(X1, X2) is 3, attained when
|

um public works schedyle ;
1
andy=2X2=\/§& l.l‘:‘elSX§

iblic works schedule js the

(x, ¥) = 3 just meet. Poingg (xn; ;vhere
* V) With
rve, See

lo not touch the constraint ¢y,

e of variable that transformg Qi
d give the new quadratic form Mo

alue of Q(x) subject to the cq

A1ximum is attained. fistraint

3.]

=

x . - -
hundreg aclre: i~ 6032 = 105X = 10x1x; — 6xyx,

ynximum value of Q(x)
wtox"x=1is4.

eigenvalues of the matrix of the quadratic
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= l/\/f ",,+3XIX3 +30x1x4 + 30x5x; + 3x0x4 + xyx,
+5x1X3 + TX1X4 + TXoXy + Sxyx, + 3x X
IXq

17. —6x} - 10x] — 13x2

_ 2
bxoxs 13x; — 4xyx; — 4xyx3 — 4x, x4 +

- 6X3X4 - 2X]X4

ﬂ_}uuoNs TOPRACTICE PROBLEMS

1. The matrix of the quadratic form is A = [i ;] . Itis easy to find the eigenvalues,

4 and 2, and corres i it ei 1/v2 -1/42
, ponding unit eigenvectors, d
1/3 an VAL So the
desired change of variable is x = P 1/V2 -1/2
= Py, where P = .

| l/«/i 1/\/5 (A common
erTror here is to forget to normalize the eigenvectors.) The new quadratic form is
y'Dy =4y} +2y3.

2. The maximum of Q(x) for x a unit vector is 4, and the maximum is attained at the unit

. 1/v2
eigenvector [ 1; ﬁ] [A common incorrect answer is [(l)] This vector maximizes

the quadratic form y’Dy instead of Q(x).]

alue of Q(x) = 7x2 + 3x — 2x,x,, sub- 1] THE SINGULAR VALUE DECOMPOSITION

2

t x} +x2=1. (Do not go on to find a
imum is attained.)

value of Q(x) = —3x} +5x7 — 2x1x,
int x2+x3=1. (Donotgoontofinda |
imum is attained.)

genvector of a matrix A corresponding |
hat is the value of x’Ax?

1e of a symmetric matrix A. Justify the
section that m < A < M, where n; and
. [Hint: Find an x such that A =X Ax.]

metric matrix, let M and m denoterthe
m values of the quadratic form xA%,
ng unit eigenvectors by u; and - The |
show that given any number / betW?;" i
it vector x such that r = xTAx. Verl ly
{ for some number o between 0and d
'+ \/au;, and show that xx =120

, . Exer
llow the instructions giver? for

'EXAMPLE 1 IfA=[8 7 -2

The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting
applications. Unfortunately, as we know, not all matrices can be factored as A = PDP~"
with D diagonal. However, a factorization A = QDP~" is possible for any m x n matrix
A! A special factorization of this type, called the singular value decomposition, is one
of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary
diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks

certain vectors (the eigenvectors). If Ax = Ax and ||x|| = 1, then
[ Ax|l = IAx]| = AL Ixl =12l 1)

If A, is the eigenvalue with the greatest magnitude, thena cqrrespond'mg unit. eigenvector
v, identifies a direction in which the stretching effect of A is greatest'. That is, t.he length
of Ax is maximized when X =Vi, and ||Avy ]l =M, by_(l). This desc.npuon of v
and |A;| has an analogue for rectangular matrices that will lead to the singular value

decomposition.
4 111 , then the linear transformation X —> AX maps

— 1} in R3 onto an ellipse in R?, shown in Fig. 1. Fi{\d a thumt
mpute this maximum ength.

the unit sphere {x : [Ixl an ¢
: gth [|Ax|| is maximized, and co

vector x at which the len,

T ErE FTEF

T B Iy Ay i N Al

T NIl /bl
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Multiplication
by A

A

(18,¢)

(3,-9)

FIGURE1 A transformation from R? to R2.

