formula ]
https://www.youtube.com/watch?v=r3SEkdtpobo

[ Visual explanation of the quadratic formula derivation |
https://wuw.youtube. com/watch?v=EBbtoFMJvFc

Exercises

E1.8 Solve for x in the quadratic equation 2x* — x = 3.
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I'1.9 Solve for x in the equation x* — 4x? +4 = 0.

I lint: Use the substitution y = x2.

1.7 The Cartesian plane

i Cartesian plane, named after famous philosopher and mathe-
iialician René Descartes, is used to visualize pairs of numbers (x,y).
(‘onsider first the number line representation for numbers.

<«—i f f f I l f l f f o
5 4 -3 -2 -1 0 1 2 3 4 5
I ipure 1.9: Every real number x corresponds to a point on the number line.

I e number line extends indefinitely to the left (toward negative infinity)
il Lo the right (foward positive infinity).

Ihe Cartesian plane is the two-dimensional generalization of the
number line. Generally, we call the plane’s horizontal axis “the
\ axis” and its vertical axis “the y-axis.” We put notches at regular
inlervals on each axis so we can measure distances.

i

2

=

ligure 1.10: Every point in the Cartesian plane corresponds to a pair of real

-numbers (x,y). Points P = (Py, Py), vectors 7 = (vx,vy), and graphs of

functions (x, f(x)) live here.

Figure 1.10 is an example of an empty Cartesian coordinate sys-
tem. Think of the coordinate system as an empty canvas. What can
you draw on this canvas?
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Vectors and points

A point P = (Py, Py) in the Cartesian plane has an x-coordinate and
a y-coordinate. To find this point, start from the origin—the point
(0,0)—and move a distance Py on the x-axis, then move a distance P,
on the y-axis.

] ~
| P=(-3,2) y
................... 3 2
o =(3,1)
1 oy
/ x
—4 -3 f2 =] 0 1 2 3 4
H I
....... ; (!_‘/ 4/ =i
| /
o - i T N, DOURRINNN, SHHNSISMOUESIES SURSSIORStEy: SO S S
03=(~1, ——2). "02=(-—1, —2)

Figure 1.11: A Cartesian plane which shows the point P = (-3,2) and the
vectors ¥y = (3,1) and ¥ = 73 = (—1,-2).

Similar to a point, a vector ¥ = (vy,vy) is a pair of coordinates.
Unlike points, we don’t necessarily start from the plane’s origin
when mapping vectors. We draw vectors as arrows that explicitly
mark where the vector starts and where it ends. Note that vectors
7, and 3 illustrated in Figure 1.11 are actually the same vector—the
“displace left by 1 and down by 2” vector. It doesn’t matter where
you draw this vector, it will always be the same whether it begins at
the plane’s origin or elsewhere.

Graphs of functions

The Cartesian plane is great for visualizing functions. You can think
of a function as a set of input-output pairs (x, f(x)). You can draw
the graph of a function by letting the y-coordinate represent the func-

tion’s output value:
(x,y) = (x, f(x)).
2

For example, with the function f(x) = x
the set of points

, we can pass a line through

(r.y) = (x,2%),
and obtain the graph shown in Figure 1.12.
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I'igure 1.12: The graph of the function f(x) = x?

(1, y) in the Cartesian plane that satisfy y = x2.

consists of all pairs of points

When plotting functions by setting y = f(x), we use a special

lerminology for the two axes. The x-axis represents the independent
variable (the one that varies freely), and the y-axis represents the de-
jendent variable f(x), since f(x) depends on x.
I'o draw the graph of any function f(x), use the following procedure.
Imagine making a sweep over all of the possible input values for the
function. For each input x, put a point at the coordinates (x,y) =
(v, f(x)) in the Cartesian plane. Using the graph of a function, you
can literally see what the function does: the “height” y of the graph
al a given x-coordinate tells you the value of the function f(x).

Dimensions

The number line is one-dimensional. Every number x can be visu-
alized as a point on the number line. The Cartesian plane has two
dimensions: the x dimension and the y dimension. If we need to
visualize math concepts in 3D, we can use a three-dimensional coor-
dinate system with x, y, and z axes (see Figure 1.55 on page 92).

1.8 Functions

We need to have a relationship talk. We need to talk about functions.
We use functions to describe the relationships between variables. In
particular, functions describe how one variable depends on another.
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For example, the revenue R from a music concert depends on the
number of tickets sold n. If each ticket costs $25, the revenue from
the concert can be written as a function of n as follows: R(n) = 25n.
Solving for n in the equation R(n) = 7000 tells us the number of
ticket sales needed to generate $7000 in revenue. This is a simple
model of a function; as your knowledge of functions builds, you'll
learn how to build more detailed models of reality. For instance, if
you need to include a 5% processing charge for issuing the tickets,
you can update the revenue model to R(n) = 095-25-n. If the
estimated cost of hosting the concert is C = $2000, then the profit
from the concert P can be modelled as

P(n)=R(n) — C
=095-$25-n — $2000

The function P(n) = 23.75n — 2000 models the profit from the concert
as a function of the number of tickets sold. This is a pretty good
model already, and you can always update it later as you learn more
information. )

The more functions you know, the more tools you have for mod-
elling reality. To “know” a function, you must be able to understand
and connect several of its aspects. First you need to know the func-
tion’s mathematical definition, which describes exactly what the
function does. Starting from the function’s definition, you can use
your existing math skills to find the function’s properties. You must
also know the graph of the function; what the function looks like if
you plot x versus f(x) in the Cartesian plane. 1t's also a good idea
to remember the values of the function for some important inputs.
Finally—and this is the part that takes time—you must learn about
the function’s relations to other functions.

Definitions
A function is a mathematical object that takes numbers as inputs and
produces numbers as outputs. We use the notation

fiA—>B

to denote a function from the input set A to the output set B. In this
book, we mostly study functions that take real numbers as inputs
and give real numbers as outputs: fiR—->R
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A

ligure 1.13: An.abstract representation of a function f from the set A to the
sel B.. The function f is the arrow which maps each input x in A to an output
f(x) in B. The output of the function f(x) is also denoted y.

A function is not a number; rather, it is a mapping from numbers to
numbers. We say .” f maps x to f(x).” For any input x, the output
value of f for that input is denoted f(x), which is read as “f of x.”

We'll now define some fancy technical terms used to describe the
mput and output sets of functions.

e A: the source set of the function describes the types of numbers
that the function takes as inputs.

e Dom(f): the domain of a function is the set of allowed input
values for the function.

e B: th? target set of a function describes the type of outputs the
function has. The target set is sometimes called the codomain.

o Im(f): the image of the function is the set of all possible output
values of the function. The image is sometimes called the range.

See Figure 1.14 for an illustration of these concepts. The purpose of
u“llroc‘lucing all this math terminology is so we’ll have words to dis-
linguish the general types of inputs and outputs of the function (real
numbers, complex numbers, vectors) from the specific properties of
the function like its domain and image.

Let’s look at an example to illustrate the difference between the
source set and the domain of a function. Consider the square root
lunction f: R — R defined as f(x) = 4/x, which is shown in Fig-
tire 1.15. The source set of f is the set of real numbers—yet only
nonnegative real numbers are allowed as inputs, since /x is not de-
fined for negative numbers. Therefore, the domain of the square root

unction is only the nonnegative real numbers: Dom(f) = R} = {x €

R|x = O} Knowing the domain of a function is essential to using
the function correctly. In this case, whenever you use the square root

lunction, you need to make sure that the inputs to the function are
nonnegative numbers.
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A B
Dom(f) ()
’ - ()

Figure 1.14: [llustration of the input and output sets of a function f:A—B.
The source set is denoted A and the domain is denoted Dom(f). Note that the
function’s domain is a subset of its source set. The farget set is denoted B and
the image is denoted Im(f). The image is a subset of the target set.

The complicated-looking expression between the curly brackets
uses set notation to define the set of nonnegative numbers R. In
words, the expression R; = {x € R | x > 0} states that “R, is
defined as the set of all real numbers x such that x is greater than
or equal to zero.” We'll discuss set notation in more detail in Sec-
tion 1.16. For now, you can just remember that IR, represents the set
of nonnegative real numbers.

T flx)=vx R
Rs Ry
e d ) .\[i

Figure 1.15: The input and output sets of the function f(x) = +/x. The
domain of f is the set of nonnegative real numbers R and its image is R

To illustrate the difference between the image of a function and its

target set, let’s look at the function f(x) = x? shown in Figure 1.16. -

The quadratic function is of the form f: R — R. The function’s
source set is R (it takes real numbers as inputs) and its target set is R
(the outputs are real numbers too); however, not all real numbers are
possible outputs. The image of the function f(x) = x? consists only of
the nonnegative real numbers Ry = {y € R | y > 0}, since flx) =20
for all x.
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I ipure 1.16: The function f(x) = x? is defined for all reals: Dom(f) = R. The
iimape of the function is the set of nonnegative real numbers: Im(f) = R...

lI'unction properties

We'll now introduce some additional terminology for describing
(hree important function properties. Every function is a mapping
ltom a source set to a target set, but what kind of mapping is it?

e A function is injective if it maps two different inputs to two dif-
ferent outputs. If x; and x, are two input values that are not
equal x1 # xp, then the output values of an injective function
will also not be equal f(x1) # f(x2).

e A function is surjective if its image is equal to its target set. For
every output y in the target set of a surjective function, there is
at least one input x in its domain such that f(x) = y.

e A function is bijective if it is both injective and surjective.

I know this seems like a lot of terminology to get acquainted with,
but it’s important to have names for these function properties. We'll
need this terminology to give a precise definition of the inverse func-
lion in the next section.

