{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CS 237 Spring 2021, HW 08 \n",
"\n",
"#### Due date: Friday April 2st at Midnight (1 minute after 11:59pm on 4/1) via Gradescope (6 hour grace period). No hws will be accepted after 6am on Saturday. \n",
"\n",
"#### As posted on Piazza, late period is waived, you have until this deadline to submit with no late points. \n",
"\n",
" \n",
"\n",
"#### General Instructions\n",
"\n",
"Please complete this notebook by filling in solutions where indicated. \n",
"\n",
"For full credit, please take careful note of the following requirements:\n",
"\n",
"- Do NOT use any HTML tags in your notebook, as Gradescope will ignore them;\n",
"\n",
"- Do NOT answer questions by including images, as Gradescope will ignore them; and \n",
"\n",
"- You MUST \"Restart and Run All\" from the Kernel menu before submitting to Gradescope.\n",
"\n",
"**Any assignments which do not follow these requirements will not receive full credit.** \n",
"\n",
"\n",
"\n",
"There are 8 analytical problems and 2 programming problems. This homework is worth the same as every other homework, namely 60 points, so each problem is worth 6 points. An introductory video will be posted on YT for\n",
"the analytical problems, and the programming problems will be covered Friday in lab. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Here are some imports which will be used in code that we write for CS 237\n",
" \n",
"\n",
"# Imports potentially used for this lab\n",
"\n",
"\n",
"import matplotlib.pyplot as plt # normal plotting\n",
"import numpy as np\n",
"\n",
"from math import log, pi,log,floor # import whatever you want from math\n",
"from random import seed, random\n",
"from scipy.special import comb\n",
"from collections import Counter\n",
"\n",
"%matplotlib inline\n",
"\n",
"# Calculating permutations and combinations efficiently\n",
"\n",
"def P(N,K):\n",
" res = 1\n",
" for i in range(K):\n",
" res *= N\n",
" N = N - 1\n",
" return res\n",
" \n",
"def C(N,K): \n",
" return comb(N,K,True) # just a wrapper around the scipy function\n",
"\n",
"\n",
"# Useful code \n",
"\n",
"def show_distribution(outcomes, title='Probability Distribution'):\n",
" num_trials = len(outcomes)\n",
" X = range( int(min(outcomes)), int(max(outcomes))+1 )\n",
" freqs = Counter(outcomes)\n",
" Y = [freqs[i]/num_trials for i in X]\n",
" plt.bar(X,Y,width=1.0,edgecolor='black')\n",
" if (X[-1] - X[0] < 30):\n",
" ticks = range(X[0],X[-1]+1)\n",
" plt.xticks(ticks, ticks) \n",
" plt.xlabel(\"Outcomes\")\n",
" plt.ylabel(\"Probability\")\n",
" plt.title(title)\n",
" plt.show()\n",
"\n",
"# This function takes the range and PMF of a discrete RV and draws the distribution. \n",
"\n",
"def draw_distribution(Rx, fx, title='Probability Distribution for X'):\n",
" plt.bar(Rx,fx,width=1.0,edgecolor='black')\n",
" plt.ylabel(\"Probability\")\n",
" plt.xlabel(\"Outcomes\")\n",
" if (Rx[-1] - Rx[0] < 30):\n",
" ticks = range(Rx[0],Rx[-1]+1)\n",
" plt.xticks(ticks, ticks) \n",
" plt.title(title)\n",
" plt.show()\n",
" \n",
"def round4(x):\n",
" return round(x+0.00000000001,4)\n",
"\n",
"def round4_list(L):\n",
" return [ round4(x) for x in L]\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analytical Problem Instructions\n",
"\n",
"The Problem 3 asks you to \"describe\" a random variable, which means:\n",
"\n",
"> (i) Give $R_X$ (you may schematize it if it is very complicated or infinite);
\n",
"> (ii) List out the values of $f_X$ corresponding to each element of $R_X$;
\n",
"> (iii) Draw a probability distribution, using the function draw_distribution
provided in the previous cell.
\n",
"\n",
"As always, round to 4 decimal places at the last stage, using the functions round4(...)
and round4_list(...)
given above.\n",
"\n",
"A nice way to approach these is to do any complicated calculations in Python and then if you have\n",
"to change something you won't have to redo all the calculations. Plus, you will make fewer\n",
"mistakes in calculation. However, there is no need to do this for simpler problems. "
]
},
{
"attachments": {
"Screen%20Shot%202021-03-25%20at%2010.18.00%20PM.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAENCAYAAADntNoZAAAMbWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAghICb0J0gkgJYQWekewEZJAQokxIajY0UUF1y6iYENXRRTbCogdu7Io9r5YUFHWRV1sqLwJCei6r3zvfN/c++fMmf+UO5N7DwCaH7gSST6qBUCBuFCaGB7MGJ2ewSB1AgQYAz1gCHy4PJmEFR8fDaAM3v8u725AayhXnRRc/5z/r6LDF8h4ACBjIc7iy3gFEB8HAK/mSaSFABAVesvJhRIFng2xrhQGCPFKBc5R4u0KnKXEhwdskhPZEF8GQI3K5UpzANC4B/WMIl4O5NH4DLGLmC8SA6A5AuIAnpDLh1gR+4iCgokKXAmxHbSXQAzjAcys7zhz/safNcTP5eYMYWVeA6IWIpJJ8rlT/8/S/G8pyJcP+rCBgyqURiQq8oc1vJU3MUqBqRB3i7Ni4xS1hviDiK+sOwAoRSiPSFHao8Y8GRvWD+hD7MLnhkRBbAxxmDg/Nlqlz8oWhXEghrsFnSIq5CRDbADxAoEsNElls1E6MVHlC23IlrJZKv05rnTAr8LXA3leCkvF/0Yo4Kj4MY1iYXIaxBSIrYpEqbEQa0DsLMtLilLZjCoWsmMHbaTyREX8VhAnCsThwUp+rChbGpaosi8rkA3mi20UijixKryvUJgcoawPdorHHYgf5oJdFohZKYM8Atno6MFc+IKQUGXu2HOBOCVJxfNBUhicqFyLUyT58Sp73EKQH67QW0DsIStKUq3FUwvh5lTy49mSwvhkZZx4cS43Ml4ZD74URAM2CAEMIIcjC0wEuUDU1t3YDX8pZ8IAF0hBDhAAJ5VmcEXawIwYXpNAMfgDIgGQDa0LHpgVgCKo/zKkVV6dQPbAbNHAijzwFOICEAXy4W/5wCrxkLdU8ARqRP/wzoWDB+PNh0Mx/+/1g9pvGhbURKs08kGPDM1BS2IoMYQYQQwj2uNGeADuh0fDaxAcbjgT9xnM45s94SmhnfCIcJ3QQbg9QVQi/SHKGNAB+cNUtcj6vha4DeT0xINxf8gOmXF93Ag44R7QDwsPhJ49oZatiltRFcYP3H/L4LunobIju5BR8jByENnux5UaDhqeQyyKWn9fH2WsWUP1Zg/N/Oif/V31+fAe9aMltgDbj53FTmDnscNYI2Bgx7AmrBU7osBDu+vJwO4a9JY4EE8e5BH9wx9X5VNRSZlLnUuXy2flXKFgSqHi4LEnSqZKRTnCQgYLvh0EDI6Y5zyC4ebi5gqA4l2j/Pt6mzDwDkH0W7/p5v4OgP+x/v7+Q990kccA2OsNj//Bbzo7JgDa6gCcO8iTS4uUOlxxIcB/CU140gyBKbAEdjAfN+AF/EAQCAWRIA4kg3QwHlZZCPe5FEwG08EcUArKwVKwCqwFG8BmsB3sAvtAIzgMToAz4CK4DK6Du3D3dIKXoAe8A30IgpAQGkJHDBEzxBpxRNwQJhKAhCLRSCKSjmQiOYgYkSPTkblIObIcWYtsQmqRvchB5ARyHmlHbiMPkS7kDfIJxVAqqouaoDboSJSJstAoNBkdh+agk9BidB66GK1Ea9CdaAN6Ar2IXkc70JdoLwYwdUwfM8ecMCbGxuKwDCwbk2IzsTKsAqvB6rFm+JyvYh1YN/YRJ+J0nIE7wR0cgafgPHwSPhNfhK/Ft+MN+Cn8Kv4Q78G/EmgEY4IjwZfAIYwm5BAmE0oJFYSthAOE0/AsdRLeEYlEfaIt0RuexXRiLnEacRFxHXE38TixnfiY2EsikQxJjiR/UhyJSyoklZLWkHaSjpGukDpJH9TU1czU3NTC1DLUxGolahVqO9SOql1Re6bWR9YiW5N9yXFkPnkqeQl5C7mZfIncSe6jaFNsKf6UZEouZQ6lklJPOU25R3mrrq5uoe6jnqAuUp+tXqm+R/2c+kP1j1QdqgOVTR1LlVMXU7dRj1NvU9/SaDQbWhAtg1ZIW0yrpZ2kPaB90KBrOGtwNPgaszSqNBo0rmi80iRrWmuyNMdrFmtWaO7XvKTZrUXWstFia3G1ZmpVaR3UuqnVq03XdtWO0y7QXqS9Q/u89nMdko6NTqgOX2eezmadkzqP6Rjdks6m8+hz6Vvop+mdukRdW12Obq5uue4u3TbdHj0dPQ+9VL0pelV6R/Q69DF9G32Ofr7+Ev19+jf0Pw0zGcYaJhi2cFj9sCvD3hsMNwgyEBiUGew2uG7wyZBhGGqYZ7jMsNHwvhFu5GCUYDTZaL3RaaPu4brD/YbzhpcN3zf8jjFq7GCcaDzNeLNxq3GvialJuInEZI3JSZNuU33TINNc05WmR027zOhmAWYis5Vmx8xeMPQYLEY+o5JxitFjbmweYS4332TeZt5nYWuRYlFisdviviXFkmmZbbnSssWyx8rMKsZqulWd1R1rsjXTWmi92vqs9XsbW5s0m/k2jTbPbQ1sObbFtnW29+xodoF2k+xq7K7ZE+2Z9nn26+wvO6AOng5ChyqHS46oo5ejyHGdY/sIwgifEeIRNSNuOlGdWE5FTnVOD531naOdS5wbnV+NtBqZMXLZyLMjv7p4uuS7bHG566rjGula4trs+sbNwY3nVuV2zZ3mHuY+y73J/bWHo4fAY73HLU+6Z4znfM8Wzy9e3l5Sr3qvLm8r70zvau+bTF1mPHMR85wPwSfYZ5bPYZ+Pvl6+hb77fP/0c/LL