Solution The quantity || Ax||? is maximized at the same x that maximizes || AX|, ang
| Ax||? is easier to study. Observe that

IAx])? = (A%)T (Ax) = x"ATAx = xT(ATA)x

Also, A’A is a symmetric matrix, since (A7A)7 = ATATT — AT4. So the problem now
is to maximize the quadratic form x’(A7A)x subject to the constraint IX|| = 1. Thats
a problem from Section 7.3, and we know the solution. By Theorem 6, the maximum
value is the greatest eigenvalue 1| of A7A. Also, the maximum value is attained at a unit
eigenvector of A’A corresponding to A,.

For the matrix A in this example,

4 8 80 100 40
AA=|11 7 [g l; _“ﬂ: 100 170 140
14 -2 40 140 200

The eigenvalues of A7A are A, = 360, A, =90, and A; = 0. Corresponding unit eigen-
vectors are, respectively,

1/3 -2/3 2/3
vi=|[2/31, wv,=|-1/3]|, vi= | —2/3
2/3 2/3 1/3

The maximum value of || Ax||? is 360, attained when x is the unit vector v,. The vector
Av| is a point on the ellipse in Fig. 1 farthest from the origin, namely,

1/3

4 1

Av, = {8 ! _1‘2‘] 2/3 | = [IEJ
2/3

For ||x|| = 1, the maximum value of ||Ax|| is | Av, I = /360 = 64/10.

) 3

Example 1 suggests that the effect of A on the unit sphere in R? is related toti[:n
quadratic form x(A7A)x. In fact, the entire geometric behavior of the transforma

X > AX is captured by this quadratic form, as we shall see.

AGY
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The Singular Values of an m x n Matrix

Let A be an m x n matrix. Then A’A is symmetric and can be orthogonally diagonalized.

Let {v,, ..., v,} be an orthonormal basis for R" consisting of eigenvectors of A’A, and
let A, ..., Ay be the associated eigenvalues of ATA. Then, for 1 <i < n,
|Av; ”2 = (Avl)TAvl = V,TATAVI
=v/ (V) e
=\ STITCRR 2)

So the eigenvalues of A’A are all nonnegative. By renumbering, if necessary, we may
assume that the eigenvalues are arranged so that

A-le-2>"'ZA-nzO

The singular values of A are the square roots of the eigenvalues of A’A, denoted by
o1y .., o,, and they are arranged in decreasing order. That is, o; = JAiforl <i <n.
By (2), the singular values of A are the lengths of the vectors Avy, ..., Av,.

EXAMPLE 2 Let A be the matrix in Example 1. Since the eigenvalues of A’A are 360,
90, and 0, the singular values of A are

0’1=\/360=6\/—l—0, 0'3=\/%=3m. gy =0

From Example 1, the first singular value of A is the maximum of ||Ax| over all unit
vectors, and the maximum is attained at the unit eigenvector v,. Theorem 7 in Section 7.3
shows that the second singular value of A is the maximum of || Ax|| over all unit vectors
that are orthogonal to v\, and this maximum is attained at the second unit eigenvector,
v2 (Exercise 22). For the v, in Example 1,

-2/3
4 11 14 3
31 2]y -9

This point is on the minor axis of the ellipse in Fig. 1, just as Av, is on the major axis.
(See Fig. 2.) The first two singular values of A are the lengths of the major and minor
semiaxes of the ellipse. &

The fact that Av; and Av, are orthogonal in Fig. 2 is no accident, as the next theorem
shows.

Suppose {vi, ..., V,} is an orthonormal basis of R" consisting of eigenvectors of
ATA, arranged so that the corresponding eigenvalues of A’A satisfy Ay > -+ - > A,
and suppose A has r nonzero singular values. Then {Avy, ..., Av,} is an orthog-
onal basis for Col A, and rank A =r.
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PROOF Because v; and A;v; are orthogonal for i # j,
(Av)T(Av;) =vI ATAv; =v] (A;v;) =0

Thus {Av,, ..., Av,} is an orthogonal set. Furthermore, since the lengths of the vec.
tors Av,, ..., Av, are the singular values of A, and since there are r nonzero singular
values, Av;#0 if and only if | <i <r. So Avy,..., Av, are linearly independen

vectors, and they are in Col A. Finally, for any y in Col A—say, y = AX—we can write
X=C|V| + -+ CpV,, and
Yy=AX=ClAV| + -+ AV, + Cr1 | AVrsl + -+ CnAV,
=CclAV; + -+ AV, +0+---+0