Injective property We can think of injective functions as pipes that
(ransport fluids between containers. Since fluids cannot be com-
pressed, the “output container” must be at least as large as the “input
container.” If there are two distinct points x; and x; in the input con-
lainer of an injective function, then there will be two distinct points
[(x1) and f(xy) in the output container of the function as well. In
other words, injective functions don’t smoosh things together.

In contrast, a function that doesn’t have the injective property can
map several different inputs to the same output value. The function
[(x) = x? is not injective since it sends inputs x and —x to the same
output value f(x) = f(—x) = x?, as illustrated in Figure 1.16.

The maps-distinct-inputs-to-distinct-outputs property of injec-
live functions has an important consequence: given the output of
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an injective function y, there is only one input x such that f (x)=y.
If a second input x’ existed that also leads to the same output
f(x) = f(x') = y, then the function f wouldn’t be injective. For each
of the outputs y of an injective function f, there is a unique input
x such that f(x) = y. In other words, injective functions have a
unique-input-for-each-output property.

Surjective property A function is surjective if its outputs cover the
entire target set: every number in the target set is a possible output
of the function for some input. For example, the function f: R — R
defined by f(x) = x is surjective: for every number y in the target
set R, there is an input x, namely x = ¥, such that f(x) = y. The
function f(x) = x2 is surjective since its image is equal to its target
set, Im(f) = R, as shown in Figure 1.17. ;

On the other hand, the function f: R — R defined by the equa-
tion f(x) = x? is not surjective since its image is only the nonnegative
numbers R and not the whole set of real numbers (see Figure 1.16).
The outputs of this function do not include the negative numbers of
the target set, because there is no real number x that can be used as
an input to obtain a negative output value.

Figure 1.17: For the function f(x) = x3 the image is equal to the target set of
the function, Im(f) = RR, therefore the function f is surjective. The function f
maps two different inputs x; # X3 to two different outputs f(x1) # f(x2),50
f is injective. Since f is both injective and surjective, it is a bijective function.

Bijective property A function is bijective if it is both injective and
surjective. When a function f : A — B has both the injective and
surjective properties, it defines a one-to-one correspondence between
the numbers of the source set A and the numbers of the target set B.
This means for every input value x, there is exactly one correspond-
ing output value y, and for every output value y, there is exactly one
input value x such that f(x) = y. An example of a bijective function
is the function f: R — R defined by f(x) = x3 (see Figure 1.17). For
every input x in the source set R, the corresponding output y is given
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by y = f(x) = x3. For every output value y in the target set R, the
rorresponding input value x is given by x = &/.

A function is not bijective if it lacks one of the required proper-
lies. Examples of non-bijective functions are f(x) = 4/x, which is not
.urjective and f(x) = x?, which is neither injective nor surjective.

C'ounting solutions Another way to understand the injective, sur-
jective, and bijective properties of functions is to think about the so-
litions to the equation f(x) = b, where b is a number in the target
et B. The function f is injective if the equation f(x) = b has at most
e solution for every number b. The function f is surjective if the
cquation f(x) = b has at least one solution for every number b. If the
lunction f is bijective then it is both injective and surjective, which
mcans the equation f(x) = b has exactly one solution.

Inverse function

We used inverse functions repeatedly in previous chapters, each time
describing the inverse function informally as an “undo” operation.
Now that we have learned about bijective functions, we can give a
(he precise definition of the inverse function and explain some of the
dctails we glossed over previously.

Recall that a bijective function f : A — B is a one-to-one correspon-
ilence between the numbers in the source set A and numbers in the
larget set B: for every output y, there is exactly one corresponding
input value x such that f(x) = y. The inverse function, denoted f—1,
is the function that takes any output value y in the set B and finds
(he corresponding input value x that produced it f~1(y) = x.

Figure 1.18: The inverse f~! undoes the operation of the function f.

For every bijective function f : A — B, there exists an inverse

“function f~! : B — A that performs the inverse mapping of f. If we

start from some x, apply f, and then apply f~1, we'll arrive—full
circle—back to the original input x:

FHf) =x
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In Figure 1.18 the function f is represented as a forward arrow, and
the inverse function f~! is represented as a backward arrow that
puts the value f(x) back to the x it came from.

Similarly, we can start from any y in the set B and apply f —1 fol-
lowed by f to get back to the original y we started from:

AFw) =y

In words, this equation tells us that f is the “undo” operation for the
function f~1, the same way f~! is the “undo” operation for f.

If a function is missing the injective property or the surjective
property then it isn’t bijective and it doesn’t have an inverse. Without
the injective property, there could be two inputs x and %' that both
produce the same output f(x) = f(x') = y. In this case, computing
f~(y) would be impossible since we don’t know which of the two
possible inputs x or x’ was used to produce the outputy. Without the
surjective property, there could be some output ' in B for which the
inverse function f~! is not defined, so the equation f(f =1yl =4
would not hold for all y in B. The inverse function f~! exists only
when the function f is bijective.

Wait a minute! We know the function f(x) = x? is not bijective

and therefore doesn’t have an inverse, but we’ve repeatedly used
the square root function as an inverse function for f(x) = x%. What's
going on here? Are we using a double standard like a politician that
espouses one set of rules publicly, but follows a different set of rules
in their private dealings? Is mathematics corrupt?

Don’t worry, mathematics is not corrupt—it’s all legit. We can
use inverses for non-bijective functions by imposing restrictions on
the source and target sets. The function f(x) = x? is not bijective
when defined as a function f : R — R, but it is bijective if we define
it as a function from the set of nonnegative numbers to the set of
nonnegative numbers, f : Ry — R.. Restricting the source set to
R; = {x € R | x > 0} makes the function injective, and restricting
the target set to IR+ also makes the function surjective. The function
f : Ry — Ry defined by the equation f(x) = x? is bijective and its
inverse is f ~1(y) = /7.

It’s important to keep track the of restrictions on the source set we
applied when solving equations. For example, solving the equation
x? = ¢ by restricting the solution space to nonnegative numbers will
give us only the positive solution x = /c. We have to manually
add the negative solution x = —+/c in order to obtain the complete
solutions: x = +/c or x = —+/c, which is usually written x = ++/c.
The possibility of multiple solutions is present whenever we solve
equations involving non-injective functions.
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lI'unction composition

We can combine two simple functions by chaining them together to
build a more complicated function. This act of applying one function
alter another is called function composition. Consider for example the
composition:

fog(x) = f(g(x)) =z

ligure 1.19: The function composition fog describes the combination of first
applying the function g, followed by the function f: f o g (x) = f(g(x)).

l'igure 1.19 illustrates the concept of function composition. First, the
function ¢ : A — B acts on some input x to produce an intermediary
value y = g(x) in the set B. The intermediary value y is then passed
through the function f : B — C to produce the final output value

f(y) = f(g(x)) in the set C. We can think of the composite function
[ © g as a function in its own right. The function fog : A — Cis
defined through the formula f o g (x) = f(g(x)).

Don’t worry too much about the “o” symbol—it’s just a conve-
nient math notation I wanted you to know about. Writing f o ¢ is the
same as writing f(g(x)). The important takeaway from Figure 1.19 is
that functions can be combined by using the outputs of one function
as the inputs to the next. This is a very useful idea for building math
models. You can understand many complicated input-output trans-
formations by describing them as compositions of simple functions.

ixample 1 Consider the function g: Ry — R4 given by g(x) =
V/x, and the function f: R — R defined by f(x) = x2. The compos-
ite function f o g (x) = (v/x)? = x is defined for all nonnegative reals.
T'he composite function g o f is defined for all real numbers, and we

‘havegof(x) = Va2 = |x].

lxample 2 The composite functions f o g and g o f describe dif-
ferent operations. If g(x) = In(x) and f(x) = x?, the functions
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go f(x) = In(x?) and f o g (x) = (Inx)? have different domains and
produce different outputs, as you can verify using a calculator.

Using the notation “o” for function composition, we can give a con-
cise description of the properties of a bijective function f : A — B
and its inverse function f~! : B — A:

flofm=x and (fof W=y,
forall x in A and all y in B.

Function names

We use short symbols like +, —, x, and + to denote most of the im-
portant functions used in everyday life. We also use the squiggle
notation 4/ for square roots and superscripts to denote exponents.
All other functions are identified and denoted by their name. If  want
to compute the cosine of the angle 60° (a function describing the ratio
between the length of one side of a right-angle triangle and the hy-
potenuse), I write cos(60°), which means I want the value of the cos
function for the input 60°.
Incidentally, the function cos has a nice output value for that spe-
- cific angle: cos(60°) = 1. Therefore, seeing cos(60°) somewhere in
an equation is the same as seeing % To find other values of the func-
tion, say cos(33.13°), you'll need a calculator. All scientific calcula-

tors have a convenient little button for this very purpose.

Handles on functions

When you learn about functions you learn about the different “han-
dles” by which you can “grab” these mathematical objects. The main
handle for a function is its definition: it tells you the precise way to
calculate the output when you know the input. The function defini-
tion is an important handle, but it is also important to “feel” what
the function does intuitively. How does one get a feel for a function?

Table of values

One simple way to represent a function is to look at a list of input-
output pairs: {{in = x1,out = f(x1)}, {in = x, out = f(x2)}, {in =
x3,0ut = f(x3)},...}. A more compact notation for the input-output
pairs is {(x1, f(x1)), (x2, f(x2)), (x3, f(x3)), . . .}, where the first num-
ber of each pair represents an input value and the second represents
the output value given by the function.
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We can also build a table of values by writing the input values
i one column and recording the corresponding output values in a
«wcond column. You can choose inputs at random or focus on the
important-looking x values in the function’s domain.

input = x — f(x) = output
o - f0O
1 - )
55 — f(55)
= flx)

lable 1.1: Table of input-output values of the function f(x). The input values
v 0,x =1and x = 55 are chosen to “test” what the function does.