Thus y is in Span {Av,, ..., Av,}, which shows that {Av,, ..., AvV,} is an (orthogonal)
basis for Col A. Hence rank A =dim Col A =r. )
'NUMERICAL NOTE

In some cases, the rank of A may be very sensitive to small changes in the entries
A. The obvious method of counting the number of pivot columns in A does not work
well if A is row reduced by a computer. Roundoff error often creates an echelon form
with full rank.

In practice, the most reliable way to estimate the rank of a large matrix A is to
count the number of nonzero singular values. In this case, extremely small nonzero
singular values are assumed to be zero for all practical purposes, and the effective
rank of the matrix is the number obtamed by coummg the remam.mg nonzero smgular
values.! S ' i 3

The Singular Value Decomposition

The decomposition of A involves an m x n “‘diagonal” matrix T of the form

D 0
= 3
z [ 0 O] - i FTOWS ( )

.
" rcolumns

where D is an r x r diagonal matrix for some r not exceeding the smaller of m and 1.

(If r equals m or n or both, some or all of the zero matrices do not appear.)

'In general, rank estimation is not a simple problem. For a discussion of the subtle issues involv.ed. see
Philip E. Gill, Walter Murray, and Margaret H. Wright, Numerical Linear Algebra and Optimization, ¥
1 (Redwood City, CA: Addison-Wesley, 1991), Sec. 5.8.
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t'A,01 2072 20, >0, and there existan m xm orthogonal matrix U and a
- nxn orthogonal matrix V such that ¢ ‘

Any factorization A = UZ VT, with U and V orthogonal, X as in (3), and positive
diagonal entries in D, is called a singular value decomposition (or SVD) of A. The
matrices U and V are not uniquely determined by A, but the diagonal entries of T are
necessarily the singular values of A. See Exercise 19. The columns of U in such a
decomposition are called left singular vectors of A, and the columns of V are called
right singular vectors of A.

PROOF Let A; and v; be as in Theorem 9, so that {Av,, ..., Av,} is an orthogonal basis

for Col A. Normalize each Av; to obtain an orthonormal basis {u,, ..., u,}, where
1
u; = mAv; = ;Av,-
and
Avi=on; - (1<i<r) @)
Now extend {uy, ..., u,} to an orthonormal basis {u, ..., u,,} of R”, and let
U=[w uw - u,] and V=[v, vs - v,]

By construction, U and V are orthogonal matrices. Also, from (4),
AV=[Av, -+ Av, 0 ... Ol=[om -+ o O ... 0]

Let D be the diagonal matrix with diagonal entries o1, ..., 0,, and let T be as in
(3) above. Then ' :

0) 0
(o) 0
UZ=[w w - uy]
. 0 Or
o o
=[ow - o 0 --- 0]
= AV

Since V is an orthogonal matrix, UsvVT =AVVT = A,
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The next two examples focus attention on the internal structure of a singular value
decomposition. An efficient and numerically stable algorithm for this decompositiop
would use a different approach. See the Numerical Note at the end of the section.

B EXAMPLE3  Use the results of Examples 1 and 2 to construct a singular value decom-

. 4 11 14
position of A = {8 2 _2].

Solution A construction can be divided into three steps.

Step [. Find an orthogonal diagonalization of ATA. That is, find the eigenvalues of A™4
and a corresponding orthonormal set of eigenvectors. If A had only two columns, the
calculations could be done by hand. Larger matrices usually require a matrix program.?
However, for the matrix A here, the eigendata for A’A are provided by Example 1.