You can create a table of values for any function you want to
study. Follow the example shown in Table 1.1. Use the input values
that interest you and fill out the right side of the table by calculating
the value of f(x) for each input x.

l'unction graph

One of the best ways to feel a function is to look at its graph. A graph
is a line on a piece of paper that passes through all input-output pairs
of a function. Imagine you have a piece of paper, and on it you draw
a blank coordinate system as in Figure 1.20.

The horizontal axis is used to measure x. The vertical axis is used
lo measure f(x). Because writing out f(x) every time is long and
ledious, we use a short, single-letter alias to denote the output value
of f as follows:

y = f(x) = output.
Think of each input-output pair of the function f as a point (x, ) in
the coordinate system. The graph of a function is a representational
drawing of everything the function does. If you understand how

to interpret this drawing, you can infer everything there is to know
about the function.

Facts and properties

Another way to feel a function is by knowing the function’s proper-
ties. This approach boils down to learning facts about the function
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Figure 1.20: An empty (x,y)-coordinate system that you can use to draw
function graphs. The graph of f(x) consists of all the points for which
(x,y) = (x, f(x)). See Figure 1.12 on page 37 for the graph of f(x) = 2,

and its connections to other functions. An example of a mathemat-

ical connection is the equation logp(x) = :gg:g;, which describes

a link between the logarithmic function base B and the logarithmic
function base b.

The more you know about a function, the more “paths” your
brain builds to connect to that function. Real math knowledge is
not about memorization; it is about establishing a network of asso-
ciations between different areas of information in your brain. See
the concept maps on page v for an illustration of the paths that link
math concepts. Mathematical thought is the usage of these asso-
ciations to carry out calculations and produce mathematical argu-
ments. For example, knowing about the connection between loga-
rithmic functions will allow you compute the value of log,(¢®), even
though calculators don’t have a button for logarithms base 7. We

find log;,(e%) = Ilnn—e; = %, which can be computed using the
button.

To develop mathematical skills, it is vital to practice path-
building between concepts by solving exercises. With this book,
I will introduce you to some of the many paths linking math con-
cepts, but it’s on you to reinforce these paths through practice.

Example 3 Consider the function f from the real numbers to the
real numbers (f: R — R) defined as f(x) = x% 4 2x — 3. The value of
fwhenx =1is f(1) = 12+ 2(1) — 3 = 0. When x = 2, the output is
f(2) = 22 +2(2) — 3 = 5. What is the value of f when x = 0? You can
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tine algebra to rewrite this function as f(x) = (x + 3)(x — 1), which
Iells you the graph of this function crosses the x-axis at x = —3 and
il v = 1. The values above will help you plot the graph of f(x).

lixample 4 Consider the exponential function with base 2 defined
by f(x) = 2*. This function is crucial to computer systems. For
instance, RAM memory chips come in powers of two because the
memory space is exponential in the number of “address lines” used
on the chip. When x = 1, f(1) = 2! = 2. When x is 2 we have
[(2) = 22 = 4. The function is therefore described by the following
input-output pairs: (0,1), (1,2), (2,4), (3,8), (4,16), (5,32), (6,64),
(7,128), (8,256), (9,512), (10,1024), (11,2048), (12,4096), etc. Recall
(hat any number raised to exponent 0 gives 1. Thus, the exponential
lunction passes through the point (0,1). Recall also that negative
exponents lead to fractions, so we have the points (-1, %), (-2, %),

(-3, —é—), etc. You can plot these (x, f(x)) coordinates in the Cartesian
plane to obtain the graph of the function.

Discussion

l'o describe a function we specify its source and target sets f: A — B,
then give an equation of the form f(x) = “expression involving x”
(hat defines the function. Since functions are defined using equa-
lions, does this mean that functions and equations are the same
(hing? Let’s take a closer look.

In general, any equation containing two variables describes a rela-
lion between these variables. For example, the equation x —3 = y — 4
describes a relation between the variables x and y. We can isolate the
variable y in this equation to obtain y = x + 1 and thus find the value
of y when the value of x is given. We can also isolate x to obtain
v = y — 1 and use this equation to find x when the value of y is given.
In the context of an equation, the relationship between the variables
v and y is symmetrical and no special significance is attached to ei-
ther of the two variables. .

We also can describe the same relationship between x and y as a
function f : R — RR. We choose to identify x as the input variable
and y as the output variable of the function f. Having identified y
with the output variable, we can interpret the equation y = x + 1 as
the definition of the function f(x) = x + 1.

Note that the equation x —3 = y — 4 and the function f(x) = x +1
describe the same relationship between the variables x and y. For
example, if we set the value x = 5 we can find the value of y by
solving the equation 5 — 3 = y — 4 to obtain y = 6, or by computing
the output of the function f(x) for the input x = 5, which gives us the
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same answer f(5) = 6. In both cases we arrive at the same answer,
but modelling the relationship between x and y as a function allows
us to use the whole functions toolbox, like function composition and
function inverses.

* % %

In this section we talked a lot about functions in general but we
haven’t said much about any function specifically. There are many
useful functions out there, and we can’t discuss them all here. In the
next section, we’ll introduce 10 functions of strategic importance for
all of science. If you get a grip on these functions, you'll be able to
understand all of physics and calculus and handle any problem your
teacher may throw at you.

1.9 Functions reference

Your function vocabulary determines how well you can express your-
self mathematically in the same way your English vocabulary deter-
mines how well you can express yourself in English. The follow-
ing pages aim to embiggen your function vocabulary, so you’ll know
how to handle the situation when a teacher tries to pull some trick
on you at the final.

If you're seeing these functions for the first time, don’t worry
about remembering all the facts and properties on the first reading.
We'll use these functions throughout the rest of the book, so you'll
have plenty of time to become familiar with them. Remember to re-
turn to this section if you ever get stuck on a function.

To build mathematical intuition, it’s essential you understand
functions’ graphs. Memorizing the definitions and properties of
functions gets a lot easier with visual accompaniment. Indeed, re-
membering what the function “looks like” is a great way to train
yourself to recognize various types of functions. Figure 1.21 shows
the graphs of some of the most important functions we’ll use in this
book.
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Figure 1.21: We'll see many types of function graphs in the next pages.

Line

The equation of a line describes an input-output relationship where
the change in the output is proportional to the change in the input.
The equation of a line is

f(x) =mx+0.

The constant m describes the slope of the line. The constant b is called

the y-intercept and it is the value of the function when x = 0.

Consider what relationship the equation of f(x) describes for dif-
ferent values of m and b. What happens when m is positive? What
happens when m is negative?
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Figure 1.22: The graph of the function f(x) = 2x — 3. The slope is m = 2.

The y-intercept of this line is b = —3. The x-intercept is at x = 3.

Properties

e Domain: R. The function f(x) = mx + b is defined for all reals.

e Image: R if m # 0. If m = 0 the function is constant f(x) = b,
so the image set contains only a single number {b}.

e x = —b/m: the x-intercept of f(x) = mx + b. The x-intercept is
obtained by solving f(x) = 0.

e The inverse to the line f(x) = mx +bis f~1(x) = %(x —b),
which is also a line.

General equation

A line can also be described in a more symmetric form as a relation:
Ax + By =C.

This is known as the general equation of a line. The general equation
for the line shown in Figure 1.22 is 2x — 1y = 3.

Given the general equation of a line Ax + By = C with B # 0, you
can convert to the function form y = f(x) = mx + b by computing
the slope m = 134 and the y-intercept b = %.
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Square

[he function x squared, is also called thé quadratic function, or
jurabola. The formula for the quadratic function is

fx) =22

I'he name “quadratic” comes from the Latin quadratus for square,
wince the expression for the area of a square With side length x is %2,
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Figure 1.23: Plot of the quadratic function f (x) = x2. The graph of the

lunction passes through the following (x,y) coordinates: (=2,4), (-1,1),
(0,0), (1,1), (2,4), (3,9), etc.

Properties

e Domain: R. The function f(x) = x? is defined for all numbers.

e Image: Ry = {y € R | y > 0}. The outputs are nonnegative
numbers since x2 > 0, for all real numbers x.

e The function x2 is the inverse of the square root function /x.

e f(x) = x?is two-to-one: it sends both ¥ and —x to the same
output value x? = (—x)2.

e The quadratic function is convex, meaning it curves upward.

The set expression {y € R | y > 0} that we use to define the non-
negative real numbers (R ) is read “the set of real numbers that are
greater than or equal to zero.”
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Square root

The square root function is denoted

Nl—=

&) = vx =21,

The square root +/x is the inverse function of the square function x
when the two functions are defined as f : Ry — Ry. The symbol
\/C refers to the positive solution of x> = c. Note that —/c is also a
solution of x? = c.
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Figure 1.24: The graph of the function f(x) = +/x. The domain of the func-
tion is R4 because we can’t take the square root of a negative number.

Properties

e Domain: Ry = {x € R | x > 0}. The function f(x) = /x is
only defined for nonnegative inputs. There is no real number
y such that y? is negative, hence the function f(x) = 4/x is not
defined for negative inputs x.

e Image: Ry = {y € R | y > 0}. The outputs of the function
f(x) = v/x are nonnegative numbers since 1/x > 0.

In addition to square root, there is also cube root f(x) = /x = x3,
which is the inverse function for the cubic function f(x) = x°. We
have /8 = 2 since 2 x 2 x 2 = 8. More generally, we can define the
nth-root function {/x as the inverse function of x".
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Absolute value

I'he absolute value function tells us the size of numbers without pay-
iy, attention to whether the number is positive or negative. We can
compute a number’s absolute value by ignoring the sign of the num-
her. A number’s absolute value corresponds to its distance from the
origin of the number line.

Another way of thinking about the absolute value function is to
say it multiplies negative numbers by —1 to “cancel” their negative
sign:

fe - ={ % Zy
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Figure 1.25: The graph of the absolute value function flx) =|x|.

Properties

e Domain: R. The function f(x) = |x| is defined for all inputs.

e Image: R ={yeR |y >0}

e The combination of squaring followed by square-root is equiv-
alent to the absolute value function:

\/P = |%|;

since squaring destroys the sign.
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Polynomials

The polynomials are a very useful family of functions. For example,
quadratic polynomials of the form f(x) = ax® + bx + c often arise

when describing physics phenomena. ‘
The general equation for a polynomial function of degree  is

f(x) = ao+ﬂ1x+a2x2+a3x3+..._I_unxn'

The constants a; are known as the coefficients of the polynomial.

Parameters

e x: the variable

ag: the constant term

a1: the linear coefficient, or first-order coefficient

ay: the quadratic coefficient

as: the cubic coefficient

ay: the ™ order coefficient

o n: the degree of the polynomial. The degree of f(x) is the largest
power of x that appears in the polynomial.

A polynomial of degree n has 1 + 1 coefficients: a9, 41,42, ..., an.

Properties

e Domain: R. Polynomials are defined for all inputs.

e The roots of f(x) are the values of x for which f(x) = 0.

e The image of a polynomial function depends on the coeffi-
cients.

e The sum of two polynomials is also a polynomial.

The most general first-degree polynomial is a line f(x) = mx +,
where m and b are arbitrary constants. The most general second-
degree polynomial is f(x) = ayx% + a1 x + ag, where agairkl ag, a1, anfi
a, are arbitrary constants. We call a; the coefficient of x", since this
is the number that appears in front of xk. Following the pattern, a
third-degree polynomial will look like f(x) = a3x3 + axx2 + aqx + ag.

In general, a polynomial of degree 7 has the equation

Flx) = anx” + B XL oo g% + A% 4 Bg.
You can add two polynomials by adding together their coefficients:

f(x) +g(x) = (anx™ + -+ -+ a1x +ag) + (bux" + -+ +b1x + bo)
= (an +bp)x" + - + (a1 + b1)x + (a0 + bo)-

1.9 FUNCTIONS REFERENCE 57

I'he subtraction of two polynomials works similarly. We can also
multiply polynomials together using the general algebra rules for
expanding brackets.

Solving polynomial equations

Very often in math, you will have to solve polynomial equations of
(he form

A(x) = B(x),

where A(x) and B(x) are both polynomials. Recall from earlier that
lo solve, we must find the values of x that make the equality true.

Say the revenue of your company is a function of the number of
products sold x, and can be expressed as R(x) = 2x2 + 2x. Say also
the cost you incur to produce x objects is C(x) = x% + 5x + 10. You
want to determine the amount of product you need to produce to
break even, that is, so that revenue equals cost: R(x) = C(x). To find
the break-even value x, solve the equation

2x2+2x=x2—|—5x+10.

I'his may seem complicated since there are xs all over the place. No
worries! We can turn the equation into its “standard form,” and then
use the quadratic formula. First, move all the terms to one side until
only zero remains on the other side:

22 4+2x —x2 = 45x+10 — A
x24+2x —5x=5£+10 —5¢
=8 —10=230 —34
x?~3x—10=0.

Remember, if we perform the same operations on both sides of the
cquation, the resulting equation has the same solutions. Therefore,
the values of x that satisfy x2 — 3x — 10 = 0, namely x = —2 and
v = 5, also satisfy 2x? + 2x = x2 + 5x + 10, which is the original
problem we’re trying to solve.

This “shuffling of terms” approach will work for any polynomial
cquation A(x) = B(x). We can always rewrite it as C(x) = 0, where
C(x) is a new polynomial with coefficients equal to the difference of
the coefficients of A and B. Don’t worry about which side you move
all the coefficients to because C(x) = 0 and 0 = —C(x) have exactly
the same solutions. Furthermore, the degree of the polynomial C can
be no greater than that of A or B.

The form C(x) = 0 is the standard form of a polynomial, and we’ll
explore several formulas you can use to find its solution(s).
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Formulas

The formula for solving the polynomial equation P(x) = 0 depends
on the degree of the polynomial in question.
For a first-degree polynomial equation, P;(x) = mx + b = 0, the
b

solution is x = —: just move b to the other side and divide by m.

For a second-degree polynomial,
Py(x) = ax®> + bx +c =0,

i —b+~/b2—4ac —p—PZ
the solutions are x; = =2EVP=4C angd y, = =b=y \é—‘—_gm'

If b2 — 4ac < 0, the solutions will involve taking the square root
of a negative number. In those cases, we say no real solutions exist.

There is also a formula for polynomials of degree 3 and 4, but
they are complicated. For polynomials with order > 5, there does
not exist a general analytical solution.

Using a computer

When solving real-world problems, you'll often run into much more
complicated equations. To find the solutions of anything more com-
plicated than the quadratic equation, I recommend using a computer
algebra system like SymPy: http://live.sympy.org.

To make SymPy solve the standard-form equation C(x) = 0, call
the function solve(expr,var), where the expression expr corre-
sponds to C(x), and var is the variable you want to solve for. For

example, to solve x2 — 3x + 2 = 0, type in the following:

>>> solve(x**2 - 3*x + 2, X) # usage: solve(expr, var)

1, 2]

The function solve will find the solutions to any equation of the form
expr = 0. In this case, we see the solutions are x = 1and x = 2.

Another way to solve the equation is to factor the polynomial
C(x) using the function factor like this:

>>> factor(x**2 - 3*x + 2) # usage: factor(expr)

(x - D*(x - 2)

We see that x> —3x +2 = (x — 1)(x — 2), which confirms the two
roots are indeed x = 1 and x = 2.

Substitution trick

Sometimes you can solve fourth-degree polynomials by using the
quadratic formula. Say you're asked to solve for x in

W —7x2+10=0.
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Imagine this problem is on your exam, where you are not allowed to
1se a computer. How does the teacher expect you to solve for x? The
Irick is to substitute y = x2 and rewrite the same equation as

¥y —7y+10 =0,

which you can solve by applying the quadratic formula. If you ob-
lain the solutions ¥ = a and y = B, then the solutions to the original
lourth-degree polynomial are x = ++/x and x = +4/8, since y = x2.

Since we're not taking an exam right now, we are allowed to use
the computer to find the roots:

»>> solve(y**2 - 7xy + 10, y)

[2, 5]

»>> solve(x**x4 - T*x*k*x2 + 10, x)
[sqrt(2), -sqrt(2), sqrt(5), -sqrt(5)]

Note how the second-degree polynomial has two roots, while the
lourth-degree polynomial has four roots.

l:'ven and odd functions

I'he polynomials form an entire family of functions. Depending on
Ihe choice of degree n and coefficients ag, ay, ..., a4, a polynomial
function can take on many different shapes. Consider the following
observations about the symmetries of polynomials:

e If a polynomial contains only even powers of x, like f(x) =
1+ x2 — x* for example, we call this polynomial even. Even
polynomials have the property f(x) = f(—x). The sign of the
input doesn’t matter.

e If a polynomial contains only odd powers of x, for example
g(x) = x + x* — x°, we call this polynomial odd. Odd polyno-
mials have the property g(x) = —g(—x).

e If a polynomial has both even and odd terms then it is neither
even nor odd.

The terminology of odd and even applies to functions in general and
not just to polynomials. All functions that satisfy f(x) = f(—x) are
called even functions, and all functions that satisfy f(x) = —f(—x) are
called odd functions.
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Sine

The sine function represents a fundamental unit of vibration. The
graph of sin(x) oscillates up and down and crosses the x-axis multiple
times. The shape of the graph of sin(x) corresponds to the shape of a
vibrating string. See Figure 1.26.

In the remainder of this book, we’ll meet the function sin(x) many
times. We’ll define the function sin(x) more formally as a trigono-
metric ratio in Section 1.11. In Section 1.13 well use sin(x) and cos(x)
(another trigonometric ratio) to work out the components of vectors.

At this point in the book, however, we don’t want to go into too
much detail about all these applications. Let’s hold off on the dis-
cussion about vectors, triangles, angles, and ratios of lengths of sides
and instead just focus on the graph of the function f(x) = sin(x).

Graph

_______ YL@ | ) =sinG) |}
Bl =L 1 2 : 4
R et —l

Figure 1.26: The graph of the function y = sin(x) passes through the fol-

lowing (x,y) coordinates: (0,0), (%, %), (% %)/ (5, —2‘@)/ (5, 1), (Z’a'E' 4)'

(%Lf_f, @), (5671, %), and (7z,0). For x between 7 and 27, the function’s graph

has the same shape it has for x between 0 and 77, but with negative values.

Figure 1.27: The function f(x) = sin(x) crosses the x-axis at x = 7.

Let’s start at x = 0 and follow the graph of the function sin(x)

as it goes up and down. The graph starts from (0,0) and smoothly
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icreases until it reaches the maximum value at x = . Afterward
the function comes back down to cross the x-axis at x = 7. After n:
the function drops below the x-axis and reaches its minimum value
ol latx = 3. Tt then travels up again to cross the x-axis at x = 271.
I'his 27t-long cycle repeats after x = 27t. This is why we call the
lunction periodic—the shape of the graph repeats.