Step 2. Set up 'V and T. Arrange the eigenvalues of A’A in decreasing order. In
Example 1, the eigenvalues are already listed in decreasing order: 360, 90, and 0. The
corresponding unit eigenvectors, vy, V2, and v3, are the right singular vectors of A. Using
Example 1, construct

13 —2/3 2/3
V=[vi v» wvil=|2/3 —1/3 —=2/3
2/3  2/3 173

The square roots of the eigenvalues are the singular values:

X
01=6v10, 0,=3v10, a3=0
The nonzero singular values are the diagonal entries of D. The matrix X is the same £ .
size as A, with D in its upper-left corner and with 0’s elsewhere. g — X\
! a4 N
6+/10 0 6+/10 0 0 avy
D= , X=[D 0]=
[ 0 wm] [ ] [ 0 3/10 0

Step 3. Construct U. When A has rank r, the first » columns of U are the normalized
vectors obtained from Av,, ..., Av,. In this example, A has two nonzero singular
values, so rank A = 2. Recall from equation (2) and the paragraph before Example 2
that [|[Av,|| = o) and ||Av,|| = 03. Thus

11 18] [3/410
Ul—UIAVI_6\/T(_)l: 6]-[1/~/ﬁ]
1 31 [ 1/4/10
n =M= [—9] - [—3/~/T6]

it Note that {u,, u,} is already a basis for R2. Thus no additional vectors are needed for
U,and U =[u; wu,]. The singular value decomposition of A is AGURE 3

2Sec the Study Guide for software and graphing calculator commands. MATLAB, for instance, can pro-
duce both the eigenvalues and the eigenvectors with one command, eig.
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A=[3/~/IT) 1Jio] fevio o o] | 13 283 2/3
v s %5 e ol [

, ] !
u x v e

2 -2

Solution First, compute A’A = [_g ‘g]. The eigenvalues of AA are 18 and 0,

with corresponding unit eigenvectors
e[ ). e[
ERYN.) R VA5
These unit vectors form the columns of V:

_ [ uyv2 1/V2
V=[vi VZ]—[_l/ﬁ I/ﬁ]

=J/18= 34/2 and 0, = 0. Since there is only one nonzero
singular value, the “matrix” D may be written as a single number. That is, D = 342
The matrix ¥ is the same size as A, with D in its upper-left corner:

s=|0 0|=| 0 0
o 0 0 0

To construct U, first construct Avi and Ava:

The singular values are g1

2/32 0
Av = | —4/V2|. A= 0
4/2 0

verify that AV | =01 = 34/2. Of course, Av2 =0

As a check on the calculations,
found for U so far is

because ||Avall =02 = 0. The only column

i 13
u = —— AV = —'2/ 3
e 2/3
i rthonormal basis for
ther columns of U are found by extending the set {u} to an o
o tad nal unit vectors U2 and u; that are orthogonal to

we need two orthogo i
Each vector must satisfy u
0. A basis for the solution sé!

x = 0, which is equivalent to the equation

R3. In this case,
1 of this equation is

u;. (See Fig. 3)
x| —2x2+ 2x3 =

2 -2
W = 11, W= 0
0 1
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(Check that w; and w» are each orthogonal to u;.) Apply the Gram-Schmidt process
(with normalizations) to {w;, w,}, and obtain

2/3/5 —2//45

w=|[1//5|, uw=| 4/V45

0 5//45

Finally, set U = [u; u wu3], take X and VT from above, and write

1 -1 1/3  2//5 —2/v/457[3v2 0 3
A=|-2 2|=|-2/3 15 4| 0 0 [:;ﬁ Ug}
2 -2 2/3 0 5//45 0 0

Applications of the Singular Value Decomposition

The SVD is often used to estimate the rank of a matrix, as noted above. Several other nu-
merical applications are described briefly below, and an application to image processing
is presented in Section 7.5.

EXAMPLE 5 (The Condition Number) Most numerical calculations involving an
equation Ax = b are as reliable as possible when the SVD of A is used. The two
orthogonal matrices U and V do not affect lengths of vectors or angles between vectors
(Theorem 7 in Section 6.2). Any possible instabilities in numerical calculations are
identified in X. If the singular values of A are extremely large or small, roundoff errors
are almost inevitable, but an error analysis is aided by knowing the entries in X and V.
If A is an invertible n xn matrix, then the ratio o, /0, of the largest and smallest
singular values gives the condition number of A. Exercises 4143 in Section 2.3 showed
how the condition number affects the sensitivity of a solution of Ax = b to changes (or
errors) in the entries of A. (Actually, a “condition number” of A can be computed in
several ways, but the definition given here is widely used for studying Ax =b.) =