At sm(x)

l'igure 1.28: The graph of sin(x) from x = 0 to x = 27 repeats periodically
everywhere else on the number line.

I'roperties
e Domain: R. The function f(x) = sin(x) is defined for all input
values.

e Image: {y € R | —1 <y < 1}. The outputs of the sine function
are always between —1 and 1.

e Roots: {...,—3m,-2m,—n,0,7,2m,37,...}.
The function sin(x) has roots at all multiples of 7.

e The function is periodic, with period 27: sin(x) = sin(x + 277).

e The sin function is odd: sin(x) = — sin(—x)
e Relation to cos: sin x +cos?x = 1
e Relation to csc: csc(x) = EulTx (csc is read cosecant)

e The inverse function of sin(x) is denoted as sin~!(x) or

aresin(x), not to be confused with (sin(x))~! = Sinl(x) = cscx).

e The number sin(f) is the length-ratio of the vertical side and
1:)he hypotenuse in a right-angle triangle with angle 6 at the
ase.

ILinks

| See the Wikipedia page for nice illustrations ]
http://en.wikipedia.org/wiki/Sine
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Cosine

The cosine function is the same as the sine function shifted by 7 to
the left: cos(x) = sin(x + %). Thus everything you know about the
sine function also applies to the cosine function.

Graph
¥y o \
1 | f(x) = cos(x) )
‘ : ‘ | B
//i1 0 1 \\ 3: ; 6 7 8
-1 ; \\ : :
(771_1)

Figure 1.29: The graph of the function y = cos( ) passes through the fol-

lowing (x,y) coordinates: (0,1), (%, 2) (% 2) (%,3). (%.0), -3,
(3%, —2), (3, - ), and (m,~1).

The cos function starts at cos(0) = 1, then drops down to cross the

x-axis at x = 7—; Cos continues until it reaches its minimum value at
x = sz. The function then moves upward, crossing the x-axis again

at x = 3%, and reaching its maximum value again at x = 271.

Properties

e Domain: R

Image: {ye R| —1<y<1}

e Roots: {..., —37”, —%,%,37",%@, il

e Relation to sin: sin® x + cos2 x=1

o Relation to sec: sec(x) = COS - (sec is read secant)

e The inverse function of cos(x) is denoted cos ~1(x) or arccos(x).

e The cos function is even: cos(x) = cos(—x)

e The number cos(6) is the length-ratio of the horizontal side and
the hypotenuse in a right-angle triangle with angle 6 at the base
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Tangent

I'he tangent function is the ratio of the sine and cosine functions:

Fl) = i) = ),
cos(x)
Graph
f(x)=tan(x) = 33;%3 - 1 i,

F—i (2.0}
SR,
| x

-1 0 1

1eg

! s !
Figure 1.30: The graph of the function f(x) = tan(x).
Properties

Efalgzn];{{xe]li | x # Q—"erl—)" forany n e Z}

The function tan is periodic with period 7.

The tan function “blows up” at values of x where cosx = 0.
These are called asymptotes of the function and their locations

arex =..., 5%, 21 L 3
e Valueat x = 0: tan(0) = ¢ = 0, because sin(0) = 0.
. sin( \/5
o Valueat x = §: tan (§) = Wi% = f =1

e The number tan(6) is the length—ratm of the vertical and the
horizontal sides in a right-angle triangle with angle 6.

e The inverse function of tan(x) is denoted tan—!(x) or arctan(x).

e The inverse tangent function is used to compute the angle at
the base in a right-angle triangle with horizontal side length ¢,

and vertical side length £,: = tan~! ( %).
h
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Exponential shural logarithm

The exponential function base e = 2.7182818.... . is denoted - 1 natinal logarithm function is denoted

flx) = & =exp{x). f(x) = In(x) = log,(x).
Graph L0 B Hion In(x) is the inverse function of the exponential e*.
Hiaph
1 | I/
| ’ [} -
] \ | T (6’3)"//
! // I
(1] v i i
i \ 1 05 1 15 ) 25 € 3 35 i
; [ (1]
. Ll |
4 2 3 4 I f(x) =In(x)
Figure 1.31: The graph of the exponential function f(x) = e” passes thi I
the following points: (-2, :—2), (-1, %), ©0,1), (1€), (2,€%), (3,¢), (4,e%);

Properties A (0 LA The graph of the function In(x) passes through the following

e Domain: R “"M.”‘ (rl' ’ 2)’ ((l” '—1)’ (11 0)/ (3, 1)/ (62/ 2)/ (33/ 3)1 (34/4)/ etc.

e Image: {yeR |y >0}
e f(a)f(b) = f(a+ b) since elel = et th thion
# Domain: {xe R | x> 0}

A more general exponential function would be f(x) = Ae™?, 8 linapge: R

A is the initial value, and <y (the Greek letter gamma) is the /il
the exponential. For ¢y > 0, the function f(x) is increasing, &
Figure 1.31. For < 0, the function is decreasing and tends fu
for large values of x. The case 7y = 0 is special since e’ =1, solfi
a constant of f(x) = A1* = A.

inen

il the domain, the image, and the roots of f(x) = 2 cos(x).

I What are the degrees of the following polynomials? Are they
ol o neither?

M ¥ -5t 41 b) g(x) = x —x® +x° — x7

Links

[ The exponential function 2* evaluated ]
http://www.youtube.com/watch?v=e4MSN6IImpI § Hulve for v in the following polynomial aremions:

B x4 -~ x — 15 4 2x2 b)3x2 —4x —4+x% = 2%+ 2x+2
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Exponential
The exponential function base e = 2.7182818... is denoted

f(x) =" = exp(x).

(1,e)

<

1] 2/ [ || 4

Figure 1.31: The graph of the exponential function f(x) = e* passes through
the following points: (—2, elz), (-1, %), (0,1), (1,¢), (2 e2), (3,¢%), (4, e*), etc.

Properties

e Domain: R
e Image: {y e R |y > 0}
o f(a)f(b) = f(a + b) since el = eath

A more general exponential function would be f(x) = Ae"*, where
A is the initial value, and 7 (the Greek letter gamma) is the rate of
the exponential. For v > 0, the function f(x) is increasing, as in
Figure 1.31. For ¢ < 0, the function is decreasing and tends to zero
for large values of x. The case ¢ = 0is special since ¥ =1,s0 f(x)is
a constant of f(x) = A1¥ = A.

Links

[ The exponential function 2% evaluated ]
http://www.youtube.com/ watch?v=e4MSN6IImpl
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Natural logarithm

I'he natural logarithm function is denoted

f(x) = In(x) = log,(x).

I'he function In(x) is the inverse function of the exponential e*.

Graph
Y
1.5
n
0 05
B, (NS ) A | et
I // £4) = In(x)
—-1.5 / | bt

Figu re 1.32: T{me graplr; of the function In(x) passes through the following
coordinates: (3,-2), (2,-1), (1,0), (¢, 1), (¢2,2), (€%,3), (¢*,4), etc.

I'roperties

e Domain: {x e R | x > 0}
e Image: R

lixercises
I'1.10 Find the domain, the image, and the roots of f(x) = 2 cos(x).

I'l.1T What are the degrees of the following pol ials?
vven, odd, or neither? GO SISy

8) p(x) = #* =5t 1 b) g(x) = x — 23+ 25 —x”
I'1.12 Solve for x in the following polynomial equations.

a)3x + x2 = x— 15+ 2x2 b)3x2 —4x —4+x3 =23 +2x+2
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1.10 Geometry

The word “geometry” comes from the Greek roots geo, which means
“earth,” and metron, which means “measurement.” This name is
linked to one of the early applications of geometry, which was to
measure the total amount of land contained within a certain bound-
ary region. Over the years, the study of geometry evolved to be more
abstract. Instead of developing formulas for calculating the area of
specific regions of land, mathematicians developed general area for-
mulas that apply to all regions that have a particular shape.

In this section we’ll present formulas for calculating the perime-
ters, areas, and volumes for various shapes (also called “figures”)
commonly encountered in the real world. For two-dimensional fig-
ures, the main quantities of interest are the figures’ areas and the
figures’ perimeters (the length of the walk around the figure). For
three-dimensional figures, the quantities of interest are the surface
area (how much paint it would take to cover all sides of the figure),
and volume (how much water it would take to fill a container of this
shape). The formulas presented are by no means an exhaustive list
of everything there is to know about geometry, but they represent a
core set of facts that you want to add to your toolbox.

Triangles

The area of a triangle is equal to % times the length of its base times
its height:
A = %aha.

Note that ki, is the height of the triangle relative to the side a.

Figure 1.33: A triangle with side lengths 4, b, and c. The height of the triangle
with respect to the side a is denoted #,.

The perimeter of a triangle is given by the sum of its side lengths:

P=a-+b+c

Interior angles of a triangle rule The sum of the inner angles in
any triangle is equal to 180°. Consider a triangle with internal angles
&, B and 7y as shown in Figure 1.34. We may not know the values of
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ihe individual angles &, B, and -y, but we know their sum is & +  +
, o 180°.

ligure 1.34: A triangle with inner angles &, B, and -y and sides a, b, and c.

Sine rule The sine rule states the following equation is true:

a b &

sin(@)  sin(B)  sin(y)’

where « is the angle opposite to side 4, B is the angle opposite to
ide b, and 1 is the angle opposite to side ¢, as shown in Figure 1.34.

Cosine rule The cosine rules states the following equations are
true: '

a? = b* + c* — 2bc cos(«),
b? = a® + c* — 2ac cos(B),

¢? = a® + b* — 2abcos().

I'hese equations are useful when you know two sides of a triangle
and the angle between them, and you want to find the third side.
Circle

I'he circle is a beautiful shape. If we take the centre of the circle at
the origin (0, 0), the circle of radius # corresponds to the equation

2y =12

I'his formula describes the set of points (x,y) with a distance from
the centre equal to 7.

Arca

I'he area enclosed by a circle of radius r is given by A = 772, A circle
ol radius r = 1 has area 7.
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Circumference and arc length

The circumference of a circle of radius r is
C = 2mr.

A circle of radius r = 1 has circumference 27t. This is the total length
you can measure by following the curve all the way around to trace
the outline of the entire circle. For example, the circumference of a
circle of radius 3m is C = 277(3) = 18.85m. This is how far you'll
need to walk to complete a full turn around a circle of radius r = 3m.

What is the length of a part of the circle? Say you have a piece
of the circle, called an arc, and that piece corresponds to the angle
0 = 57° as shown in Figure 1.35. What is the arc’s length ¢? If the
circle’s total length C = 27tr represents a full 360° turn around the
circle, then the arc length ¢ for a portion of the circle corresponding
to the angle 0 is

0
4 =27T1’3—66.

The arc length £ depends on 7, the angle 6, and a factor of —323”5.

Figure 1.35: The arc length £ equals % of the circle’s circumference 27tr.

Radians

While scientists and engineers commonly use degrees as a measure-
ment unit for angles, mathematicians prefer to measure angles in 74-
dians, denoted rad.

Measuring an angle in radians is equivalent to measuring the arc
length £ on a circle with radius r = 1, as illustrated in Figure 1.36.
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| ipure 1.36: The angle 0 measured in radians corresponds to the arc length ¢
o a circle with radius 1. The full circle corresponds to the angle 27t rad.

I'he conversion ratio between degrees and radians is
2 rad = 360°.
When the angle 6 is measured in radians, the arc length is given by:
{=r6.

I find the arc length £, we simply multiply the circle radius r times
the angle @ measured in radians.

Note the arc-length formula with § measured in radians is sim-
fler than the arc-length formula with # measured in degrees, since
we don’t need the conversion factor of 360°.

Sphere

\ sphere of radius r is described by the e%uation 2 +y?+22 =12
Ihe surface area of the sphere is A = 47174, and its volume is given

by V = %7‘(1’3.

i\i\‘\ ;

A e

l'igure 1.37: A sphere of radius r has surface area 4772 and volume %nr3.

('ylinder

I'e surface area of a cylinder consists of the top and bottom circular
tirfaces, plus the area of the side of the cylinder:

A =2(7r?) + (27r)h.
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The volume of a cylinder is the product of the area of the cylinder’s
base times its height:
V= (mz) h.

i i e s

Figure 1.38: A cylinder with radius r and height & has volume nr?h.

Example You open the hood of your car and see 2.0 L written on
top of the engine. The 2.0 L refers to the combined volume of the
four pistons, which are cylindrical in shape. The owner’s manual
tells you the radius of each piston is 43.75 mm, and the height of
each piston is 83.1 mm. Verify the total engine volume is 1998789
mm?® ~ 2 L.

Cones and pyramids

The volume of a square pyramid with side length 2 and height & is
given by the formula V = %azh. The volume of a cone of radius r
and height h is given by the formula V = %mfzh. Note the factor %
appears in both formulas. These two formulas are particular cases of
the general volume formula that applies to all pyramids:

V = 3Ah,

where A is the area of the pyramid’s base and h is its height. This
formula applies for pyramids with a base that is a triangle (triangu-
lar pyramids), a square (square pyramids), a rectangle (rectangular
pyramids), a circle (cones), or any other shape.

Figure 1.39: The volumes of pyramids and cones are described by the for-
mulaV = %Ah, where A is the area of the base and £ is the height.
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lixercises

I!1.13 Find the length of side x in the triangle below.

I'lint: Use the cosine rule.
I'1.14 Find the volume and the surface area of a sphere with radius 2.

Ii1.15 On a rainy day, Laura brings her bike indoors, and the wet
hicycle tires leave a track of water on the floor. What is the length
ol the water track left by the bike’s rear tire (diameter 73 cm) if the
wheel makes five full turns along the floor?

.11 Trigonometry

Il one of the angles in a triangle is equal to 90°, we call this trian-
pile a right-angle triangle. In this section we’ll discuss right-angle tri-
anples in great detail and get to know their properties. We'll learn
ome fancy new terms like hypotenuse, opposite, and adjacent, which
are used to refer to the different sides of a triangle. We'll also use the
lunctions sine, cosine, and tangent to compute the ratios of lengths in
ry;ht triangles.

Understanding triangles and their associated trigonometric func-
fions is of fundamental importance: you'll need this knowledge for
your future understanding of mathematical concepts like vectors
and complex numbers.

it
r//
il
w2
’ e ©
W B
/’“// g
o
x‘//‘ .
i
o
S
il T
c Adjacent B

lipure 1.40: A right-angle triangle. The angle at the base is denoted 8 and
(he names of the sides of the triangle are indicated.
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Concepts

e A,B,C: the three vertices of the triangle

e 0: the angle at the vertex C. Angles can be measured in degrees
or radians.

e opp = AB: the length of the opposite side to 6

e adj = BC: the length of side adjacent to 6 .

e hyp = AC: the hypotenuse. This is the triangle’s longest side.

e h: the “height” of the triangle (in this case h = opp = AB)

o sin® = 222. the sine of theta is the ratio of the length of the

hyp
opposite side and the length of the hypotenuse

e cost = %: the cosine of theta is the ratio of the adjacent length
and the hypotenuse length
e tanf = gg;z = (;_}311]2: the tangent is the ratio of the opposite

length divided by the adjacent length

Pythagoras’ theorem

In a right-angle triangle, the length of the hypotenuse squared is
equal to the sum of the squares of the lengths of the other sides:

ad® + opp? = hypz.
ivi i ion by hyp?, we obtain
If we divide both sides of the above equation by hyp~,

adj2 i opp2

= 1.
hyp?  hyp’

ee 28 — OPP _ gin @, this equation can be rewritten as
Since g = cos 6 and b y q

cos?f + sin?6 = 1.

This is a powerful trigonometric identity that describes an important
relation between sine and cosine functions. In case you've never seen

: 2
this notation before, the expression cos? 8 is used to denote (cos(0))".

Sin and cos

Meet the trigonometric functions, or trigs for short. These are your
new friends. Don’t be shy now, say hello to them.

“Hello.”

“Hi.”

“S000000, you are like functions right?”
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“Yep,” sin and cos reply in chorus.

“Okay, so what do you do?”

“Who me?” asks cos. “Well I tell the ratio. .. hmm. .. Wait, are you
asking what I do as a function or specifically what I do?”

“Both I guess?”

“Well, as a function, I take angles as inputs and I give ratios as
answers. More specifically, I tell you how ‘wide” a triangle with that
angle will be,” says cos all in one breath.

“What do you mean wide?” you ask.

“Oh yeah, I forgot to say, the triangle must have a hypotenuse of
length 1. What happens is there is a point P that moves around on
2 circle of radius 1, and we imagine a triangle formed by the point
I, the origin, and the point on the x-axis located directly below the
point P.”

“I am not sure I get it,” you confess.

“Let me try explaining,” says sin. “Look at Figure 1.41 and you'll
see a circle. This is the unit circle because it has a radius of 1. You see
i, yes?”

“Yes.”

“Now imagine a point P that moves along the circle of radius 1,
slarting from the point P(0) = (1,0). The x and y coordinates of the
point P(0) = (Px(6), Py(0)) as a function of 6 are

P(0) = (Px(8), Py(#)) = (cosb, sin).

Yo, either you can think of us in the context of triangles, or in the
context of the unit circle.”

“Cool. I kind of get it. Thanks so much,” you say, but in reality
you are weirded out. Talking functions? “Well guys. It was nice to
meet you, but I have to get going, to finish the rest of the book.”

“See you later,” says cos.

“Peace out,” says sin.

The unit circle

I'he unit circle is a circle of radius one centred at the origin. The unit
vircle consists of all points (x, y) that satisfy the equation x? + y? = 1.
A point P on the unit circle has coordinates (Py, P;) = (cos6,sin#),
where 6 is the angle P makes with the x-axis.
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(Px, Py) = (cos8,sin®)

/x2+y2=1

|
Figure 1.41: The unit circle corresponds to the equation x% + §r = 1 The
coordinates of the point P on the unit circle are Py = cos and P, = sin 6.
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Figure 1.42: The function f(6) = sinf describes the vertical position of a
point P that travels along the unit circle. The graph shows the values of the
function f(6) = sin 6 for angles between 6 = 0 and 6 = 7.

Figure 1.42 shows the graph of the function f(6) = sin6. The val-
ues sin § for the angles 0, Z (30°), 5 (60°), and Z (90°) are marked.
There are three values to remember: sinf = 0 when 6 = 0,sinf = —12
when 6 = Z (30°), and sinf =1 when 6 = Z (90°). See Figure 1.26
(page 60) for a graph of sin 6 that shows a complete cycle around the
circle. Also see Figure 1.29 (page 62) for the graph of cos 6..