EXAMPLE 6 (Bases for Fundamental Subspaces) Given an SVD for an m x n matrix

A, letuy, ..., u, be the left singular vectors, vy, ..., v, the right singular vectors, and
01, ..., 0, the singular values, and let r be the rank of A. By Theorem 9,
{u, ..., u} ©)

is an orthonormal basis for Col A.
Recall from Theorem 3 in Section 6.1 that (Col A)* = Nul A”. Hence

6

{1} FRTR |

is an orthonormal basis for Nul A7 .
Since ||Avi|| =0; for 1 <i <n, and o; is O if and only if i > r, the vectors
Vri1, .-, Vu Span a subspace of Nul A of dimension n — r. By the Rank Theorem

fundamental subspaces in
umple 4.

T S T IR
THEORE]!
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dim Nul A = n — rank A. It follows that
(Vesly o ooy Vil (7

is an orthonormal basis for Nul A, by the Basis Theorem (in Section 4.5). _
From (5) and (6), the orthogonal complement of Nul AT is Col A. Interchanging A
and AT, we have (Nul A)L = Col AT = Row A. Hence. from (7),

Vi, vr) @)

is an orthonormal basis for Row A.

Figure 4 summarizes (5)—(8), but shows the orthogonal basis {ouy, ..., o,u,} for
Col A instead of the normalized basis, to remind you that Av; = oiu; forl <i<r.
Explicit orthonormal bases for the four fundamental subspaces determined by A are
useful in some calculations, particularly in constrained optimization problems. &

FIGURE4 The four fundamental subspaces and the action
of A.

The four fundamental subspaces and the concept of singular values provide the final
statements of the Invertible Matrix Theorem. (Recall that statements about AT have
been omitted from the theorem, to avoid nearly doubling the number of statements.)
The other statements were given in Sections 2.3, 2.9, 3.2, 4.6, and 5.2.

The Invertible Matrix Theorem (concluded)

Let A be an n X 1 matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

u. (Col At = {0}
v. (Nul At =R"

w. RowA=R".
x. A has n nonzero singular values.
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B EXAMPLE 7 (Reduced SVD and the Pseudoinverse of A) When £ contains rows

columns of zeros, a more compact decomposition of A is possible. Using the notat
established above, let r =rank A, and partition U and V into submatrices whose f
blocks contain r columns:

U=[U Uy, whereU, =[u --- u,]

V=I[V, V.1, whereV, =[v, -+ v.]
Then U, is mxr and V, is nxr. (To simplify notation, we consider U,_, or V,
even though one of them may have no columns.) Then partitioned matrix multiplicati

shows that
D o] vI T
A—[Ur Um—r][o OJ{VT J UDV (

n—r
This factorization of A is called a reduced singular value decomposition of A. Sin
the diagonal entries in D are nonzero, we can form the following matrix, called ¢
pseudoinverse (also, the Moore-Penrose inverse) of A:
At=vVv, DUl (1

Supplementary Exercises 12—14 at the end of the chapter explore some of the propertu
of the reduced singular value decomposition and the pseudoinverse. =

EXAMPLE 8 (Least-Squares Solution) Given the equation Ax = b, use the pse
doinverse of A in (10) to define

x=Ab=V,D7'U"D
Then, from the SVD in (9),

AX = (U,DV)(V,D7'UTDb)
=U,DD™'U™b  Becawse VIV, =,
=UU'b

It follows from (5) that U,Ub is the orthogonal projection b of b onto Col A. (Se
Theorem 10 in Section 6.3.) Thus X is a least-squares solution of Ax = b. In fact, this 3
has the smallest length among all least-squares solutions of Ax = b. See Supplementar)
Exercise 14. B

NUMERICAL NOTE

Examples 14 and the exercises illustrate the concept of singular values and suggest
how to perform calculations by hand. In practice, the computation of A7A should be
avoided, since any errors in the entries of A are squared in the entries of A7A. There
exist fast iterative methods that produce the singular values and singular vectors of
A accurately to many decimal places.