Instead of trying to memorize the values of the functions c;os@
and sinf separately, it’s easier to remember them as a cgmbmed
“package” (cos 0, sin ), which describes the x- and y-coordinates of
the point P for the angle 6. Figure 1.43 shows the values of cos 6 and
sinf for the angles 0, Z (30°), § (45°), % (60°), and Z (90°). These
are the most common angles that often show up on homework and
exam questions. For each angle, the x-coordinate (the first numbfzr
in the bracket) is cos 8, and the y-coordinate (the second number in

the bracket) is sin 6.
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l'ipure 1.43: The combined (cos 8, sin 8) coordinates for the points on the unit
vircle at the most common angles: 0, £ (30°), & (45°), 5 (60°), and Z (90°).

Note the values of cos 6 and sin 6 for the angles shown in Figure 1.43

are all combinations of the fractions %, #, and % The square
roots appear as a consequence of the trigonometric identity cos® 6 +
win”@ = 1. This identity tells us that the sum of the squared coor-
inates of each point on the unit circle is equal to one. Let’s look at

what this equation tells us for the angle 6 = Z (30°). Remember that
win(30°) = % (the length of the dashed line in Figure 1.43). We can
plug this value into the equation cos?(30°) + sin?(30°) = 1 to find

Ihe value: cos(30°) = 4/1—sin(30°) = 4/1- } = /3 = .

The coordinates (%, %) for the angle 6 = 7 (45°) are obtained

from a similar calculation. We know the values of sin@ and cos 6
must be equal for that angle, so we're looking for the number 4 that

walisfies the equation a2 + a®> = 1, whichis a = % = # The values
0l c0s(60°) and sin(60°) can be obtained from a symmetry argument.
Measuring 60° from the x-axis is the same as measuring 30° from the
I/ axis, so cos(60°) = sin(30°) = % and sin(60°) = cos(30°) = 4

We can extend the calculations described above for all other an-
piles that are multiples of Z (30°) and F (45°) to obtain the cos 6 and
iin 0 values for the whole unit circle, as shown in Figure 1.44.

Don’t be intimidated by all the information shown in Figure 1.44!
You're not expected to memorize all these values. The primary rea-
«on for including this figure is so you can appreciate the symmetries
ol the sine and cosine values that we find as we go around the circle.
I'he values of sin 6 and cos § for all angles are the same as the values
lor the angles between 0° and 90°, but one or more of their coordi-
nates has a negative sign. For example, 150° is just like 30°, except its
\ coordinate is negative since the point lies to the left of the y-axis.
\nother use for Figure 1.44 is to convert between angles measured
in degrees and radians, since both units for angles are indicated.
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pe

Figure 1.44: The coordinates of the point on the unit circle (cos®, si'n ) are
indicated for all multiples of Z (30°) and Z (45°). Note the symmetries.

Non-unit circles

Consider a point Q(6) at an angle of § on a circle with radius r # 1.
How can we find the x- and y-coordinates of the point Q(0)?

We saw that the coefficients cos @ and sin 6 correspond to the x-
and y-coordinates of a point on the unit circle (r = 1). To obtain
the coordinates for a point on a circle of radius 7, we must scale the
coordinates by a factor of r:

Q(6) = (Qx(6), Qy(8)) = (rcosf,rsinb).

The take-away message is that you can use the functions cos6
and sin 6 to find the “horizontal” and “vertical” components of any
length r. From this point on in the book, we'll always talk about the
length of the adjacent side as x = 7 cos 9, and the length of the opposite
side as y = rsinf. It is extremely important you get comfortable
with this notation.

The reasoning behind the above calculations is as follows:

el = = = x=rcosb,

adj «x
hyp 7
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ligure 1.45: The x- and y-coordinates of a point at the angle 6 and distance
ol r from the origin are given by x = rcos @ and y = rsin#.

and opp ¥
sinf = % =S = P rsin.
Calculators

Watch out for the units of angle measures when using calculators
and computers. Make sure you know what kind of angle units the

lunctions sin, cos, and tan expect as inputs, and what kind of outputs
the functions sin™?, cos™!, and tan—! return.

For example, let’s see what we should type into the calculator to
compute the sine of 30 degrees. If the calculator is set to degrees, we

simply type: @ , ‘E,, and obtain the answer 0.5.

If the calculator is set to radians, we have two options:

[. Change the mode of the calculator so it works in degrees.

2. Convert 30° to radians

27t rad T
360° 6

and type: @ , E] on the calculator.

Ity computing cos(60°), cos(§ rad), and cos~!(3) using your calcu-
lator to make sure you know how it works.

30° x rad,

lixercises
I'l.16 Given a circle with radius r = 5, find the x- and y-coordinates
of the point at § = 45°. What is the circumference of the circle?

I'1.17 Convert the following angles from degrees to radians.
a) 30° b) 45° c) 60° d) 270°
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Links

[ Unit-circle walkthrough and tricks by patrick]MT on YouTube ]
http://bit.1y/1mQgdCj and http://bit. 1y/1hvA702

1.12 Trigonometric identities

There are a number of important relationships between tt}e valges
of the functions sin and cos. Here are three of these relat}onshlps,
known as trigonometric identities. There about a <.:lozen other identities
that are less important, but you should memorize these three.

The three identities to remember are:

1. Unit hypotenuse
sin? 0 + cos? 6 = 1.

i i ity i hagoras theorem and
The unit hypotenuse identity is true by the Pythag :
the deﬁrliti}:)ns of sin and cos. The sum of the squares of the sides of
a triangle is equal to the square of the hypotenuse.

2. Sine angle sum
sin(a + b) = sin(a) cos(b) + sin(b) cos(a).

3 2 — T
The mnemonic for this identity is “sico + sico.

3. Cosine angle sum
cos(a + b) = cos(a) cos(b) — sin(a) sin(b).

The mnemonic for this identity is “coco — sisi.” The negative sign 1s
there because it’s not good to be a sissy.

Derived formulas

If you remember the above three formulas, you can derive pretty
much all the other trigonometric identities.

Double angle formulas

Starting from the sico + sico identity and setting a = b = x, we can
derive the following identity:

sin(2x) = 2sin(x) cos(x).
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Slarting from the coco-sisi identity, we obtain
cos(2x) = cos?(x) —sin?(x)
= 2cos?(x)—1 =2 (1 - sinz(x)) ~1 =1-2sin’(x).

I'he formulas for expressing sin(2x) and cos(2x) in terms of sin(x)
and cos(x) are called double angle formulas.
If we rewrite the double-angle formula for cos(2x) to isolate the
sin? or the cos? term, we obtain the power-reduction formulas:
cos?(x) =

(1 + cos(2x)), sin?(x) = = (1— cos(2x)).

N =
N —

Self-similarity

5in and cos are periodic functions with period 271. Adding a multiple
ol 27t to the function’s input does not change the function:

sin(x + 27t) = sin(x), cos(x +27) = cos(x).

I'his follows because adding a multiple of 27t brings us back to the
same point on the unit circle.

Furthermore, sin and cos have symmetries with respect to zero,

sin(—x) = —sin(x), cos(—x) = cos(x),

within each 7 half-cycle,

sin(7r — x) = sin(x), cos(7t — x) = — cos(x),

and within each full 27t cycle,

sin(27r — x) = —sin(x), cos(27r — x) = cos(x).

lake the time to revisit Figure 1.26 (page 60), Figure 1.29 (page 62),
and Figure 1.44 (page 76) to visually confirm that all the equations
shown above are true. Knowing the points where the functions take

on the same values (symmetries) or take on opposite values (anti-
nymmetries) is very useful in calculations.

Sin is cos, cos is sin

!

It shouldn’t be surprising if I tell you that sin and cos are actually
, -shifted versions of each other:

cos(x) = sin(x+%),
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the solutions to equations of the form x +m = n, where m,n € IN.
The rational numbers Q are necessary to solve for x in mx = 1,
with m,n € Z. To find the solutions of x> = 2, we need the real
numbers R. And in this section, we learned that the solutions to the
equation x? = —1 are complex numbers C. At this point you might
be wondering if you're attending some sort of math party, where
mathematicians write down complicated equations and—just for
the fun of it—invent new sets of numbers to describe the solutions
to these equations. Can this process continue indefinitely?

Nope. The party ends with C. The fundamental theorem of al-
gebra guarantees that any polynomial equation you could come up
with—no matter how complicated it is—has solutions that are com-
plex numbers C.

Euler’s formula

It turns out the exponential function is related to the functions sine
and cosine. Lo and behold, we have Euler’s formula:
¢ = cosf +isinf.

Inputting an imaginary number to the exponential function outputs
a complex number that contains both cos and sin. Euler’s formula
gives us an alternate notation for the polar representation of complex
numbers: z = |z|Z¢; = |z|e'?=.

If you want to impress your friends with your math knowledge,
plug 6 = 7 into the above equation to find

¢ = cos(7) +isin(m) = -1,

which can be rearranged to obtain the equation é7+1 = 0. The
equation ¢ + 1 = 0 is called Euler’s identity, and it shows a relation-
ship between the five most important numbers in all of mathematics:
Fuler’s number e = 2.71828 ..., 7t = 3.14159.. . ., the imaginary num-
ber i, 1, and zero. It’s kind of cool to see all these important numbers
reunited in one equation, don’t you agree?

One way to understand the equation e + 1 = 0, is to think of ein
as the polar representation of the complex number z = 16 = 147,
which is the same as 1 rotated counterclockwise by 7 radians (180°)
in the complex plane. We know ¢ =1/m=—1andsoe”™ +1=0.

De Moivre’s formula

By replacing 6 in Euler’s formula with n6, we obtain de Moivre’s

formula:
(cos @ + isin6)" = cosnd +isinnd.

-
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De Moivree’s formula makes sense if you think of the complex num-
ber z = ¢ = cos @ + i sin 8, raised to the nth power:
(cos@ +isinB)" = 2" = ()" = ¢ = cosn + isinnb.

Setting n = 2 in de Moivre’s formula, we can derive the double angle

formulas (page 78) as the real and imaginary parts of the following
equation:

(cos? 0 — sin® ) + (2sin 6 cos B)i = cos(20) + sin(26)i.

Links

[ Intuitive proof of the fundamental theorem of algebra ]
https://www.youtube.com/watch?v=shEk8sz1o0w

1.15 Solving systems of linear equations

Solving equations with one unknown—like 2x + 4 = 7x, for
instance—requires manipulating both sides of the equation until
the unknown variable is isolated on one side. For this instance, we

can subtract 2x from both sides of the equation to obtain 4 = 5x,

which simplifies to x = %.

What about the case when you are given two equations and must
solve for two unknowns? For example,
x+2y =25,
3x +9y = 21.

(‘an you find values of x and y that satisfy both equations?

Concepts

e x,y: the two unknowns in the equations

e eql,eq2: a system of two equations that must be solved simul-
taneously. These equations will look like

ax + by =cq,
ax +byy = c3,

where as, bs, and cs are given constants.

Principles

II'you have n equations and n unknowns, you can solve the equa-
lions simultaneously and find the values of the unknowns. There are
weveral different approaches for solving equations simultaneously.
We'll show three of these approaches for the case n = 2.




104 MATH FUNDAMENTALS

Solution techniques

When solving for two unknowns in two equation§, the best appr.oa.ach
is to eliminate one of the variables from the equations. By combining
the two equations appropriately, we can simpl.ify the problem to the
problem of finding one unknown in one equation.

Solving by substitution
We want to solve the following system of equations:

X+2y =35,
3x + 9y = 21.

We can isolate x in the first equation to obtain
x=5-2y,
3x +9y = 21.

Now substitute the expression for x from the top equation into the

bottom equation:
3(5—2y) +9y =21

We just eliminated one of the unknowns by substitution. Continuing,
we expand the bracket to find

15 -6y +9y =21,
or
3y = 6.

We find y = 2, but what is x? Easy. To solve for x, plug the va_lue
y = 2 into any of the equations we started from. Using the equation
x=5-2y,wefindx=5-2(2)=1.

Solving by subtraction
Let’s now look at another way to solve the same system of equations:

x+2y=>5,
3x +9y = 21.
Observe that any equation will remain true if we multip'ly the wh.ole’
equation by some constant. For example, we can multiply the first
equation by 3 to obtain an equivalent set of equations:
3x+6y =15,
3x +9y =21

F N
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Why did I pick 3 as the multiplier? By choosing this constant, the x
terms in both equations now have the same coefficient.

Subtracting two true equations yields another true equation.
Let’s subtract the top equation from the bottom one:

33449y —6y=21-15 = 3y=6.

The 3x terms cancel. This subtraction eliminates the variable x be-
cause we multiplied the first equation by 3. We find y = 2. To find x,
substitute y = 2 into one of the original equations:

B4 2(2) =5,

from which we deduce that x = 1.

Solving by equating
There is a third way to solve the system of equations

xX+2y =35,
3x+9y = 21.

We can isolate x in both equations by moving all other variables and
constants to the right-hand sides of the equations:

x=5-2y,
X = %(21-9y) =7—3y.

Though the variable x is unknown to us, we know two facts about
it: x is equal to 5 — 2y and x is equal to 7 — 3y. Therefore, we can
climinate x by equating the right-hand sides of the equations:

5-2y=7-3y.

We solve for y by adding 3y to both sides and subtracting 5 from both
sides. We find y = 2 then plug this value into the equation x = 5 -2y
lo find x. The solutions are x = 1 and y = 2.

Discussion

The repeated use of the three algebraic techniques presented in this
section will allow you to solve any system of # linear equations in n
unknowns. Each time you eliminate one variable using a substitu-
lion, a subtraction, or an elimination by equating, you’re simplifying
the problem to a problem of finding (1 — 1) unknowns in a system
of (n — 1) equations. In Chapter 3 we’ll develop a more advanced,
systematic approach for solving systems of linear equations.
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Geometric solution

Solving a system of two linear equations in two unknowns can be un-
derstood geometrically as finding the point of intersection between
two lines in the Cartesian plane. In this section we’ll explore this cor-
respondence between algebra and geometry to develop yet another
way of solving systems of linear equations.

The algebraic equation ax + by = ¢ containing the unknowns x
and y can be interpreted as a constraint equation on the set of possible
values for the variables x and y. We can visualize this constraint
geometrically by considering the coordinate pairs (x,y) that lie in
the Cartesian plane. Recall that every point in the Cartesian plane
can be represented as a coordinate pair (x,y), where x and y are the
coordinates of the point.

Figure 1.59 shows the geometrical representation of three equa-
tions. The line ¢, corresponds to the set of points (x,y) that satisfy
the equation x = 1, the line ¢} is the set of points (x,y) that satisfy
the equation y = 2, and the line /; corresponds to the set of points
that satisfy x + 2y = 2.

T ; ) o g

© x+2y=2

@ x=1 ‘(b)s y=2

Figure 1.59: Graphical representations of three linear equations.

You can convince yourself that the geometric lines shown in Fig-
ure 1.59 are equivalent to the algebraic equations by considering in-
dividual points (x,y) in the plane. For example, the points (1,0),
(1,1), and (1,2) are all part of the line ¢, since they satisfy the equa-
tion x = 1. For the line £, you can verify that the line’s x-intercept
(2,0) and its y-intercept (0, 1) both satisfy the equation x +2y = 2.
The Cartesian plane as a whole corresponds to the set R?, which
describes all possible pairs of coordinates. To understand the equiv-
alence between the algebraic equation ax + by = ¢ and the line £ in
the Cartesian plane, we can use the following precise math notation:

E:{(x,y)eIR2|ax+by=c}.

In words, this means that the line £ is defined as the subset of the
pairs of real numbers (x,y) that satisfy the equation ax + by = ¢

F =
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Figure 1.60 shows the graphical representation of the line £.

You don’t have to take my word for it, though! Think about it and
convince yourself that all points on the line ¢ shown in Figure 1.60
satisfy the equation ax + by = c. For example, you can check that
the xl;intercept (5,0) and the y-intercept (0, §) satisfy the equation
ax + by = c.
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Figure 1.60: Graphical representation of the equation ax + by = c.

Solving the system of two equations

ax+by =0,

anXx + bzy = Cy,
corresponds to finding the intersection of the lines ¢; and ¢, that
represent each equation. The pair (x,y) that satisfies both algebraic

(.-quation.s simultaneously is equivalent to the point (x, y) that is the
intersection of lines £; and /5, as illustrated in Figure 1.61.

m
az,\

Figure 1.61: The point (x, y) that lies at the intersection of lines /1 and ;.
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Example Let’s see how we can use the geometric interpretation to
solve the system of equations

x+2y=51
3x 4+ 9y = 21.

We've already seen three different algebraic techniques for finding
the solution to this system of equations; now let’s see a geometric ap-
proach for finding the solution. I'm not kidding you, we're going to
solve the exact same system of equations a fourth time!

The first step is to draw the lines that correspond to each of the
equations using pen and paper or a graphing calculator. The second
step is to find the coordinates of the point where the two lines inter-
sect as shown in Figure 1.62. The point (1, 2) that lies on both lines ¢
and ¢, corresponds to the x and y values that satisfy both equations
simultaneously.

b

.
e

? ~

Figure 1.62: The line ¢; with equations x + 2y = 5 intersects the line £, with
equation 3x + 9y = 21 at the point (1,2).

Visit the webpage at www.desmos.com/calculator/exikik615f to
play with an interactive version of the graphs shown in Figure 1.62.
Try changing the equations and see how the graphs change.

Exercises

FE1.23 Plot the lines ¢;, 5, and £, shown in Figure 1.59 (page 106)
using the Desmos graphing calculator. Use the graphical representa-
tion of these lines to find: a) the intersection of lines ¢, and ¢,, b) the
intersection of £, and £}, and c) the intersection of lines ¢; and ..

F1.24 Solve the system of equations simultaneously for x and y:

2x+4y=16/
5 —y="7.

1.16 SET NOTATION 109
E1.25 Solve the system of equations for the unknowns ¥, y, and z:

2x +y—4z = 28,
X +y+z=38,
2x —y—6z =22

[1.26 Solve for p and q given the equations p +4 = 10 and p — q=4.

1.16 Set notation

A set is the mathematically precise notion for describing a group of
objects. You don’t need to know about sets to perform simple math;
but more advanced topics require an understanding of what sets are,
and how to denote set membership, set operations, and set contain-
ment relations. This section introduces all the relevant concepts.

Definitions

e set: a collection of mathematical objects
S, T: the usual variable names for sets
e s € S: this statement is read “s is an element of S$” or “s is in S”

e N,Z,Q,RR: some important number sets: the naturals, the in-
tegers, the rationals, and the real numbers, respectively.

&: the empty set is a set that contains no elements

[ } t}}e curly brackets are used to define sets, and the ex-
pression inside the curly brackets describes the set contents.

Set operations:

e 5 u T: the union of two sets. The union of S and T corresponds
to the elements in either S or T.

e 5 n T: the intersection of the two sets. The intersection of S and
T corresponds to the elements that are in both S and T.

o S\T: set difference or set minus. The set difference S\T corre-
sponds to the elements of S that are not in T.

Set relations:

e C: is a strict subset of
e C:is asubset of or equal to

N R T
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