89vh93yU7SjBqC2jHvtb+HP9N/l3BDACMgM2BnQEmgdyA2sCHwVZBvGDtgY9Y9mzclk7Wa+CXYKlwQeC37N92TPYx0OwkPCQspC2UJ3QlNC1oQ/CLMJywurCesI9w6eFH48gRERFLIu4yTHh8Di1nJ5I78gZkaeiqFFJUWujHkU7REujm2PQmMiYFTH3Yq1jxbGNcSCOE7ci7n68bfyk+EMJxIT4hKqEp4muidMTzybRkyYk7Uh6lxycvCT5bopdijylJVUzdWxqber7tJC05Wkdo0eOnjH6YrpRuii9KYOUkZqxNaN3TOiYVWM6x3qOLR17Y5ztuCnjzo83Gp8//sgEzQncCfszCZlpmTsyP3PjuDXc3ixOVnVWD4/NW817yQ/ir+R3CfwFywXPsv2zl2c/z/HPWZHTJQwUVgi7RWzRWtHr3IjcDbnv8+LytuX156fl7y5QK8gsOCjWEeeJT000nThlYrvEUVIq6ZjkO2nVpB5plHSrDJGNkzUV6sKP+la5nfwn+cOigKKqog+TUyfvn6I9RTyldarD1IVTnxWHFf8yDZ/Gm9Yy3Xz6nOkPZ7BmbJqJzMya2TLLcta8WZ2zw2dvn0OZkzfntxKXkuUlf81Nm9s8z2Te7HmPfwr/qa5Uo1RaenO+3/wNC/AFogVtC90Xrln4tYxfdqHcpbyi/PMi3qILP7v+XPlz/+LsxW1LvJasX0pcKl56Y1ngsu3LtZcXL3+8ImZFw0rGyrKVf62asOp8hUfFhtWU1fLVHZXRlU1rrNYsXfN5rXDt9argqt3VxtULq9+v46+7sj5off0Gkw3lGz5tFG28tSl8U0ONTU3FZuLmos1Pt6RuOfsL85farUZby7d+2Sbe1rE9cfupWu/a2h3GO5bUoXXyuq6dY3de3hWyq6neqX7Tbv3d5XvAHvmeF3sz997YF7WvZT9zf/2v1r9WH6AfKGtAGqY29DQKGzua0pvaD0YebGn2az5wyPnQtsPmh6uO6B1ZcpRydN7R/mPFx3qPS453n8g58bhlQsvdk6NPXjuVcKrtdNTpc2fCzpw8yzp77Jz/ucPnfc8fvMC80HjR62JDq2frgd88fzvQ5tXWcMn7UtNln8vN7aPaj14JvHLiasjVM9c41y5ej73efiPlxq2bY2923OLfen47//brO0V3+u7Ovke4V3Zf637FA+MHNb/b/767w6vjyMOQh62Pkh7dfcx7/PKJ7MnnznlPaU8rnpk9q33u9vxwV1jX5RdjXnS+lLzs6y79Q/uP6ld2r379M+jP1p7RPZ2vpa/73yx6a/h2218ef7X0xvc+eFfwru992QfDD9s/Mj+e/ZT26Vnf5M+kz5Vf7L80f436eq+/oL9fwpVyBz4FMDjQ7GwA3mwDgJYOAB32bZQxyl5wQBBl/zqAwH/Cyn5xQLwAqIff7wnd8OvmJgB7tsD2C/Jrwl41ngZAsg9A3d2Hhkpk2e5uSi4q7FMID/r738KejbQCgC9L+/v7avr7v2yGwcLe8bhY2YMqhAh7ho2jvmQVZIF/I8r+9Lscf7wDRQQe4Mf7vwDj6pDeY42XfAAAAJZlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEbAAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAISgAgAEAAAAAQAAAkCgAwAEAAAAAQAAAQ0AAAAAQVNDSUkAAABTY3JlZW5zaG90ZOLVsgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAnRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjU2MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMjAyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CkJYI3EAAEAASURBVHgB7J0FgFXV1scXDDF0Kkg30ooKiNjY3d3drRifz3z6zGc922c+FbsLVMRGkO4SpLuZgPv9f+vcc+fOMOAoAwyyN8y995yz99pr/3etvdba+5RavnRxwkIICAQEAgIBgYBAQCAgsAUhUHoLKmsoakAgIBAQCAgEBAICAQFHIAhAoSEEBAICAYGAQEAgILDFIRAEoC2uykOBAwIBgYBAQCAgEBAIAtAftYHN1UMq8P1HNVu8zwPexYvnH1HblHivT97rk/aPMNmQzwPfGxLdNWkHvNfEZAPcKbMBaG4UkqsTaiH8KZQuVcqMv7WE1YnVisvDUla69NrjFZr8T0YvlMamuBn43rioB7y3HLzXp67XJ+3GRTh/boHv/Hhs6KuA94ZG2OkXiwCUSAoiBTmO75cuXfyKpjIZGRJmRFd5r1q9Wl9rF5nLZpSxUopLnFWrJAxF0lBBdjfZdT7eJcj9UdtPINClxSq1DuFvkxUqZBwQCAgEBAICAYESjECxCEDly5eXAiZ92kYYKeVixupVqywnO0cCCCikx1k/VFaJbm5urhP5IwErV3ETHvcvaIDWj821pkboWb064Yor8MuQQIdgk52dq/ur16LQSiDvWTnFLy1AwRwMcnKFbzFiu1amw4OAQEAgIBAQCAj8TRBYDwFIM7Em4YQm6wkTJtryFcsto7S0MhnRxMz9ChUq2tZbb2WZmZmWk5OTB5lm8YRkoXjS1lVy+s4TkBAQYs0IE32egJVQHhnW/5tv7ecBA6xSpUp2yMEHWePGjWz58hUuSBAXIaJcuXK6t9z6fvmlDfp1sLXZdlvbd5+eVr16dcsWP246E1dxXp4PXOYT5tAXRdqlFL/wpmhxepJwJ+ECTTqvPCk8oJHKLFfGtVjTpk2zGTNnelnq16tvFSpm2qrcVWlljmgg/JQtW9Z+n/q7LVq82FZLm1W7di1hvLWXt/Ccwt2AQEAgIBAQCAgEBAoi8JdtU2gvEADQPjz59NO2fecd7bgTT7b2HTpZu/Yd7ZBDj7Srrr7G/vP4EzZ58m8+cSOUuOYDLjSZc+0mKf1mcvfb+sE9RCEm+zJlIhkNjU8kECGGlLIhQ4fYjTf9n11+xZU2d948CQulXZhAkwJd/kpLIEND8tVXX9udd/7T3nnnXcvKykqZzuJ4CD7k5WmV/+rVqyJm9Ol5wlvMr9Mt7cKep5fWhm+eQyMWvpLFSdEp+AMBMSs7y2bMmGGPPPqYde3W3a6/4SZbuHCBlStbThjk8UBaylGhQgWb+vvvdtPN/7CjjzneOu+4k333/ffCqKznXzCPcB0QCAgEBAICAYGAQOEIrIcGCIISUzTTx5qQzPLl7KijjpTmpay9+fa7NmnyRHv3vfds2PDhdt89/7KaNWsqTUKCQjkXGpjkETow5zDBIxBwXaFCeX++cuVK991Bg0TgOhKCzLU41WvUtE4d21vVKlWtdJlyerbc41WqVNGWLVvuggwCSd26df1+s6ZNIuFHVwgtmZnlrazS5a5S3hKMyLtixYoSPrjO9rhlJYCVlSYJ81QkpEnoy8kWhYRVlIYLnhHSyAf+0DphksvOVhwS6H564FbZshk2RVqcl19+RRhNtv7ffmcZ5cor+ppiE3TRniH8zJ8/35588il75ZX/2X777mvjx49zYdAroVScNn9+6XmH3wGBgEBAICAQEAgIRAislwAUT7VM+rW32tqdka+5+mprWL++nXfOufa4JutZs2b6RH/OmWfabnvsbgN+HmBTpkyxWjLdtNm2jS1atNBGjhptrVu1slYtW0ijlGvDhg2ziZMm2cyZs9x8VrtWLWvbto01bNTIchEsJHwQb+GC+bZk6TJpgObawAE/SSs01DUzHTp2cHqu0ZGmyoURpVqxYoWXGuEHvxtMZiNGDnST0u8yQ9WqVdMwQXXq1NEFLDRRUyWoDBsxXPEzrUH9ei7c/Dp4iAs77du1te22205lWGQDZI777bcpVrlKZeu+885WXxhEWhwEkxip6BcC3+JFi+2WW29zfvbdZx9bMG+h8ijngpTfJJWEHwRD8M1RuV/v/Ybdc+99tt9++1klCWoEzIERdT5jIcgf/Q0+8mP3NyhQKEJAICAQEAgIlBAE1ksAwo+HgL/K3DmzXbNTr942Vq9hI//78aefrNf1r1sDXS9ZutQ1In3kj3PDDTfK5NPVDtBEPnjIUHv33Xft7bfesNatW9mnn31m511wsc2W4JQeevbsaXfcfqvt0LmzBC2Zh5LakmpVq9o11/WyH3/4MT26ff7Zp7bPvvvonnxzknHxu0HbU1bCzwwJPK+88qrSXpcvHRe9rrvWrrryCvnX1LZRY8bY4Ucc5XG6detmP/6Yl0/7Dh3sissulX/Rr/bYY/9J0Tnt1FPtrrvuNAQ3tDf5lEDCLFd4NWzYwAYP+sWFsGefe84+/+ILxWOnWkQG4QdBDZ8qBLk+ffvaRRdfYlddcYVj98KLL3pE10zxy2WFZIVEJP4Gn3+38vwNqiQUISAQEAgI/E0Q+Ms+QF7+1GwdoVFBJqUFCxbYogXzbPTI4TZ23Djr1rWrNCxTrEaNGlJXlLYKSXNWjeo1XAOC8EPAjDVq9Gg78rjjXfg5+6yz7Lv+/eyTjz+0A/bf3/r06WP/J9+XWbNmWxlta4+FGrQvO+2wo735Rm+75193W5cuXZ3ef5//ry1euNA1SNkyZxEQ1HDUTsj09sEHH7nws8fue9j33/W3mdOn2fvvviMtVEu7+1/3WL9vvnF+MYER9txzDzkpV/Q8br7pJtt+++3d9HfW2ef4LrdHHn7ITjn5ZNt11x6GcDJ+/HjX4GAejFymnYx/cC5R5cqVrZNodGjfLsJGT+K8iISPENN/hcwKNnDQIDv4kMO4bRdccL60Wy1t3tx5fo2gBBYF8/CH4SMgEBAICAQEAgIBgUIRWC8NUEwxFkZq1Khur73W2wWFoUOH2YgRI2ViGmEnn3yStZO5KEd+NvjTEDBBffLRh9ZSk/nSJUvlp1PHvpCWI5ETbW0/6cQTrPsuu7ggMG7ceJs1e7Z98UUfGzt2jMxL9eKsbZl2eZ1xxmnuhI0QM08O0T///JOci2fZnDlzDY2UH4SoFCuzVrpANGfuXPv4k0+cBqa1XOU5a9YsF1hatGhh5SWkDR481A4/7DDLKJPh8WbMmGk33Xi9nXTSiTZRu95wRv7v88/bBeefZ716XWeNZJ57+aWX7Zbb7vD48+cvcN5d/SMzXJoVzJ+j3cleuUI8ZbnTNzcRYmJtEQc9st19zNixdtvtd3qa/v2+tuYtW9mv0hyRjoADdJlymW4qi7fV+4PwERAICAQEAgIBgYDAWhFYLwGooIECp+K77r47X2Y33XSjnXHaaa7xyJIfS6zlyNTk3l7ajwaNmtjq3Gz3z2F7N6Gd7iMQZScdk1s0b+7bvnm2ePESnGP46QHzUHQO0GqrVq2qtZIZjcDutCVLl0g7UtdNSNxD6MiQFmqJBK6p036X5qWWHLSHaafa4zzOF7bdtrXHj7e+4w9UqWIl5V3GasiZu0mTxh6/WrVqkT9OqQw3meFE7cG1MvlIrnHBAY7wFNu9UKiRD34/lAvfpW/697ePP/7YTj31FBs5cqT9LsFrtMxyvkNOwmS/ft+oPIvlFL2fylPdTXwxz2tkGG4EBAICAYGAQEAgIOAIrJcApPk6X1iss2leeOG/tk2duhJKSkkg2MrP56lcuZL7wiCoxGn4ZoJflZPlDsUIApzpQ1g4f5HLBJh3SIMww2GKBAQDAsJCHDhsERULt5Yulq+RQkWZjhBG3JdGQkUciINfTe1atW3QwEG2rc4GuvOO25W6lHZ0ZUuYqaA8M3wnW2xeIi3l8bOMEqtkSpOWKimDIaxETtacSL3Kd3h5Xnkyml8W/KBcfj6SyhVrmcjDd6bJ4do1ROJnxrQZnvTFF18y/uLQWb5QPeRs/dDDD/ut8ePGuBO3oUD7g7xjGuE7IBAQCAgEBAICWyoC6yUAxTMtAkX5zMpulukhs1XTJk1caMHfhomcLeV+no+kj3hujt/JhSDAbil8YjBXEWbOnmW//PKLNW/ezJZpl9d33/1gdepsrd1jv9nW+kb6idMTH9PPaglJA38ZaJ99/jm3fBdXLWlqXMOS1BixmwqBBcfpunXqWKmyZXynGfdxrka4WqTdWSO064st5x07dnRafPgZP+KVwx9xpkY4IsA/f5SM3V0Z8k8irEsLQ1qEJvJYKufwFdo+T8BHaaZMcfg4lRFvCHD7ypG7ecvm7gsE7xUloGESfOONt+zrfv3s+l695GfVxcsEjuvK1zMJHwGBgEBAICAQEAgI2PoJQMmzZziROGvlUk3mOntHkzBCB/eY0PEPioUFfFz8JaYC3p/pm2cupOj3TjvuaEcdeaS99fbb9tQzz9pEnZGzWE7OnJPDNvObbrzBT3NGI4TQQ6io83Huf+BB9wsaKI3OV19/7fePOuoIq7XVVjZXvkOcS0RAiFkhv5utpKE65ZST7MWXXpIz9Ad+GGHPvfbyLexTpky1p3Sw4+WXXebCR+xczJb56B1cIqQyxflH7yFz8l5WzhMixH5R0ZO8T+7Dx4SJE7Wr61LfKTZt2nRr265ddMjh/90sc2CW3fqP/5ND9S5ytt7OdtyhM0C58FahUhX7RVv+e2tLPGHHHTvboYcfaivFHxqoGOu8HMOvgEBAICAQEAgIBAQKIrB+AlAkgyQ1IGaZOsCQCd4FIAlBKEmYkF0Y8LhoSSLNCdqWWBuEXw6HCNbbZhuZo26zJk2aSKh5wL799lvnt0GDBnb/ffcajtGYjRCu0DoReK3FvPnz7NXXXvPrzp13sF7XXq2zcvbVbq/IoTo2m/FdWr46aIs4q+db7TJ74YWX7OlnnnGNkxPQR6dOnWw37eZyVpNlREvENvUooGeJuKd8kfFNT/TbNV3+My5dMkmBL7Q5/aTBadNmWz9QsZIOVQSnIUOG2XQ5c2dfz/b8POGQ5H6ukExwlD9b6eN7q3OjE7ZjnvwBfK+bBY9W4j4C3xu3SgLefx7v9cFsfdL+eU6LL0Xgu/iwLAqlgHdRUFrvOKWWL10M1H85MGnzvq3o0L9SvgPMt6mnvH3yk+YwQsw/HOCH9gaBgS3fkbQRbQXHJDRXO7XY+YW2hHdd8c6rMqXLuGkNoSNFR8ITgs1CaYpWivZW0vrgmEyIzgsy54+DE+ELE1JssiorM9OyZcts8ZIlNmf2nMg8Vr2aYTrDH4l80OiQF8IPmqQKSo8AQplztHsMGpzSTDmIh7kPTRGCWnk5hRcGA3IJ/BA/klKkZ1ItKLtUYJccf7F2jAdUVCwswjfPKshMFh+KmEocfgQEAgIBgYBAQCAgsE4E1lsAgrprc5KTN7uYXOOzlmwRfPxsnKSmqGBcBIEMaXfyfGsicxMCFtvZYy0HGiB8bpAcEAxcEyMJItY+pceFXnTIYPSesXSpJM4nTg8/MQ1+R8/R8ehPAof72SifqMyRdot7eXwDRB4fUV5pkk0SF/KDL5iHdiT8JMuSSh85dxeEEv8nHLUJMa8F44TrgEBAICAQEAgIBATWjkCxCEAxeRdE4ot1fCMsRBP+2iO5KABBBY/rxPMLEn4rSSwVX5Hzx4KCYvr/WNDgXl6Ajksw+kIwcbp5j/1ZnpCS9wABifgFwxrpC0ZYx7WnLSKBIkZbR27hUUAgIBAQCAgEBLZMBNbPB6gAZmuKAgUiJC8LkRnWiOhiTDrB9N8xHb6TxNaIn4+iEkf/892NL5x0GlNrZKVna9zzrAu761nFpP/0d8RL0ZIVnnvR0oZYAYGAQEAgIBAQ2JIRiL16kxigU9gcQ+B749ZawDvgXRQEQjspCkrFFyfgXXxYFoVSwLsoKBVfnOLHu4AAtLnqFALfxdfIikIp4F0UlIovTsC7+LAsCqWAd1FQKr44Ae/iw7IolALeMUoFBKD4dvgOCAQEAgIBgYBAQCAg8PdFoFh9gDYmTDgg85ce0ndyRc+QdCNH5cKcldPTht8BgYBAQCAgEBAICGw5CGy2ApC/mkLOyWwDx0W5lLaGc/4OZ/NwJg/b13nGd0KnRucmD0UsWLWxIBW9WqPkqwZjfmNhr2B5wnXxIkAbwtE+PsCzeKmXLGrJDZV/iimOhkio2/iRFGtJGbdZxzBts8Faom+y29Hp7tHRF8XFRKrsGoc2ZIh5Jw/GwsK3beTnwNu2YsavFdpYvObnYuNdsVwu+SP8xsMj5KT2sL4HIQIiHSfStPz1Tg4NOjGdsSjammwdOEhH94MUlZaTlWne5cuX84MW6dwcJOjnB+k3AtOagfyit8nn6iyfeCv8mvFKxh1g5iBEzkBaJYGOa/4k4anoRcNtQ5fEB1Hhnf6+tA2d54akT/uiLUWTxYbMadPS9npDW8q/PyGklNG5XjRB+tnaAmdwceaVn5fFK2w28iwUjU90kSjjuC5ZHKUHzvYirKss6fHTf+fRJI+8AkbniJVOjk/pKYrvNws8XqgMxowHjrMPDOvOI195Fd/PaBMm0WuKqNUNE7ytiXwkEG+YPApSjds3jZXaiUoXWweidhDF4WF8P68eoeftiIS6HbclP37F37XNryh+dJAK8f5cXyKPEDYuAsUgACV0QnJ56toFjyL0u0JLSIMqU6asJppcaWvQ6qw9EHfQr7/a99//4A2Ra4SdnXfuZh07dLCRI0fZDz/+6C8aXbBgge2/3356Z9YOTpCBKm683KBRc48Xt64z07Wzs1GfpPjlEEUFXr5aTkJfTnauv62eethUgbEBAY3BmEF0td5NtlmAug7AmExoLwUny3Uk2eweMXRzSrq/LDgnx7L1l95H1lUgf/+cOs668InbLIuNiG40/ayL7no/Uz9gXcCCihPZERI41R1eymkxhNYqV9ri9JAnxOQXjNLjFPpbxeHlxZSN9xQmZ1ePyqIOzXQsbBSafn1uqjxl9ZoeTqfPyc1Wd0seEJvOxFroR+WNFoFESdWTxhYE4Q0SkvyysMjOzpJguOHfX0j7Lqu5pYzGJcYj6omyUi+0dbAjZIgn4lGBvK2ANhPDQHwW0fGCiOfEY/z1NIIr7jPEjfKIXgRecM4hrxBKBgIZN95w/S3rwwqD2oQJE2y2XiXBKyjWNRCSD42DvukdLK2P0UhW6kWltDkmUUWkRa2VtWpVq3kDPuXU0+3zz7+wc845y9/oToLqep3FDz/8YFdfc51dcP55fp9XU9Cg40ZKfghNg4cMtVdffc06dGjvr7TgZa6EOJ5fpH14x0lery1OWvTopxeZD/0pFDldlNrxwoSXWT7TRo0abS+8+JK1atXKauqVHbxRHmGQgb5ataouzEX06eARgYJYx2QhnIqTjnVB7Atei4DXo77Ty0JtoYnjvW56ErWFdaRVpHzpuS4sUIz8LSH/nYiXZGGJm14WXTMAxgN6YXwXzBPhjcGO15389/kXvDzNmjb1aKR3+vrmH6FgfsmIPEj+XDNeUfjwxPpI5RnfSPsu+Cym6wh59vmRA418aKocTM4LFixUXxjidVa1al47iumRZUQumjwoM+leff11mzp1qrVq2dK58klVEWO8eVXMuPETHMeWLZp7m2Xy8D6uFE4/gqdwHJ1q3kfB8vqTAkXiHnyQN0LPEPXxJYuXKO/qyqO0Xoi80hcLvughsviF7tvvvGOjRo+x9u3befq47IXWL+nioPTk46/40dhFfNLShvrrfYaffvqZv9QYvBwfpVsbzThPSK8tTpwtcZmQZ86cqRdIv2OvaBzj/YKtWrW0Oltv5a/lYVzwiTxJjzSM0dB+5933bOy48dayVQt/nc6gQb+qPntbB72YuaJesZPOS/z7j3iKeFuzQryv6DaC9u/TfvdFauXKlf3VRGASdRVvYal815qX6HDSPyGKs2Z+ER/RJ+ZZXq1EWWfPmm3T9K7FefPmqi4SqVcegQmvRBo7dqyezfO5LNZuxjhDY8yYsbZE8XgHJWkW6RVMpOG1TTOmT/cXa89SHr//PtX7VJUqVdQOJKB6GaPypfMWfm9aBP7kUieP2bhDoHZ97vnn7bbb70wNAMl5IS+yftEAkLRpsJhwaMB+T/dZec5R4/rnXXfbsKHDfOCI3rJOw14zkHeNGtVtn333sQfuv88jIBxUVaOE1qxZs2ygOnOfzz+1E0482d8lRl7RCB7RgwZ8TJ06xW7SG9iX+3u5FCU5OLgaXHHiQAeOVMuRgEY5ouuoI8bxCn6TT9xZUTGTLi53wbiFXfurRZQ3nQ3NynR1spv/cYu0W8usVEY5DSbTbLfd97QBv/ziZff8wDop7Hl+Sax98ksO9vAexyHfqCxReeXV4YNQFEe0VAboEiLe87QiXKMF4Hl5YT9+/Hj7xy232uTJk7wec/WcZ3R9cIAmgx3YE7j+w6D0npa8knxH/ETaO9pbbMrkPm0nX9Bz5zOZF1gWVgepe+KPiYVJ7Yorr7Lhw0d4vYEl7YB2zDd5EuAp4ifKld8I8gjT0IzaVIxdjEEkIPKclegfhbgNpcdjYuNfHJyWLryteBmjNhsJPVEssea8UgbHUjeYmCepvnbdbQ/7ZeAgb0cpLLyc0atpaAeRVi/O0eydd961rzXprkqaoKGlDFL1Ci+zNTnQZpcsXepmFvDhX1z36W0hHce8XNJ+JfmP70RYR20s/R4mYgSQZcuWW7edd5EA9rweSxukNvrqa6/b//73aqStKSVO4Ed/773/gb37/vtJvhgfovotWOb0fEjHmPPxx5/opcrPurAcjw18jxw50q686moXuIgLHvHzmA7fKTwKxCHN2gLtCiH93vsfsHPPO9/q1d3G31WYky0tlMoKBnxTDuh7+1CbiV9F9Mmnn9pXX3+t+8pD71n8bcpUu+mm/7Ms3tUowYkQtwN4LqzfwB9x0tsY9NLbK3nTVomHpuyb/t9aj912lyAyXf0MrX9Uf/Rb+kx6XgXL7/yov6DNIZ5fi3bBePDOPeIgyAxUu96pSze74KJL7LDDj7ZO2+1gRx93vL3/wQf+Psjyep/jxIkT7cijj7WO23XW70muERLrHqD1itpMl24728OPPublg3f6zQ47dbXjjz/Jduja3X+fcvqZitfd7r3vAX/fI4I4fIZQ8hBYbydotQuX6n3gS5YvoUElXgFyi8bPhFLe3+S+yifMTDW4XKkf6cAZkpBZEd573/22T8+eVqZcplWWWS0nK1qp0YjTA9ekw/Sz6649/NHz0op0776zr+5232s/u+2Wm2yvvfayFUuXyKSW4x0tnQa/adSsdBrUb6AVUCUrl1nRcrNXeqchDzQZUc4qpP77i1S1goFvBgP+iEPjLshjTJ9ywyfpc5QOnEjHahEVfKkM5aBnawTPMiGtVKbSkE+WD1I1atbwqLyY1VbnWMMGDe3HH76zetts4zR5iGarjAZ/12apjKXVAVcpL/KPOyLlZmAkDvyoAJalsjgmwoHBkzpELcyzHPHLwIj5oJzox5M79cgzcChdtryrtB9+5FE74/TTvB6rKG/8teKyZ1bMFIcJXUujpfaAtgVBozD8ImAi86ZYEE9a1cOP8PDyyNxQUeYNJoJcDfr4hGUKL3AFX2jyRz6UOzZzwgsY8Y3GihUizxmcuZ8lrEtrcGOFevDBBxsaEQLYUFe8EBfsaAfUL/cpP9/kl64qj82B3Oc55S2XWc77BHmXVzvPzsn2SZc4BUM6/+CYbJBOi3ZF/nHe1GkpYQMWBMdX9RvhG1F2Taj4oLzwKYbFyypDw/Xzj9/bNmpHxEcoqVC+QkRP5XR6qmsEHfKL+3ezZs1sm7p1rVJlvTxYfSNHacEQbKhjZeXXlaV9gVduOI6iEL9w2Osj+eLguCwFsRAZn8jKVcDcK9qqe+Dy/qW+kK174Ek6BBLKyXWlShVt0C8DvJ/TfkqVKedaVFbz5557jsYeXlica8u0oGjSuLH3T3CEOO06Q7TAKm5PEYp5n96uRGOKtGBvv/2uXXThBZZZsbKVlzmKCb2qNNX777+/+nFF3Wd8ido6vNOn4TfCg/El6pO5ag+0Vdo1eJBHQTwQHiurXU7XAugR9bcfvvvWunXfxcuydMlSr8Nq1ao7bdpcZiYvcc71hR6CLOVr1LCh9+Wo1TEWVrCmzZv7eADe5Au+1Ce/cXiP+3us7QJn0vMSaIQe+OTl0JSJOHwzvpSviD+m+qXKtvvuu6mt/aBxt773QdohdeZYSrDhGwHd+4bwAkfoch9e6Ke0gTJltSgUTuRBn1/bRhfKGj+77dabPd+50vJ89dXXdsyxx9ubvV+3o4452vNgHP1t8mT77PPPrXnzZs57Oc1P48ePt2uv6+UV73UBQAouPOr7ppuut3bSnDEvYRKjTVdWnwAffvsY6ynCR0lCYL0FIArjnYQBLA4Y2KNe5Y3TG6wawYD+39rwESO8kaAy79x5ew24dW3u7Fn2pRpjB/nvDBw0yJ+jjtxll+7eWOOVYkyebwQJBKuW6rAnn3SSfdGnr2h8JZXzd3bh+Wfbqaec7IMA2glUkPEgk06DQZxBEpXsnDmzZQIYbEOlgeKN8l122tEY3OloTKzlykl1+/s0++GnnzToTPfBeyf5FbVu3dp5gcf0QYpBhska08KgXwdJTT3LVasVNTi0adPGttuuk1XWG+d5K3x6OviLeWVgQOPz888DbPSYMeKnqfic60UQecXzccxWLJfpUIMDgYFknsxivwz4xQdl7jds0ECds63Vq1fP86K+fvttSoov+Gi9bWtrrw4MHl980UflamW1atVyVfW8+fNsu06drFGjRu5X9d333/skkiUBddttt7XO22/vWrapv02yPl/2tR122NG+kep/4sTJopfjgmldTZIMBGiqMEksXLjQGjduZF27dPFJl2fpOIABgxuD6k8//ezl6yDTxG9TpgiLsdaubRtroHJRzgkTJtoC0WNlS53h7wXv1AmD8JdffuV5Qf/b7773VVmH9u3dLIGQw4TPwLpCWsABP/9iA0QT4aJOna2lERlohx16iNcJPKFBmPzbb/aLyjF58m9Wt04d67xDZzcBkR/tcrIG0HEaMNu1bWeTJk3yNg2tHrvsIpp1xPNArUgHOta0efoBdR3703hF6oNBE5769O3r+FIHtBfKSR2Ok0qfdtGje3erXKWy+8RNVH74vTGBNG7S2HbacUfluZXyijRtmEgQPKi3QeprtMtWqmuEGLSKlBHa2cuz7eehA2yM1Puo+ZlAEBCgt/XWWzu2xGXAB2NMR79K6zpL/ajNtm0Ubwc3I/guMfXTpfMXpjCkXOAE7wMGDJB5Yp7Vrl3bunbt4nlAl3RqEA4F1/QlzAzUDX2HNs3EyL0hg4eozXV2GtQBJglw2EUCQabqddmyZarfcuobZX2xMF0mEASCN996SwLdamvQsL6byVeqHVAPU9TGaCczZszwSXCnnXayrTUmxJM+TCXnP6f768AB6g+jvD1iVkJ7gnl6j913d5xWCKO5c+fYYPEJb3WEdRfRbKL6iWnG+f70888+vlSW6QSs6YdglT6+gAftcKr4/J/MXg0aNHLz5XTxi2lmt117eH0PHTbM29n8eQu8/XdRX6tTd2tnHnxp99CKA4uaSRMmRAOL6iwWNOh/jNvEZ4zYbrvt1L9qqG2udF/Llfru0mUnq6DJPkvj5bcag/G7wh+Tci2V5o8+yFhPGwafpcuWerlY3M2YMcvHXvokloDvhT39cQe1obYaK2mPjA8IE5inmCMoW5XKVWxbjb+YNNu22dbxB6d8gTGSf8m2BL0GjZpIcsn1svz662B7+9137ZBDDtbiTkKY8Pi/m26UhvA123effaytxhnChx99bMcfd5yXS6A5PVpncpqzTh07SXO0vSW02GYh4EF9hjaVXnfRg/BZUhD4yyYwChB3HSq4oEOhF1AR6Lw4uz355NO26+572OjRo33QOuSww+3Gm252AYH0dLJhatTDhg/XJPqlq9YXL17snSWm5d/JD/Jmcq+owfzoo46U2WumXXjx5VZbE9+lF1/kHZtVIp0nvZOn0/CGrCZco2Ytu+DCi+0G8QN/p552uh0n0xm+TUyElGHUqDG2k9Sat95yu08UH370kXXesYv1+6a/T1SxWjmmz2CCMPL777/bgQcdYm+++aZNk+DUT0LgXj33cT8eOgeTQUH+fIDTADBp0mTxdYkdfexxbkbo16+/D3hRHuqE6mhz5syxPffu6QNCueQAcdfd/7KDDz1MgsYQF1QOO+JIu+tf9/qKk0EEdfC++x9oN918i00Vf59+9pnt3L2HjZC6ngnt0MOPsJtvuc0uuewK222PPe2II4+WMPW7T9j3SEu31977uIoYgZCy/eue+3yQw4z4wYcf+2/y+PyLzw01e1zON4RBl647uwqcSfXY406wU8840wVLJqd0HPiNFoIB6TPRoe3cdsedduQxx9txx5+gyftXF6KuV52dfuZZXo7h4p92dfsd//SBksGXvA865FDV6RmKd7YLyfiM7b3PvvbJJ596magnBA1U3OTz84CfbcLECfbGm2/ZTE0q8EYbBbuRah+sGnvdeJO3A/wuOnTczgd9BlAC9XbQwYfahVK3YxoeNmy44at219332L8feth26trNMXj/gw9t9z33su/lr0Y7kJEhhUHct2i/mJnOOe8C9z1Anc9gjqD63xdesCOPOtoHZSanXjfe6G0XIXHsuLH+7NpevXyCifvBY48/YZdefqX1uuFGaQx62OFHHuVYIqjTLmkDaEXQPDz62GN22ulnuJl17NhxoneMVsHXu88J2NL/mOjB4Ghh8pZ8aH788We1iYPtqaefcRr0nVg4p07RanCPSbJtuw722mu9vc3d/8CDtm2bdi5wwyvCj6LnBV1TB0cefYyv3NHAgQMCMHX+6+DBVlZ9hrwwZR1y6OHq+xp7pHGgTsEauhMnTpLg87YL0vSn995/zwVJsqpcsZL7E56hdvLiSy/7Yoi2//jjT2rCXuaTeVyWePDDDDpZi4nXer/jviWU6/33P7QRI0Y6L+DU75tvNTZdarfd+U8bLQHo5FNOtWt7Xe8CFhM9eGBmbdO2vdru3cprufj9yLbXQuI7CQO0jfRxIuobGbZQdcaCD2Gkr8bMV175n40aOcon5W/695eZp7N9JNPc4iWL7bRzL7Szzj3PJozXmKb2Dg3+wDkOieRvbruGU8IMPnC0UdoF/X3f/Q+w++6/38dtNFYsGHruu5/72JSRxhDh+9peN9gtt95uizR+l9U9Fm30wXHjJrgGbvjwkT6GsFAroz4zY+YMO/SwI+wiYXTxJZe5MPfAQ4/4WEG9UnZwwrWB/kTfmjZ1moTJcX59iMY66tU1vHFh8n0jUEeNCZPoyuVLtWhcblUlZCIQoQ3054LiJ22e2X///az7Lt00Zr/ldTN9+gy75trr7Kwzz/BF5BJp2OIQUTXvm1gPGNeWLo7+lmlhCsax8BWnCd8lCAG2wf+Vv2VLFnm67JXLEzdef33i5JNPSsyfOzuRtWJZIn4G3ZzsFYnPPvmIdpIYMniQ2oOmNIWxY0b5vd6vverXw4YO9usP3n83oQaaWDBvTmLJogWJ5cvWzh/5ZCu/GdOmJpo3b55o3KRpYuiQX0VvdWLh/LmJFetIC+1VOVmJDz94z/N9+qknE79NmphYunhh4tdBv/i92267NbE6Nzsxd/bMxDHHHJ246cYbE8tUJoIae+I/jz6S6NGjR2La1N8Sq7KzIn6TeDpvwoZno0eNEC9LnJYyTfR+/TWnP2rEMOfBy5lMR/7ZK5c5LTmoezzKBL2l+ntdeIHl2NEjvZyjR47w608+/tD5+jSJtcxiul7l/I5UPh+8/56nnzl9WkIruMRJJ52Y+G3yROG7xOvtjd6vJYYPG5KQFidx9NFHJypVyEy89NILfo+6AYN333nb8xo9crjnTYZxvYEjoc8Xn3mc7779xutxzqwZjtWP33/r97/s84XYyvG4s2fOcF4eeuhBL3N6uwEH2hJlfvCB+z3tfffekxg44KfEMOEBn9CGl0UL5jmO1LvMOB73i88+1WVuYvas6Yldd9vVy/uDeKBdkO8lF1+c6NSpk7cd0n3x+aee7pWXX/S2R96jRLtytaqJJx7/TyIna0Vi8cL5iVNOPSWxxx57JCZPHJ8q39VXXelpp//+m+f5+Wef+PWjjzyUmDRhnNfdl32/8HtHHnFEAj6gNe33KQmtPBPnn3+el6Fg36H/rMpZmejf7ytP2++rLxOrc7IdlzGqf9rBa6/+T1iuSsybMysxYvhQ5522SZmGJ/vUW2/29vYJvpdccrGnA9PBaufDhw5xDMaNHe33v/qyT4oe2EKXfkIYOXyYx3mj9+uq0xVe/qtUdtrTV337JOaojVAXzz37jMeTWcbTxWWnfRGgW79Bw8QLzz/nbYN78HbBBecnrrzi8sRi0aAPpLcH+g9t4fzzzktoY0MiO2u553Xdddd6Xrerr4If+Z9w/HGJO++43etizqyZia5duyWoC8aVHKUjjwuVF+2HeuCP9kY9Nm7cJPHRh+/7s0UL5ieeffoppz9k8EBvt4sXzU+Nl/DHX7baxr/uvitx7DHHJKarTunPjF+Mjc89F2Hx0osvJH6fMjlqC30+d5rvvv0WRfcxgnZx6y3/cNrck6nM2/2ee+2ZmD5tiuOdjge/aZNfq03QDn78/jsf7yjH5EkT/N5NN97g9ZclLBlvmzRtmrj8sstUVvEs3i6++MLE9b16eflpQ3H/nqJxgb7T7+uI9ptv9E6WeVHim2RbfOXll2Az8f23/T2vb77+yq/5hh/+Bvz8o9/rmywv/YnwxefRGDFh3BjPhz5NfMpPG6YM4/VMGt/ENddcnZpn4nGA/kMc6jPuG32/+NzbUvpctmzpIh93aauUgTwYNwj0EcYR7v3j5pt9bJYmz6/HCSv6Ac/gkXYqU3hinua3yy+/LHHaKad4PUKXcZZ4p592mmN7hfA9+6yzEvQL+ij9d4l4Tecr/F77nL6xsVkvDZAqPhloA3krifgupqOslVnSBPSVk9hxbvIZM3qUqVH56oh7mESkN7RqST8L1KjlK1SyKlLpo4KNV1oxzbxv8pSGSas6zBRoayrKvwRVtAaPpOYnL3Zhv5DMNU/4o0Nl5mgklTSrfFSxd9/1T/uy75euGWDl8cYbb9pOMouhglUnlWlqhquyv5WpBzMVZU2X9NEIod7G7IStHf5YhbJKGzp0qOfJSgIth/pjij1+4VzHzo47/3mX9X79VWkYOnp5KlWu6qYKIqeSJGGP845NHVPl0DhXuxFQdbOyPOjAA6yi/GPQbAzWquqSiy6yRo2batVU2n1cUAG3kVmE8KO0cQ8//LCdfOKJWiG1dVUxq73XXu9tmqR8263X4/ixzvue0hKxQiSw64GAqS+qx6peR5gOMSWgMcAsJKHQV6aYCb7+up+wStrJUwVzMm7uwXn2qKOOsrPOOtO1bpgQMcNAS4Kvq80//exz+98rL9t33//gCTGhRqGUTZLJ6pCDD5IzbHc3/2ylHTK77dbDNWSYURJSVX8us9/BBx1kBx5wgEw3cqbXyhTz1vZSbaNdKVOuvGFieEm+ZldfeYU1btrM67v21nXsJOFEmDBhkrpBhuKzRdbs0EMOsSbNWrhvR9u2bWUm6GJHHXmE+OgmzWVFqycfiJ577+3mMver8RV4Xj+iLeC3Qnn37rm3a+rQarIi/lmmEgImxNUyD7hZS+YAVqCYzF793yuunSQOPiFaAzu/mIMuu+wSO/+8c00CoOq8tdVVG0VjSaA9rJZ2Cc1qS5mp2fHSR+bl10QPZ2cC2iLaGZoLVvyHHXqo++LVrFHDqlaragdoBU0YIW0EHRh+CfE35rJpv0/1ukMrOmLYUDfbYu55RbvK3JwpzUp6QPOCOatHj+727LMv2KKFi7wv/vjjT/bPf96pNvuTNMuznF+cnDt27OB1gd8JfkCMT/SzMuXULrVhAj8NzJ/84bNCwKRzyCEHuQagBmXRbtLuMi8S5s2b7+kxp+SFiGZZ+SwybmDOoR4wX+FPQ59EM77DDjt4vdevV9/bAr4iVavXtNnS3hJoV+xAoz7mpsaXaW4a/urLr2ze3Pnup+aRk0MFvif4+ZEPgTJkVqzi34yBhJNOPMFq1t7azaEtW7W2B+5FA/mQjy2uZRMt2kUcvPnpAi0d7eEbabd332N322+fnq6BwSenm8yUN1zfy7UjEjitadMmSmHuRoBPIhobCQmmBaOb/Bjb2Tl1xBGHu3aeHFMIJjNEy0sgTltpBcGyscztxx57rMbK4Y47Gtqnnn3OJGi6ewJarPLyq6qvPkRIL0dcIrmiRs/ASm2VgIlSixy75977rEOn7aXp6a585P+TIT8y9SMCY9EOnTvbPjKBocn8978fdt8uNEb0H/CJgkqS5B3fzHr16tpWMnXXr19P49NWniePU+VNpgpfJQeBYvEBSi8OnT6ejHEuXZ61Qqre6a6ivPzKqzVASS0qoaWqJpkhg4f54L5SjRvfBgKNTytOH4xoaAgShQUGACZlOumtUotqlWtHHX2sTDAfue2dyZFJhUF6XSHuODh3Zis+5jocFps0aeIDPhMAqlrC6717u8Mh5xRFg6rJb6mT+yLwHFbpc3DMxIrfwbhx4wz1/pNPPe0OtZ00MC9enJyc46Ipoaf1zhLdnD9/ASRdgEpoMGIAoCyUyUOcNrqKPuUvgz/JdddeY8dohwMB/xU68kEHHWhNmjbRxDPNKlerIbV5TU10WU4PU0HkYCynWIXftTOuigRSLc9kniDfyBdlqRzKp8lkdtHFl8m0tFJCWYaE2so2XkIVu/BUce78Cg0cplEJ4wOUsyTbtyFPUdqbbv5HcsddwtOsWLHc/XaY4ChfmvtYauCgbqpXq+YDila9bjKh7tldxJEAva6/wbppd8aumhzjySyebOFlxQo5kCsgGK/QUQuZGpUwTRCIhzkJv4/2Enwjc5gc88ULmEd4R7WK2pxA24IWAi41js8YAVU+13GbpUzSgLqwQJ/gmAJ8GXIkICFUZWYiHMi0I2EiDppS9TOu3OgEc46XOP3UU9yMxrEOTM5PPfNf++edd1jdunXcTIi5uLeE9IsvuVQT6Xa29157WDX5gxBSA7bI4thbRYI05cbciVCAW3qcJe0AB/AlmohT9OTz0XOvPd1kQNR4hxC/CcwHlIdAOTFXIDjMnSd/NbWhGA/vi5oQWVAQHvvP424Oxwm7SpWq3ve369DRTV3piwKPrA9oI5Rl56x00+/vEp7qShA+XhPlxzK1YhLBV4fQTAIqgcl1tfKEHuml0fU2SZ1Tt9xPzwszijtZq55oJ3FZwSWuFSfsH3k0qVdMdODAZgJMbxUyI+EEPHi2XG0dDKBVT/4wYkch4UIkv156+WWZHR/X82iDAAJfvfoNvG5SPCaZIC1Oze4Yr7RZao+Mm/AxVyYnAkJsNJaqzYtWrdq1/D5thfTeR1TGgoH6Ap9J8mVr37adL2BoK5j76PMs6B558hk3deNrd6raJn54LAq///57XyRh9uKIBMafMfL12m3XXV04pD3EYy5lB9SYBcpI/TAmcL4OQhr9gXrDj2iU/JDwgwQ/+iZpMWmtLcQ9yb/VzwgD5E+5SvkwNkuza/vtu4/6UF33CSIfAvVURWPkueecLXP3cVo8HuhCF3UYx/GI+oiFt+OOPUY+bF2dz7KMY3pGuWIfrzh++C5ZCBSPAKSGw1ZRGggdhz9C1GkZgMy6a9UrFbNPqD6S6B7bAxE2mHRIq56W6pSkzT8Z5AFHXFZa+AvtsdfeNmjgz66pOOvMM+3Z556z8849Rw6Q3dM6Wl7atf1i4GDCotHyjZPejrLBw58PFEp4zllnuVMiq2y0NPQXVitoPRj4OGOEAO+kYRfMc/99wYUfqZN98GaVPEp+JI88+mhaZ1Km+u8h6oOpZ/ADvbjzuVbMIyYTJL98cNeAyARwfa/rfDU1Xk6yI3RuEJMivk2slBkEly5aoDpiUohoI0ySHi1WHHI0gPtkqHJQLsrDhLHb7ru69gDHa9JAA2GCXUC6Ef2JiKhFfKtdlE/6xnTv1tXuFg/UN3gTi0EOYZLvqM7zeEAYIpAPAwntirRMIvCD3wPCj9Tb7lSKUIdz9W233yHeozZIes4e8fal30xwPqklcQN36DO4MxHDQ1x/8MTkRRkJ+EUQYlpR3Gh3H/cj4YtWGyVACGYRkJEBvgjFeVu/KQP5RgNoWplFJ74CQ8O3XV9du3QlC19V4zzb/5t+ds/dd3r7AxucZ6nnF194XtqtXa2WLwCy7KOPPnahxxN7WdUuJZSCJfkT0j/RSHIHvyTovfD8f50e7Wq5Jpt+8i1BiIzTUj4WL5ykjvaI+5QeIZ8Vs26k8AMvNGTg36r1tnbdNVe74zIaPlbo1GkFCbZVK1dxHuM84JEAzzjit2vfQZrjgb4zZ+999ramTZvYfto92rfvl9aieXM788zT1c5rksQDPMaBPHxhpYmcENe3XwgI2k1c/8SlbxCAKm6PfiP5kR6XSZvgNON0uo760ipv49B0wEU2alfaNah2RpBZTs7prX2xELWP0qrf8q5VK+xwyrhfkha6kXAVnWHFPXck55s2rW8c4wlRX4vz91v+EbfzqMTmO2Nd0NBTaOjT41HXrZs19rZbVgufPXbbzTeH4I9Em2/dqrVrr/4pX0Q0smO1CETDDH/JQjsdB9RXPBHdeIyjj3o7SvJN5HjBgpYuwlBjh7Q2FStFQmbEX0Q2as/Rbz4jgS5aZFx9zVVqL00lOGZJ813F88FKQXrvb3nJfPPGgdKcn6v5hEVILOSnoqRl5EI+fZ32pT6E9imeT1Lxw48Sh8B6CUBRs6VM0Wq+EupkORKisfBhUI2BCaR9u7Z+UJds0la/YWOPzyggA6mvfmhHbK9u0qiBe/RnSKVcRddoZDhHJq2deaNCbT1Zq5Pjjj/RPv7wA+3m6ewN+pijj3IB6BcNjjtK7YyaOx6Y4bKwEA+y0GT7aqZWi0u0QsJRll0pmOLqyMxBYMcJAtc29RumSMlm6QNz6oZ+0JkQkNB2scvljttvk+Cwh55EJYkm/6hj+piiQYDu5wOMVkgMEtV1zhFhvAaPHlLT1tRKy80r6qyEVGeNwVFlMDDMmDHTz0jqKodt/phBWzRvZmedfY7JpyilMsYUtm3btm7+YkJYJMGBrcBQRm3O4BpjQ0dG8EBDwq6JqlqtN2jYRHGjsForTxweCbEjImlxgPSBWXWJqvrmf9xi9/7rbsMslBdW20Jp2HwAYpYpJEALU6cPfHqOIAKGOFUeIjPT/vvta5WqVPOUC5KaM/iPA6s90sblEbwqZpQXWi4GZnY4sbuNle5WdbbxpAi6mDyZMFDlV6sabYdHgO3RYxc36bKtetz4cR4fEwchHozj/KI6ZuJhcGTiVd7OBG2AiSuPV28GTiX6YOpCQ1Sv3jZ22623uMaL3XNnyRzYonkLTdjReT6TJ/1m7Tt0cFMn9UdYuXKWH/yW0gDRaiR8MEgzYOf1X+fI0yAsUlbMV9tL84NpuHqNSHOAk/vCRYstIw1bysqOKvoJoVTpsr7iHz58mLVs0Vx3ECKiiTc2szVv1szGjhnti6FoPPCk/rFYwjllLuV9Io9D2jt0EKqOO+YoOcT/083Bjzz8oLIo4ztG9z/wYGvRooVdq4UWO4RWr+I8G2GenFDJAH4Za2aqn9CmKyoeJlDqnfpKbyfUUaoOlTY2qTij8Qc4Kh5tZO78eT5RM46ULcukSiLGtnL56eg2C6cYl1q1azs1zIn16jcyi5qR35Ovj5uj8pDw2/4RC9pcgE/c7hpKQ0Nga37jps1dY8izYaqT6jK9sVAgLffiPkX8ZJdwvsCmTZtt5ch/sd18803WsFFjgbfaFqtPsNt2D41nmLlpK201vveWw/B1Woxcog0oHESLaW5PbXfH6R8hijqP+cvDlFJFdU3+saCahM15YzwBJxa8Rx1xhC96MGez2437U6f+TtLUuOMXounAcxFXQvTA+3CVqtUlzC9RcXQch+qe1uk8JYcfhHHmphrK47lnnvaFTbyo974TLxTJJhmYZ1aj7da4RDnJFjzzyhrHDN8lCQGNdn890F6obFY+o0eP8d0ZnFsTS/KYQdgKeazswRw2ePGll8v35AJvvPi/fPjxx7418sILLnRbPB75z7/wojVt0kQr/iz3sakjFXc0UNBlozNdJk6aZMefcJJrlA6Q38YyCRqYRDpg91fg0LO999pTNt7t/FmqNfrTvA8oel/RrS/69JHfQEdfJX3y6SfWu/cb1u/rr7wBY2Z48MEHlOeJPlCyxZfANmR2El2sTt+hQ3t/Fg+grCTZXr5dp47SAD0j80wPH3jY+nvX3fd6elZLUaAnxb2J4/RzfXBnwjvjrLPdxMKqnxOfUZETUhO8d3BWG6t8Ivi639c6lO1Tu+zSizVx1XCT1IABv/jWdIRRtg/LEdYOPuQwk+Oyb9/GX+bBB/9t5513nq5bmJzZI3qeU1THDIinnKzDvrTz7RqdsH3mmae75muhfDE4TKx582Z2zrnn+0qJZOySQ7OzUAMmRwXsKz8CBsr99j/InnrycTfdsJpD0zBVA/U/bv4/H/DStz/HkIAT58pEgwomI5kIhG2zpk3s1ttu87pr3aqVD4ZsCybEpgt+T59DeWJ8hZ3uxatjTBXY/3vuvZfq5W575tnn5At0oPt84C+APwXneWSJV84t+fcD9/uhc/ggdVSds8tv3/0OsLMRSFo2T0265Bvz77+Va1aWykA9MZPChAJtG5NJKsBm8hn34okfE8Y+8gNCiCS8/dYbMsXV8DZXSW2/UaOGNnzYMBfcO2mbOFu439buscm/TU6tnmEIHOmfeWiImPKLr/28FGlpWrdu5f4cn6p9b7f9dtrBOM13Nw2Sv13mhRc43wzu1DET4u4ycYAJPiy9rr/R9pDvCNulNSukyhP1Y1M7aOcntHfvsau9+85bEpRa+CKCw0vZ3Xd9r2udFpqt1AQiHklPG2ZMmSCh86AD9ndfESYrhMG999pL/fETN6nSXtF4gB/btBF0Gaugh1/eHdqRJWdpFywpOxM09ON2AcYEHyP4Vto8DVBUSUxwiaRWhbJ/oUUT/mwtJPix+xBfQkJ8yKpf6IPUK2RCdjzEF8K3HPzt6GOOk8ZtuY6V2M7jTBg/QYLFm3aztmVzunN8blBMJ13o4R48QhPB5TSZpfY/+BDro7GMIw7wk7xUuzq12cOxxcxHO2SBGQfSe+BbZaNPEDif7fxzdWaSxvn3dFDk2zp1+tv+/SLto8y5mMQw6X0qMyRjI2aysmUr+QLyAY0rcgx2IYwjLcQk//OCQEzHOO9BpGn107zVP2putbWdfsZpvrsPbS0WBSwAH2i3nAfo5COcRknljJ+hSaO90A9KuRYfFKMQx4lTco25m+MpvK70AEEndtfwlGllYexn3KGN0TZCKPkIrJcARPFoJBVlJvr+h+/tFG01no/dX2GrOnVNOzBMO2J0YvP+9uN339q/ZfbZZdfd/TkfOHc++vC/paLP8sn0qiuvtNPOOMu26xwJGPL298FqtQZC2jYrZRw8H3jwIdesHKABcPSokT544WT8yaef2V4aBBdpG+Jtt93htmnMAZgmkMzTVzvOBI1XLbVJk6YSLJ7Q1tz+fpsPBmbO6sDUw2B6qib/yhrsz5RAkh5ulFaLFVVsFuEZHYAOw4GBZ2liHDV2nG8l5VlPTWJHHHaoNCmRIzT3CPQX2IHH6JDACn6+0Qw5Q7OlnYCzLdqOBX6mSjRwkReBQYHQVGX55vvv7OVXXvFrPhjon336CV9FcX3t1VfZVlp1IgTFYSc50zKIwUndbeqs24hNAABAAElEQVT7YBc/4xtfHs4A+e7bb+xubalnC3UcdtYBlAfosDcGFs7m0c4kFxYxRRGGDx1i7SQsvPHaq8Y2bLagx6Gi/FGefeo/yk+rLio5WZ74Od+YCDhXJBqpooEOfMHyGpWFrcqEbcT3FZdfYqXKyxyXDKDTXAO0q9+T98CZlWUttVEHXWvAzp072ysvvWgnnXKq3aAt7gR8bNq0bettj0GadNo954Pg4Ucc6XH4uEJOn5ddeon7fKCtQV1fWn/5iiJGKmlVzCQSDblRvcFXZbQn0WWKZuqH7oMLpjL8X044/nh3+u4srSd17xogYcF78G6XMHjCSSenkuIw2lxpSM8/snAHYHjTv6hESQiSqbwO9KTHzt3tzjvuSNGrrQnoSpWTfNHkkDdxORiP7djnaRHDqceE44471m65+WZf6NDvYvOF17HaCJo0HGnRCh5+xFHJnKOvxx59xBcz8YST7yEXqoRmzZv57W4yqUbm55VaJNT2CRufOxYLqTKLTxYiaGRJC12ctM+Rf8cB2q5P0A4yr0PO1lGRUoGf0h/5NdoJtFJRRUX34kqj73P2ztUav47QsQSES9Ue/qWNFJxBRv5Rnfsjp1hDJhU0UWgNGF8QWNBCc+xAemB8QdtBPa8RxGw8psXjAJoKMNHOJuFYSU6+u0pBpkMQc1fYY489YocffpjnD8+M27H5DdoxLcYSBKQmTZr4AYuXX3WV+z4Sp2LVGvahjg5Aw45JnPTwh+Ztpx13ct8rFhsoOjkbh9BJi0A0OLEJKV6cOM+UIalRTDfBkw5tJOnoSOCEH9Fnn3wsX6lXLD5s9cEH7lMbOlI4R+9iI11cL3FdeT1qXCWg+SRf/5OwErV3f5TiIy99nnkbnmkbURuJGon3qaQ2KMYukSclR0TDZ4lGoBhehoqT6YqkAKCBwfXEamBqIzQQGkw5TV40ZuLx7qoF0hpUUWdHcIhUwazMog6IDwdn2+B7w/ts2OmQ3khx4KP50fFwmGZQxbmUQ9x4lxgrRBowAwGrPpx5UWmy+kgfhKgVOgGdks6O3ZZVMwJPw4YN3IdildL4KlK8MXERMIuwymV3R2350/BOMk77LWzAhm8Gf9Jw8CCdBPU02iqc+tCW8Rw+0zsd+YBdWWkmVsrpl3NGUNeyyif+MqnrUT+jdqecrDAztUODM4vEqpsRcaJGpV6lKia8uspTJ287JpF5jkmMAw4x8cAPK1jqggkLcwD54H9Ap88LnHJcxn1BcAxH0GQyY5VEWgZV9yFRGs7WmK/8cV7GUZKyMwmBN3XMu3jIl7QM/D5h5cuMjClN1L54jiDrg6buxdjSpsCWuq8v4atm9RruvwU2Udta7Ts3mIjQovigJbLs1ELDAA/wFg3KpXyHzJw5c11DhWlieXLXB3hTx9Dlm3ffzZSAj68NTpRMYpGQHWl60GBGtBFMlav4B1fnS34TER+lUn2HyahUhhjLhzelzwv0EbRm4MzEADpEhzZ0KQ9nANG26kvLUauW+F++zMtHWwNe/HiYaGJncahDF58wb0fCiLqnX0EP53C0texsoR5ximcS4cRtGFi+VPTEN9oJHOxpZ7Rx+i++L2CLlg0/C/KM8SMPhMWFi9Tf1VbIr7bwdr+hZJngrWCgzAiD7MahPv1FoOob1B8TMm2ciZ8yEWLcoc8OU3CnL9NucMZmscHhlOAJVgTqjRDjQlzGFeoYegVDjD8YsBMtW99b6fBJTMUxT5w0n2zOrmVaJkdbfFiol7hdQWexTIzgwXhF28L3BN4LG1/oC2g00HDFYwnxuB+3B143gdmKwxfx44rLRBycfRkTMWGCH33T+4QWerFQQj1xjhC79dCaNNDYyJhHPnFeFMzf46h77G6M2jACg/qeMMUECH5co7kmD/ICZ8pGv6EMnBKP20KMMbiDg/cN1SeCGW8TgA+e4ajMKficYTZm1AjfVZh+WnpcTzSFleqP2dLA0j6jNhjNOak4wsP5UBti3KDcMR9xHL7pwwR4B0PmDjaErCuNJwgfJRKBYhGAGORoDHHgF8MEnYsdGJHznezrEjL8T52AxsV91IvpgQ6BpodxJp6wCz4nL9JH9KP3x+AXAh9xo+UZgx0TPbR0WWjwFYHSEbDvMkLAl5sC0tL5hCUi8BeXlwGAySjOs9AMRAMBiXQE4pMOGnz/UVrwosMSwANgmcCitNGA4rQ0UOgoDy8n2g3SxTiRJ39xHZEnaeKycB3zBUzcZ5Ihj4LBJxDRJ046/fS4YE+Z4zJCGwEuSksbyKsr0vF8XYHyUH8F48E3fCDgwgumMuKQr5dJ13F5uE7nkTikoa7hy3FV5NjXKOYrphWnhQ738mGnevHnokfA54Z2laKdLBxpCuODuKjWixLiNloYFvBFW/FyFcAi5j/iAU1I/vxIQ3riUVcAxz2nR3ujr6Zhm04PvuP0jrviEZd76c/SaQsIxwl+fOWvLHnucfRsXQGqpKO+yS8O8E+eBbFZA3cloX9wn3LGZfNrNYR0bUtcroh39YdkmeI8U99pNIkS+2YVnScRUEJvy5RDhOmDlCW9jKn8kj/gj/7BOJpuPiYNAgPmKOLAPwKnLwRhUIHn/PIxmPg+Zug1M8ozFXSfPpHeB2OeoBuHIpdTCdIxhR+ErVTbU35xiNs6i000wCNHjvIjPJo3b64djtVcgN275752sY70uPOO2yWE8CqePOf+mA7fMX9RPYJ1+tPodzpfa8M8HQdSFSXNmjmFOyUFgWIRgKLC0HAjNWEpbK7JFpbezuKJJi68P0vrRNzPa3iaRtMTx4lEGTUj4o2H9EjOQpR3oUlTNNb8EfW7PJqFp4/yjsS7OPvCY6bnkF7umN1IfEuPVfhv5yg5KEQDTrL8+bL1gqcI5CuL7kZ55kvgcfPFU6Q1Y6RIFvgRYayKiO4XkjZ/mQtSpgxJkoWkLZCZLhXZi1iQTrImksT8qeh51OSn0+K57hcMhd1eg+/CIol2pOomJ1q9aBcgX1iyiK/8XBQWL3+MgldwuLa6ysM1xiIJXIpIYTykHqZjlryZ1x+BMMY2PUVEsZQKEqGRhGINvAvP2VPFCSlXARzzcir4ay04FAJoxFl+zNLzjfqV6BeSllzXcrsgQ36dh1deWQorecQ9SQoWWE/cjBKBkuKt0NySN9fCoFPI+/D6W5NMfu4KI8W9ZE9zdvMjmUcxP6XofmH0/MlaH+TR4xfRdEij7w7EP4wXmqYHHTgoAegCaTzrS/iRX9MaeKbFLkKehZUhjUL0swCdApdrRA83Si4CxSgAldxCBs4CAgGBgEBAYHNHoJSOV5ALgkyEaKEwD2K6R0uJlmhdss/mXvLA/4ZBIAhAGwbXQDUgEBAICAQEihkBzJSxSwDmLPx2Yt+iYs4qkNsCEIicS7aAgoYiBgQCAgGBgMDmjQA+Pi70JA3BvjsvuYts8y5Z4H5TIBAEoE2BesgzIBAQCAgEBP40AvhEFckv6k9TDgm2RASi7U9bYslDmQMCAYGAQEAgIBAQ2GIRCALQFlv1oeABgYBAQCAgEBDYchEIAtCWW/eh5AGBgEBAICAQENhiEQgC0BZb9aHgAYGAQEAgIBAQ2HIRCALQllv3oeQBgYBAQCAgEBDYYhEIAtAWW/Wh4AGBgEBAICAQENhyEQgC0JZb96HkAYGAQEAgIBAQ2GIRCALQFlv1m0PB/SVEmwOjgceAQEAgIBAQ2MwQCALQZlZhWxa7BV8UuWWVPpQ2IBAQCAgEBDYcAkEA2nDYBsoBgYBAQCAgEBAICJRQBIIAVEIrJrAVEAgIBAQCAgGBgMCGQyAIQBsO20A5IBAQCAgEBAICAYESikAQgEpoxQS2AgIBgYBAjEAikbBVq1bZ6tWr41vhOyAQEFhPBMLb4NcTwJA8IBAQCAhsEAS0ByCxOmEIPxkZGVahQgX/nZWVtUGyC0QDAlsaAkEA2tJqPJQ3IBAQ2CwQWL1qtZUpU8bKli1ry5Ytt/Hjx1uGrps0bmyl9C9haIMK2SnJ6RGF3P6zhZbo5fn82XQlLT4CJKFUqWIApaQVLvCzXghsPAGomDrlXyrt+uS9Pmn/ErPFlCjwXUxAFpFMwLuIQBVTtE2J9/rkXcS0mLrKlSsvwWepvffe+9b7jTdt5cqVdvZZZ7oAhICTkPyTPqcnlKZ06dJWSn+r9ZCJv6iTfiwkeO2Ix1KlS1lG6Yw8k1sR+S6m2i0WMnH5MzLKuLAYa9OKiklRmfB8EBWFGSEflkUlUjDeX8Tb81Za2gEC7EYPf5Hvjc5nMsNSy5cu3gQobarihnwDAgGBgEDJRgBfnwqZmTZn7ly79/4H7IEHHrRPPv7Qdu7WTUJRuTWYZ9JjwuMZ5rHs7Gw3l2XoXpZ+r2vCj9OiaSKeX+s7Oyfbli9fYRUrYnZbI8sSf4PJv4wEHwTJFStWSJNW1sqXK+siAfiuC5M/V7hS0tBF+cSmSbDcFIG6I+/SGaUtO2vd9b4p+CuJeW6amiqJSASeAgIBgYDAJkYg0vyUsxXS9rz62usu/Hz6yce23z49LSc313Jzc8Rhuikn8g8i3TfffGNf9/vGJ/1KlSrZ4Ycdas2bN3eBqLAJnwkT3yKEnb59+7rAVVaCQrny5WzEiJG2887dbJ+ePaV5WiGBYfPZL4PwU1aCwNy58xzDSZMm2XCVB+3ZoYccbGUlCGFeLAyTolc/2rXS7pj+00+D7Meff7ZhQ4faUUceaQcddKALXaVRz6Wr6IpO/E/FjIVYTKXLly+3jz/5VOXPsIMPPtgFWtrG+pX1T7GzWUXefFr1ZgVrYDYgEBAICPx5BJjM0OSMHDXKrrzqajv8iMOtU8eOliutBZqd/MIP9GV60ST71lvv2J5772MHHnCAXXftNValchXbtm17Gz1mjGVKm4TWI38o5ffKly9vY8eOs4MPPdzOOPNsO/nU0+zY406w/736mrVv3z6ZLl3gyk+lJF6VlmCyYsVKu+qaa61+/Xr2zzvvsAb1G9gDDz5kS5ctc81QjMdatVvxA2m/qJP4Mq+8SW2ZtGyNGzeyBfMX2AsvvmSN9Jv8ETo2hvBDPgixaJ/6fvmlXXPtdXbCiSfZrFlzgtCTV1lr/RUEoLVCEx4EBAICAYGNhwB+O5hT8PUZNXKUZ7yvNDBVq1bJ88VJYycWliZMnGinnHaaPffcM9aly04u8Jx88ol2xOGH2WOPPe7aCIQqn5ST6ROeV1nLycmxjz762F5/7X82ZfJEGzdmtI0YNsT6fvGZ1a5VSxqn3M1qIgUThLpREiBflRDXrm1bq1Ktht1379325uuvWs0aNbzMaIEwG5ZO+u3EsLqwowv8qDxI9nO/qkJkQOJmyNxUr149q1u3jnXrtrP/XrU6Nyb3J77/up0RHjDzNWjQwI499hjPk3sbQfn0J8pXMqMGAahk1kvgKiAQENiiEJBGQVve8VVZsmSpjdWOL0KN6tXduZbJtrAZDaHphx9+9LgdkhobBCi0Pvvvv7898eST2j02wXeSOQ2Paa7ZIc7YcePsrbfflqakvtWsWdOaNWtqbdt3sG3q1i1Ea5RMXMK/Ssn3Z47MX4RVMnWZdstVF44NGzX0e5iKSlk09cW77PyBIMZ0Vk7CEVoV/ojLH78LC5jB5syZYy//71U7TOY16mu16jFTRxZ4PnpeWMBM58KW6pWqjf7ie0lHan/mMQsj4fcQznKyc61KlSrWrn1Ha9mypd+PNFyFSG1rpbRlPgg+QFtmvYdSBwQCAiUKAWZBZBxMU7m2aOFC565ylcpuUmGCzD+dyfFZk/KK5Svlv/OltWnTxqpXq+aTKjT4a9a0qdMYJ2GqY8cOfo8bTLxM/JjUSDt06DDrsevu1rp1a7vg/PPswAMPsMaNGqXiO5ES/hGXacGCBdanT1/7acAA57hfv35+fMDWW2/tPk3Z0ngNGzjQJsovKDs7x6pVq2qdO3e2+vXqS3BZ5SayOXPm2rDhw23HHTq78Dhi5AgXJps0aWK5OWjEIjA4igABZK6c1X/68Uf7vxuvl3YpW+an2X4f7VkNaZwqVqxoq0Sb+AR4xdcqQ346RQ1o6hBqqNeCgd1nq7JX2aqcLFsp018IRUcgCEBFxyrEDAgEBAICGwQBn9b0EU9vsY8KW7iZ9DBZpQcEIqZPnKJnzJzhW+MrVqyUOjiRiblGjeqeZMmSJW7K4h6TLwEHXQSgtjIRPfnE4zZz5kx78aVX7PIrrpT/z+v2wn+fsRYtcKDOKXTSdSIl7iMqW+XKlayctDYEhI8qMiFWrVpVwsEKe+w/j9uvg4fYVVdc7gLFI48+Zkcfc5wNHPCzbbtta/uiTx877vgTPe0NvXrZpMmT5Uj9mr32vzrWQg7luRJEqCVwBE/CqNGj/RtzG3jdcOP/eZpHH3nYDpFWqHLlyrZKwpBA93Rok+YvmG9zJWi5PMMHrCe/IFYqeb2afPR8m222MRzbCzNJwgttBLrsAAuh6AgEAajoWIWYAYGAQEBggyDAfIds4t+eQ1IUim+mRKO87PFTwVz2229TrGuXLvJ9kZ9PUlBiQszMrOCRZ8+e7ZqB8pnlteMrR+f7aPeSnGfRAu25x+621557uN8Rmp+33nzL7r7nXvv3Qw/bPf+6W1vHy9sq0YwFs7zcS9Yvypubu8pNXXv13NeWJzUhPXr0kDN4O1nBcu1Nle36G260saNHWsvWbbwATZo0dofzc8+/wN5643V3Ir/v3nvsajlQt27dyq648nK76KILrGHDhi5skk8c+I3z8aBfB9sxRx8tP6C6NnXqVKtTp471++pL6959Zxey0ArFPkX4YXGi9y8DB9nBhxwak/rD75HDh1obCVhZK7Mic6a3lChZrFlKuyUJKo/PPyS+BUcIAtAWXPmh6AGBgEDJQoBpK5q6EIW40BU3EIQKCaz6K1SomBJ8CokiTUWShh5GtCEbaSPwFyKgzdhxp53c92fOvHn25FNP20UXXigNURtblaU4a/Fl8cQl5CMSgmSiWrlcB0guc67Qfsk2ZDNnzbI3337Ht8LXrl3bdP6da1Nq1axl115ztZ108ik2ceJEa9y0uWEuI+y++25We6utrFbNGoq72s1b6QIQmM0TVq+//rpdL23RhAkT7aVXXlEeZ1i7Dp1s5bIlXi/pRwiQBs3bdp062uBBv3g9xDRTVez1TR1JbkP4FPYIVdkStjCb4RWUP8RtRd8xkfg7f8RwVQCBIAAVACRcBgQCAgGBjY1AJJgUnNjWzQXaBMw97NZauHCRa3Ew9RAwi6zQ+T2EGjVqWqZ2RrGVPjKBkU+UY3xWDfcXyX+mvjQdR2rr/bPPPmeLlyx28wtz6eaiUECYQLNVJmkKKoOfTUZZWynhAb+gg/bfz/14qsi3Cp+fMtp1t5WEHMJM+e6slrYGfxsC5qZsCYhoeRBc+IsD+YDd9BkzJDhNsv79++u07jfsrjvucOFn4fy5zkdB52m2yEO3vnZs1W/YOCb3h9+52REf0IvqMC9JXquhTqN6jb/yYoVfhSEQBKDCUAn3AgIBgYDARkTAJzFNqInk/BVPZAUnu5glRfWJkMm+Xbu29uHHn/hWaCZm/pjc58+f79FrSUDiHWKYv4jvNCXVkGf8mzRMrqsUB38TAuavaHJNMeX3N4cPfGcIMX6UYOnSpX44Igc/RhhFvjPs1iKwK660BCKeESABJmCWL+hB9LqRhI0ZPcYfoaF58aWX7eqrrrScLE6eLuMmScxy6QFnaI4kmCDHdHbgIRCRX1Qb6ThHvOELxitJOkljVEu79DjZO10Qy6Md85y/3HnPw6/CEChQs4VFCfcCAgGBgEBAYIMi4POXJq9o/lJW0Y+C59Tk8YCQE/mT7L77rvafxx+3hYsW+eSIhoFJfdKkyR4d591Yg+GCjiZUJlbOHGKixszCqxNIl1G2vLZ1z/V0HCLIjrSkPJCXdQn+hcADLinNC8wnVrkD8TFHHmGPP/Gk3XTjDb7tn3gIMpFjs/lZPjIGOg4UEeyJA81YKOI+QirPVso0+O1337mp8Eo5VU+bPt0eevgR69a1i5yuq0krt9CFHbDniAO0MtAC8/ETJtiBBx1iTZs2sapVqrpZjOf480CffKtUqixfoYHWvl07e6P3624G44Rwd3ROtROlQYBSHUbljrRU/v4z5UW+IhfCWhAIAtBagAm3AwIBgYDARkUgbVKLpQ7OsfEJeC2M8GzHHXf0p/2+7ue/q1avafNmz7L7H/y3XXrJJb4dnskRH5WvtS28xy7dtS2+o02ZMsVGS4PRWI7ALVu0sMyKlW3mjGnWq9eN9uILz7tpCHNQ+uS/FjZKxm3hh8mrTLlMCTGR5sW1N6UyfBfYkUkB6PMvvrBWrVpa9Zq1bdnihfba673taDkxt27VysvBWUAE0pYtXyESiIRzXCcIFGhuFi5YqHOWnrJnnn7K6mob/RGHH27HHHucXiMyymrIb+i3336zPXbf3esPDQ/CDcJQVnaWb72fOH5sElsoplc+uUfCkMQaT8d2ekxxLtgViEobQCgqXaZcWl3pRHE5wa/OzZZpNCsIQRGka3wGAWgNSMKNgEBAICCwkRHwSS1vre6+OWIBs40LQIWoYRBMMOc00CGGn37yke1/wEHSKDT1V1i88NKLOsunoV14wfk6lC/TNQy/DPzFLrn0MvvPY4/adjr7htdkHHDQwV7Qp558whrKL+XLr76y8847y0+RRku0trw3Mjp/nB3yibQyK1Zk2a+/DvFXeZDovfffd6GgSePG/jLZZ599ys4661wJEmV03cX6fdPf/YPuuvN2367+w/ff2rtKQ3jrnXd8Vxi4pAuBVBWCyIjkad3sFkNcQfNz3PHHWfceu9oNN1xvJ514ggtROJrHZivo8B4yzmzCd2vdgZyiNoHjNPWRzgdpI+EnQ75LOTZ0yK/2zjvvOck33nrbWulQxDZt2vgBlwjAIayJQHgb/JqYhDsBgYBAQGCjI8BZMRV11gsH6d1x550yaz1hr7z8omsWmEB5Hm+nTjGn1T/3mBh5/QOHGuL/UklnAnXtupNezbCNn02DNgOT2K+DB/sBfwhKc7WDacTwETZSEzk+Q3X0OoeWLVr62UBslc/RGUMFJ9xUviXth2tBMnz31xgJdrw4lsMG0ZpUkqM4ZkBOS+aa55QZMyE7vhBg8HtavHixNGKj5TyeJX+g8jpkcoXhP9W8eTMXeBA24oAAhIZnusxevDMN53OEDHaS8UJatGyYrnC+LkyITChu7KcU01zXN/VfWF1AG14QssaNG+9lYJs9whL+Rgh+bM8PAlDh6AYBqHBcwt2AQEAgILBREUDA4bA7diPFAtCrr7xsh+mt7i4AFaIBgEHXAmiC5B1YTPBZmgwryX8k8lPJ8jKQHqFGs6hf4+9TRgIAmiZ8YJiM3eSje9DgOWk2x4Bg46YiNytxPlCu/8XCAk7I8cnKFXhRrIQRztcBm/K8I0wCRWSSKpWKtwYOwov3iZWRJgnH5Fg7Q74IKmCH1qYw4WcNWsV0g/rjLw4IPXHdxvfCd34E8tDKfz9cBQQCAgGBgMBGRiBPxxBl7NeSWZJyS6HcMOEy2S1fvty1GpV08jCTPq9HwCzkjrWasNkG73H1GzEoRxM01whG/EEjOj8nmsALzWwzuEnZET48qKCROVEo6De+Qbm5y11QQFhZrtOhIyEFDYv5TrlEMi3YcK/QoAc5OvVZm+b1mHg4IidcEELwjLfSc39jBRzW0drF7kSuGdxYmW+m+QQBaDOtuMB2QCAg8HdFIE8M8u3RXObtjy+00NFkrYlXk79mYp+Q19Dg6H5kdtGkzP/kpO1pRJXrNdIUmlvJvumnYassvE4C/Hg5aSyHIJxQeDQ2jpMEv3QhxfFOpuW5/gNM4QUmXtoTx1PXOK6n00yLskF/UrelaCcwBe8SaBF118b+BmVmMyEeBKDNpKICmwGBgMDfG4FYxmHyZNImVKlcxYUSTeNFKrxrO9Y24xWYsCFIXptisi5SYf5ipJRY4rJAUiAoQMvLXAhO6WkjSaJAwj+4RPbYVBKH8+4MRDzEP/+A5S36cQEjb9TpNj9EAt8bt84C3gHvoiAQ2klRUIriJKer1KwVYYc/C5O1ayL+kFjA+w8hKtYIAe9ihfMPiRU/3gUEoFTv+0NWSlaEwPfGrY+Ad8C7KAiEdlIUlKI4SfNFgTHe3wJfNOlHZALeRce7OGIGvIsDxaLTKH68CwhARWclxAwIBAQCAgGBYkIgObYXOsQXerOY8g1kAgJbMAJBANqCK7/kF73AcrjkMxw4DAj8NQRo6hJ0+Mrf6rmJBBSkoL8GbEgVEFg7AkEAWjs24ckmRyAM+pu8CgIDGw2B2NK1Rqv3G/nFoo3GVMgoIPA3RiAIQH/jyg1FCwgEBDYPBCKhh03LBYKrhILwUwCVcBkQKBYEggBULDAGIgGBgEBA4K8j4CIO0k8BCYiDDDfVtuq/XpqQMiCweSAQzgHaPOopcBkQCAj8nRFICj4pM1jyjBpOd+aE5qKc1cNJxIRo23ze7z+CzQ//K6BkKkp+f0R3kz9XmaKDDcWJ+1FJw1bI2T/ry2cKdwhtAPpF5S+dj7g6N0R5i8rP5hAvCECbQy0FHgMCAYG/NwLxjKVSMmnHLz1dsTJ6VQMnNPv9giqiJCpMfrzaIX4XFde5ei1CdApyAbVSGpLEg3aZstE7rJChVul1EbxIc7OfPFXscn6OUmTo8BeEcgJ0MYcMvX8rA8FHf5y+zOs21lJNxZxzHrn0+ucu15S3qMJzHqUt61cQgLas+g6lDQgEBEoiAsgo0lLw5Z9JgSijNC/mjCa01CnFfifvg8mOAxOZ7GbMnOFvMa9Ro4bxx3uxCp0ElVFCp03HQtPChQv9PWC8KLRmzZr+rix/d1heNpvdL94GP3fuXJs3f75V1BvSa6hc/vLT5DvRiqtAvEg1K2ulv4vN8atRU68cKdrJ3cXBg9e/Xsy6Wq/gmK+yrhQ/FSpkWrVq1fxdcP6i1o0tkRVHwTYCjeADtBFADlkEBAICAYF1IiCBR/oD/UPYIWYkATG5rSvwvIwm+sWLF9tLL79i//nPE/bJp5/ZrbffYf2++ca1OKVKSXtUgA6TJcIPwtGnin/5FVfZnj33scMOP9LefuddTaIr/QWpBdOti5eS9Iy3oo8cNcqeeOIpe+fd96xZi1Z2/wMP2rLly1y4c6FwPRlGQwadwYMH29333GtNm7e1n34eYOXKl/P760m+SMnJH6Fr/rz59t/nX7AjjjzWGjdtZhdfcpl9/Mknlp2VrXrMWKP+i0R8C4gUBKAtoJJDEQMCAYGSjQCanzik/47v+QK+EFkI81VOTrb95/En7Jxzz7Pzzj3HLrvsUtt/3/2s5z772Q8//mjlM8tFE2AyfSzUICR89NHHPnEee8zR9twzT1v37jvbiSedbF999bULSJub4oCyIZigCdlr/32tW7eudtMN19sD999nCxcsdPMemMbmMASIpMSZghpZkfvQwoRI3BizVCT9wNyFENmhQ3urW6eO4mRbu7ZtPIrTTY+8AX6TB5o/hNVHHn3MXnu9t51xxin2r7vvsn7ffidh6Gj77PMvkkJwoa1qA3C1eZEMJrDNq74CtwGBgMDfEIFYtmGain9TzHji9emrwBzGs/Lly9vAQYPs5n/cYu+/9441adbMslestH322dsuvvgiu/tf91rHDh2satWqPlEi9OCjUqVKZZs4aZKNHjvGHn3kIdumfkNHtVHDhvZ1v2/su++/F42e8g8q6nvIPPkm/0D4yaxY2Qb88ovNmzXXmjZtYla6jJ1/3rle/goyhSE4VKlc2X12MBHm5OS4EBRrdPguLy1OTk6uZZQpLQ1KefeniusiLiT1lCEBtLJo8ezoo46yrbbays2O6XUYxy/47XGQttKl2/Q69ghRi4CngoE8y2VmupCTnZ1tb735utWqvbXlZmdZp04d7fwLL7Inn3za9tpzD6skHldvAt+kgjyXtOugASppNRL4CQgEBLZYBOI5L55smYiZ/HyeLIAK95m8+/f/1p80atRIk1+2ZUsjROjWtYt99tlnNnrMGCsjTQUBugg1CEFlJQydcdppVrt2bVswb45lrVjmgtKQIUOsRYsWVha/EmfIk24WH2hrli9bYjNnznR+8f9ZtnihCz8IKgiApTNK29x582z27NmG4JApIaJ00kxUqVIly5T/zPJlKzwuACyX2SwSUtaEACxnzZpl1/W6wXbbbVerUrWK11fVKlWSdDE/rpnO6zf1IC0CP+M/T5b2LI0M6SlLtrQ/S2T+POWUkyX8bGWLFy7wOt6le3fbVybNUWPGukDmYtSaMlQaxS3zZ9AAbZn1HkodEAgIlDAE4qnOJ6vk5FixYiXfEYa5JV9QZCbyrKws6y9zR5cuXaTVqeJRMItl6FmDBg38euqUqZbo2tV3e0UCUGlN/FlWt25df44QVb16dSuVUdb9h04/7VQ7+KADo4kbPgrRPuTjpQRcuEBQtowtWLDAPpXQN3jIUOFT1vr06WtD9btp0ybWs2dPF4z69v3Slq9Y4cIPvlO7S3DZcccdXZszdtw4myTN2LBhw21PaU5+lk/P5599br16XWc77NDZ07hAKimFb/yrZkoAQmrpIE3bkiVLbfSo0R4PTdO227Z2p3I0TcQnwCt+O2VkvipqyFY9p9OIaVF3+++/n/yOytvypUsjoUhCHcJRtWpVrVnTxm4mK2o+W1q8IABtaTUeyhsQCAiUTASYH1Or9NSPQnn1LfGaULMkyMyZM8fqbL2173Ri0mWCZWJGC0Fgks/WRIlgxHMCEyiTJ3TYDfb7tGn2vcxex59wkj1w371u1nEJaN1sOK2S8EF5KAfanB677CINjs5PWpVj23XqZK1bt7KKFSu6xueqa6611q1a2dlnnem+Pb3feNN222Mv+/D991yDM378eDvr3PNt5vTpdvFFF1m9etvYu++/b6efcbrjl6of5EI3DyZslAQeQquWLSTYlLWbb7lFmpdx9rhMi5GgEou2kW8Rws+ECRNcyEKILZ3upA7eyejQR+jBz6irBNitZV5D4KUeCdQzzzBvEo9r6hf6CxcusudffMnuuO1WQ6sV7QTzZOEjDYEgAKWBEX4GBAICAYFNhUApDutLzZXxDwkzLqasyRUT5NKly+y3Kb9bk8aNfOJjEiQw8ZYvn+m/58jcw9boijLt+ESoZwTiMlnOn7/A+vbtK+3P5+4vc+XV17jW6dxzzk5pjTxBCf9YpZ1tCDqttm1rY8eOdW5bSihp3aadrcrJ+n/2rgKwqrINv7AejO7c6O5GukEBQUHAABVBxEAxMFCwO34LlDDAwqQRAenulO6OjXXA/zzvuefu7m4jFmxs36f33nPP+fI5h73PfeuTceO/kp/gKHz08EEpUaoMEVCn8R07d8qt3XvIzu1bpWvnzvLKSy/K0IeHqRaMWqB+d/VVkkFzmWsqApq/qElaumyZjHjicSlYsKAet2nVWsZ98Tm0TkFKWGhutIiQhbmnh6ccPnxYxr7+uhRCG96nSzDdSQ7cO03YaNWjf9epU6cRvp9fqlWrJiWKF5cIjEe/I+fTgXvIMHw+CyRGHCtXgB+i0ebh+JJ07dLZcT5eA5XJb+MNnZ4hQDcUbjOYQcAgYBBIAgGHpsXxkUSFxKeo8WBem+LFiijBSUBuICKZzJCFdWgSU3LkMgC1RGzj7+8Hwd9Fbrv1Nnn8seHy8pixMuLJp6RD+3ZqwolEKHVOB2lKPIvMc4ZT5HpiIsOVmHBmYSCI8P6FmeqE/PnXdHlk2DDkyPGHuShEYuHkTO1Ij+63yWSEkO/bt1/JEnPosFSrWkVNS6XLlFYH4hj0bcNHQpMzh4ech4/RT9Aivfs2Iq/gPL55y2Z54MH7pQg0chFhYUpUbPLDPqmxodaufv36MnfWTCcx4jUSMrAgPbKPVdOHc5ynpibwREi7o4b9QS0Sx6BZk7l/jhw6IG+99Ta0Wr9JcZAmao3i+7VbmU8iYAiQeQ4yMQKufxAy8TTN1AwCqUSAP/4p+9yFm3br2MbBfQgSGkY10QQSHBysApK+PFpAjriNBgsTItI0RA2GZobOafuvxJtk6CBM8tAM5qOnnnhC5v89X31bqHkAc8LcbMGsXWbaNxIBZmamUzOLBwgDo8Cio2Nk5cpV6gtEosAoOK6XhMT2nToPB+JLsdE4b5kJaTaMAWaRNDuR8DhMT/biqXU5BP+qYPgdff/9VNm9d4/MmT5dihQtLhfOnVE/HPbvXmim4j3hvK61xEZHKpHRnD5uT4mSHzi+58qVW5+D1994U0aOHKl+YRb5wVCYqxLgax0wm9S79juQTQAxy8xMCNwcf3QzE2JmLjcnAiQ+5Bks1of17NvnnIoBq4r+4qdAYx6YZk2byKuvva6ZnCkM+YqDkD154pTWLlq0iApv1veByYuC3xaG/CQxIkG4BI1RbrQtU9YKiaep5mYsiqXD1+mSA0CajcqWLSvHjx+HBgamLKyTZJDFJin5oD3JiaSStp8UsSHpofbM1fRlnyeO27bvkPLlK8g9dw/QPExbt2+XynB89gLOPl7eEgs/JCWdGI+FfZOMrlu3HibHOXr/7ESF1mwscqpjYNyoyGj1K2KeptJIUUBSa8+X/XEd9OXy8/WTSKQ/eOvtd5D7qIl0gWM0iR6vs76rAzXbmWIhcHM+4ebuGQQMAjc9AhQJ1h/9+KVQ0FDtn65FhSJGt2SSNRSHdP2erhNIrnNr3dY0rGPVOvCEWxAYe7CFadOmTbXDs8gGXKmSZdZiFNDuPbv1fMUKFRERZWkiwmCWodaIe41Rq0ECxbsQBTNXdBQS+3n5IKz6orYrC7+iOJfoJT2Zyd9IHDRBITU/KHQwpgmMWrKePW5TovjCqOeE+Y64bhIERm6x0FzEh8AmQCQmeuz2bLAN7wvJCNMM9O1zh9zVt49s27ZNRjz1tJoOmQ/o2NFjkjdfXiUg7Ift+Gjzkxmp6QjNe8F7ZY9p/YuwngASF/t+2QSG67MLu+N5Eiq2n/zNt+r03RdzwSDqV0Ry9Be0Uq1atlTzWGwcfIEy/kG3l5Dhn4YAZfgtMBMwCGRPBKil0D/8/Hsf/3ddBQRV9vRRSU1RoYMOKOwpN6jhUOFFyWHJGGf3JF30qXE3czgr3KADTo3FFlIaqYXJ29+tq/HvJCj16taBk2x1+ennn2H2aCgBefPL/r27ZSQint59520V9rEQhOs3bJAPPvxYhg0dIu3atVUT14IFC4WOwnXr1JE8+fPJ2dMn5eVXxsrECV9LyZIlJeYmIkAkByQTnt4+cA63SI0+XzA10YemZ4/uSoCm/vAT1lxR8hcsjGivI9g25HV58cXn4e9UJR5YHHE/Ly8fP2hxYvlFSYVWwDh8TrjP2B9//il3QjuTO08+OE13k48+/gTRdCuU+DD6rgucquPY3lHs1AX16taV2rVq4Syfczx7Dudn+5+CnmMbx7Ae0ExFIecP18fC54SmOnsPuB9++FEeG/G0TJ7wJbb++EOd4+nbtRE5nXzhZN2ta1clRMk9R9ppNnwzBCgb3nSzZINAZkCAv35z8g86fS74lx9CheUyTAs0y/DXbUoJCQUffxmzWKHDHursy/MkDbF0ELZJFwQao6FIjiKx+7rtP6KNb9Qb148XpmIJPRBAFgpyzllx4DXrtF7jfElQChYsID/+8L0MG/6ofPTRx5rT5rMvv5RRyF1zLxLkUegSS/qr/AHh2P22WxX3c4gOu+fe+7Sv5559Bqac8rJnz165f9BA6dq1i45LYngzCE2SH2pMLgKvWbPnyLffTdF1TfpmslwIvgCSWFczYi/8528Z/viT+nwxceEyRHDd2ft2GYyIN/bx+6/TdEsJNuY+Yr1wrXbNWoqhrX0hV+H92LFzl45RVYnTZWRfri0vj35JevbqLa+MHi0PDRmszxSJivtzTOLCKK8rl/gbTnMbzXn27adZjX2S3E+HhmfQAw9KEeR1unfgoERdrl2zSseiEzWfGVPiEcgBb3iibIpBwCBgEEh3BChE+IebgvXQwUP4FX3W2koA35m7hdfzQRNRskQJdU4lEbqewvZ85YKT67atW2X/vgOa0I5/+NeuXSeHjxyR7fDT6HX77VKrVk0nyZoNoVkBmpAaNWogcugi5pjYefV65nHddSGXSFJyIfHhyVMn5bXX3tD9vaZM+U5u79EDwt0iMclpxTyRBJD7XzEJXzBMWKVKllAth+38zPw0NJFx/YHwhaGzNM1eR44clgMHD+rYhZFJuGSpkppT6DK0H67h29e9nhvcgEKMJj2SXWZ5ZuZrEiJq0FgYok5NCBkEw/7379+nGpSSwIkRW8QpHObBM+fOKuEjQWFf1LgURKZsD2gj+czahc9TyMUQiQiP0ESHrM/n+izG3r17j1SsVAF5e4poH0mRDj6jFgO3CQm/28f2KI5Pa3EJr6I9yQ/JMZM/8tnhevndHs9qlgNh9AUSzd9thGz71WiAsu2tNws3CGQMAvzjzz/SFOYLFi7Ufaw4kw/ff19yB+SSX3/7Hc66Psit8pg6dLK+66/f5GZtCRXRXDArl6+UL8eN1/ws1DRRk1KoUEGZMvUHGf/VVzJw4H06B3suVatWkfc//FCGYkPROnVqI99K+I0nQVAtUATa71ynU/tCaZZQBPKEszCku0D+AtIcUVy6JmiQuOM7CQAFM8lMAQjCwhDmDI+PiY2BcPfQLS9oDrKxY4cUpjT/2ILUOUgmPiBuXAO1KvTv0bk7OAXP0wyl/i945qgx47PguIxrcRbZgRawVMlSCdqSUPC6K/khDHwe8+XNp5gTL2uMOCVaJFTEnuQ9OQyt866Ex/XYDeikLuHfD8dkPxwvuXHYkz0/t17NVyBgCJB5DAwCBoEbhoD+oYbkoRCuhGiZjh06KAF69pmnsZP1fZI3f0H4o9SVu2Gaad22vfy3c7sEBQU5f8knP1GH5ge+HuuxOejgIQ/LN5O+ltowfYSGBKuJi4KemoABA/prAjoKN5ZYkIFKyA785IgR8Oe4S3755UfNFkwHVA2jVvKR/MhpcgVj2O7fFGyQbtqtHuPoWqZAskN8+boca+HhKhgpyNUfhWOpAIWQZhvXBXBo+KQ4iZfrtZvgmHhZAt+aLJbpLBYWJIUJyZ1NJIi5tiXaJKMubZ2dOA54iXjG4uVazcLYyr/k3ia9vsfP2RqB83Y+L3qved51luk1k5uv3+vzMnSimoKFpqZtCoZL0CQ1Y6embYJJpOBLasZOTdsUTDVBk9SMnZq2CSaRgi+pGTs1bVMw1QRNUjN2atommMS1f+GvaarruWs5zS8sDN2lGYJJ7KiNuRskhWXv3n0qrPWL65vbvOkTwfbcmPKFl0bLE0joVxfkJxLRNiQ6DP9mVt0333pLWkBLwqggCgqGR3sg3Jv+Edwi4bnnnlFCRvKjDqZxbgNxDs5TFsmgALX4Ci7wwPGyDx0Xrdk727ouxnGMCVFM0Xn2zNkzepKmK2pwtFypLSpYAh5zcRA7V/IT3x4jOCW7C82xFqBy0uWsNS7frzJ2fMV0OErB2FyiLjNRWxIbohxfEn0n/WOVRG3j29hHCXuyz6bB5zWM7ToK7xnXoWtRTaKecaz1Omd5nWO7zuNaMEtQPy2/pGDe10eArhPHBGtLTdsEHaXgS2rGTk3bFEw1QZPUjJ2atgkmkYIvqRk7NW1TMNUETVIzdmraJphECr6kZuzUtE3BVNmEhITkIjQsVNasWaO9lAsKUkFP0wJ/RYc5kvjRV8UiGBbZcEolzJvnWfhJQsWyaNG/8s+/C6VTp4763TYB0V/iCPxfWKpVr6YmjzD4HEVgGwGax/hLPg5monZt20ADNE0WL1mq5hSbTGhD+w1jU9B4IjKH6+Cmll7wwfHE5ps8tl885+Xlod8Z1aYlObyxBhVe6Jd+UdyjiqVSxUrqh0JMmHjv6kUnl3S1KzVXiZ90Mz17pbZXaJYml1Izdka1Te3CM3LeGTl2anBLwbyNCSw1gJu2BgGDwHUjQEFPh1WGEb//wYcyCP44DLlm8jjuibQUu5u/+eZbcscdvWGasvxTlBxwJP6Rc/zS4zm+SKjorEoiM2/+fBly/2D4Z+RVc4aOBfJDkrR9x3adK6OduIEok8bt3bdPOnfqBLNYPzjJ+qhDNk1hf2HbhNatWoG8WDlanONzChiTZodgaGpIkFyv6QCcIuaIalpI6uiHxP5t0mbXsz+ZEoBbVjC3zLp16/T0xx99KEFBgbo+tktqHLu9+TQIGASuH4Hr0wBdf/+mhUHAIGAQcCJgC3J+Hj5saWRy5w6Q/3bvltWrV8sXX46T9h07Se/eveVV7GTNbQqo/aCmhQRJE9s5yABD16n5ITGgmYjmr4kTJ2nIsw/IBNtBbyReDnK0fMVKbH75kDoCs81pmMSexLYPQxCunCfA2lGbRIVO0OPGj5cTJ46r6cz2FeIi2CcdbWm6a9aspRQvWVpq1akvxUqUSvAqDmdanqtQpbqUQJ21a9aqiY7tExXMheOSKP27eLE8PuJJ6QDfqNtu7ab5a+hM6zSDJWpsThgEDAIpRcBogFKKnGlnEDAIXDcCJD70a+Eu2lu2bdX2efIEyOJ//9UtChjRsnjRQqlZs4ZqY6hp2YJw9h3YciAHQtPLYpuGhg0ayIEDB2TJ0qVah1luS5Qq5TSb5ckboBohRjpRW0TydOTYMfn66wny808/Ih/OIfn08y/g6/OS1KpdS6Lgi0RiQlLEl6+vlZ+F2hgriSJVTpbqiUQkBhFXdKaeMGGcms1IwriupAq6QzRQDKKtyjsjslzrcTwSnKNHjsqy5ctk4KAHQMgegkP2E1Iaa9LcLRjTFIOAQSDtETAEKO0xNT0aBAwCySBAjUxOZOa9ePGcrFq1WmsNvO8+qQAH5JgoK9MtSQFzsFgJDHOqc/LMGbOQsfdV2bJpo/jlClCy9BAivRYu+Edz2lwCUWLoMYtmywXxYGZn9kXywm0HWJgD6OsJE+WTjz7Ank1VECF20alBIoUhkdH2OFYTF75bfVgEh8eMGmM4eXFoeK61XIqLRs6YSKyd87EKx6I2aefOnVK3fkM9+f5778i9996LMO1CyEcUqmPHt7Bbmk+DgEEgLRAwBCgtUDR9GAQMAteAAMgPyAg5yYkTJ+THH3+SkU89ifw0+SUWGzdS20ENC4kBTV08pvkpD/x5HnhgkBKgc+fP6U7b3333vWxcvw5h7vUEyVx1bPrrsKiZyaGQUY0NCMt/u/6TQkhMt2nzZpk3b546PUeDZDHBIJMeMlsv50WCQ+LEQs0RT7pqd3hMjU8IiNPxE/+pBkjnTFUTCskKj6xPrBXHDD0vWrSo5uGhRssiVLiAwu+FMa8ff5gCE+BaOD//qvllunXrqlomKxGk3aPVxrwbBAwCaYOAIUBpg6PpxSBgELgKAuAOzm0ZDhw6qLVrw9+G/i8kAiQSfLkWfg+HJoQakZdefAG+OV/pho/t2rYF+aktIRfOOSPA6ETMQnJCEkSyQj8hOkfPnD1bhj88VO66q49s2bxFfv75F3nh+VF6PRKRYK7jqukM/QTAN4kEhsUiNFYEG+e7e88e6dK1OyLLDomffwC0O9YGolbtxO/z5s7RTTJJaOyINUubFKtJ+fredZe0b9cOSRq/lgcGPySjX3pRHnt0ODawzANNGH2A7Jkk7tucMQgYBFKGgCFAKcPNtDIIGASuEwFqc/z9c+sO12vgFMxSE1tP+CF5YdhFbj+RkPxoBch9OgfnArnp3v02adioiSZP7AINSSiisKilYb98FYBfTt8+fWTXrl1qPiPRYJ+MNps1a7bcd889UrlyZRk27GF58qmRGn3GRIDcSqB+vXoSA18dhs2fOHESG2NWtTRT8PdhH5Z+x9oDinWKQaMz/c/fMG6c7rRua42cjAmTtyiLFTFWokRx9fVxXyNJEMlayIULqvHhnlTcz2rsq6/pXHv3ul1NcraPkmJi3gwCBoE0QcAQoDSB0XRiEDAIXA0B+tacP39BFiPSiWHuLLsR/VW2TBmNkCKJcTUP8bru0A4iA3WO7Nu3n6d0n6cYmK+0rrIMi2QUyJdfbkXk1OiXx8jjjz2qWiNqgWj2YgkqFwQG44kIq/b6/dlRz+tWEPfePUC1RcyzEwHn7N+wFceDDwyCaaqwfnclLbbWhokU69QppP1c9Q0kJwaaHztTs3t99klsqKnKj7xHbRB+T3wY0dYYu7sHBQaqGc2mVO7tE39Pockshc0Sj5/JzuAZ4AamlkEyHeeWVfFLR8gyuuskfnJl9JTM+AYBg0BWRIBEght2UsPBaKxpP/+kpi9u0klfHPdC8oL/xR8mpxmzZmmY+6QJX+s2GWeh1aH2h8kLPTwsLQpVLi1uQZZnmI3WrF2rCQipOWGOoR+mTtFNQKORabpihQoyb85sKV68uPTAzujcBoP+R8wkveu//5AEcYnumG6NT6mWsNgk6CK0VvYr1OX4YijPhzqu4ROaKpq+lLAl7Mr5zb7G/EjFiheTW7t1k38WLJCd0GYxSSP9lDifKxWulSSS1ezjK9W3r7GN1hdLk8bjrFCIl+KBxZBIW9hcGcOUrJv+Y4ofxrvKLUpJ99fchkEAnAdzU1EzyfWacmUEjAboyviYqwYBg0AaIUBBzt23+/e7S52cIZLwR/qyakbcnYMpvHKCFPn65ZIN69bKtm3b5dHhj0gkNT+e/rJ+40bp2u02JVBaF8SBJKYMtElvv/mGjHr+RfUVKl02SM1bTRo3VhJCLQy1LS1btsDGoc2cyQcDoNE5h528Rzz1jPw67WdhskRqg2x/HXcIbK2N+/n472BjTsOZ63F8jaSOKJ65ySbJGcuF4GAVaiRAMAbqucRvFO5MtuiLvcvguE0pjCGjIqOBj7UZauI21hkKSfpJkUzaBIvC090vKrn2mfU818LNdv39Lb8wzpPkgPffXmdazJ3PQS5/f83SzX45xtXIblqM694H76MP0jcwCznvP+fCtfLlqsF0b5fdvxsClN2fALN+g8ANQoA0gIXh7fyDDdmhQsrSfthXSRsgvGCOok/O6lWLpFWbtrJ86WJNCkh/nsYNasmoUS9KUFCQY+dvaI/QnL98KXzatG4pTz35uHyGXD8kTUVgyuLeXhQE1DRRSNkEJjw8AoTIQ04iKu2zL76Uhx4cpNqXaESlWfOy5nz9766aBtfjZHri/B2EiVtoMFcSi4cSHx6xD77iceJZFsg61V6dhx/Rtq3bJBikqWSpklKtahUlN8QkKSHIe0CtF/Md7UAo/gW09/P1Q66lMlYEGu6T3iRrmJvonakW4FCPB4zJNQ8cOKh7v1HTR18sixwlxjElCySGhw4flrMgz+cvnEd6hMK6lx2JR+qen2ufDedAx3zuIUeNIbWRBQoUlIoVK+j9jI65svbx2kfKejUT652z3hrNigwCBoFMggBNEfECyAoxv3zZTbMBgc4weAoR7hpPc1VBR14caoCo4fng/XdhWrroiB6z+iG5oSYJ9AnO0HfKLTCHrVu3HiakWCukHf2SLFAw2b+QdX8tCMtVq9dAU1RXBvTvr9c0LB7nb2jh3DAg50bHbxYes1jiOrHQ5nVqcHbv3iPPPvucbNy0SfzhVP4lMmp/+eV45BJybOoKIelaSAKZg+jo0aPy8pgxUrtOPWnVuq00atJUxox9VR3JmXnbHt+1bWY/puaHmjtG/s2f/4/kyp1bunS7VR4cMgTkMETxopbrSgTFFWnXY3vtvCt2e2Yg/3LceGnfoZOmd7Ad8+266fnJ++gPDdR+JAZ9/sWX1P9tyNDhUr9hI5kAH7KQiyHJajHTc143S99GA3Sz3CkzT4NAVkAA0uRqzqgULPav2pYtWsCsGuwB2AAAQABJREFU4wFzVKSyFzpMVyxfQc1j1Gwwxw7NPxapsaK0Yqn2h/DuiO0k6KOj13M62IUDQ9a3Bdgl9NG0SWPJnz+/Ei6SKJKpGyr8lefYopYIWcf2HCwalPABoMaI5jxqbujQ7evjLQOxr1refAWg9SqENAH1kfuosPS7q69lcgRZsrElaSLB/PSzz+FU7ikrkYWawvSXadPko48/gakxWj5AUkZqiDTBpD21hFPIdN/43JD8cKuSXr3vlCWLF8ktLVrJ7FkzdOsTZvmOwf2Nhe/YpThL00htkf0scEHEnOZa9sP++KKWkMTKLoTDGiun1EY28Vq1a+qlKlUq63n7vqE3nE8f8Hi/qLE7A+3TeKSHaNSwoTwzcqT+m/gBObZGPPmUVMfGv+3atlGTpusa7XVk909DgLL7E2DWbxDIpAiAo6hJ63KUZdKwSUAkMkZTrtBHCFLJkjEua/CAQCM5ogDLy01REcpOIZ68AMihSQrZhkKNAtGheHHpNf0PoZdyiktbK0b/kqTMVzobTJIEaOPGTdi89S9kxZ4P8pNXIsMuSrVq1eSVl1+We+8bKG3btJbixYrB1AWfJuxOzzV6Q3DO/3ue7q/2zMinJG/+ApDocRIYWFYJ1cSJE+UJRNJVq1ZVouIiIcLjhX/6I5GyEXjP6Cvli1QLRw4f0U6KFimqn506dpRokDpqFD1AZHS9uHIJPlL0HbPvO0kFn5vc0BqpY7yPr3h6e8KfKkrb2sTUniFJEYnk/v0HZPiwYRp5yO9alPskR36oCbV7ufpnUs8u5+KB+79z5y5p3qyZMHmmkjkPL7kDe+m9NPplBA6csv6NXH2IbFnDEKBsedvNog0CmR8BCgj+kuYfegooCoFLNJdBpriec18J5QoFAdvY22kkJUBc21HYsU6yZMO1cjoeq7gkp3NIR5qpdN1Yi3uhsOe85/+zQC8VxT5qsfCbovkup8clqVWrhp6nA3mJEiUsR11oy1SzAcFP/6K7YfLjhrPhMJVgIM1YXbOmpc2Ige8IsVY57j54ZvsOvHjviMepU6dkj2PrE6ZZoPaG1+hY7uvtq1pB+spQe1gYmBE31fpAM5QbzvBMsUCTUgmQxuCQYEQunte8T17wy7LvC5fPe8V+Od4HH3wokydOUI0ZCZC9iS+PXdvYsDlur/01RZ/8ARAZGSFVkNvK399KJkqNJ7V+fO5ZypcvpxFwKRogGzQyBCgb3GSzRIPAzYqATVzsX972p02CrrQutrXbX6ker1GQZWRR4oMJuCsF+F31QnYFxyQpQJkdmgJ20+ZN0gq5g3LB90eFLepyPdx+g+X0mdN63saCn4zyagKzH+uRNJD82CSAxyxFQQAuQSPixFzPZs434uQJzY1m/UbKhM2bt6iWZ8XKlZragKYpbi67du06mTL1B6mFzXbpG/bX9JnSqWMH9f3KlctfFoJMLoU5cMeOnXLnHb1lOq5PmjxZZk7/Uzp16ow96KgNAz68AY7n68DBQwoKiSOdoWfNnqNmqYDcudCmk5JPap+c2bzRln5CJKJJkSOiz/VocXyh2U79lji2SyHJzwetHzVX7KtQEZC282fhkzROpk79XiMgqdm0771LU3MIBAwBMo+BQcAgYBDIYAQo8JxCL8FceBYilwI3QYHGA+YXRnDRzBEUFAjtg59ToFLg5c6VW1tQg0GSQ4FrpxsgxyH5ifefsjRDFJZz586V9959G4kgC6mvzM0gPDlHri0fEkned+898idMguPGj5euXbtI7Vq1FJdtO3ZI46bNkIPqB+nRvbuShsCygdK5azc9ZjuaELds2Sq//DJNNUZ33tkbZMUTGp08wBL3wLod+sEoMxKPHeiXheZDP2hifvp5Go7LyOPYyiSfwwRrYxgHwsK8ViRm33zzLRzRYWKDhsqdCPE7zZthuL++qMNoxnJI5BkKp3bWtwv7tc29JH9Lly1Th+xff/1N81vR6Zvbqdj33W5nPi0EDAEyT4JBwCBgEMgMCCT4cW9/sfQviQ1gmDCUVoyKO3n6tFSHzw8FtS1IKRj5nYWRQNQUUevgWii8WSxNUqzkAXlYgo1iN6zbKBO+Hg+tAX2hEm7e6to+Mx6T5HFrFYaFs9CHyj93Hmy1Egzi84tUBU5tWrdWLEgAW7S4RcaOeUW3RmndqqXUq99QunTurARoQP9+Ug9bpNzSvLmSEXdNCseiyWkmtll5+603NLpswoRJclffO+GD00vz8rANbFBODQzvKu8R70Xp0mXQxkuJqH3fdNKON86PpizWsUkSbmuShXPhHnin8SzQGfrsmbO6JhLcYcOGJDtGkp1lo5NuBMhBb286AMy8b+wtM3gbvK8FAfOcXAtKVh2HZEtCwBHFpApTCgTAWTeobFklORS2NINpgZBV4YsvefPkVYFLc4lrIUniy/ZZOXLoEKLJXpSZM/+E/0txJVeo4NoknY7T7jnhGuNA9qjxYKHpiGobasHmwOm7fds2qgkjNhZe/lK/fn2ty8ixuvUbOMlKgQIF1ATIiDkSFFeSYmEnauqaBZNbh/btZOKkyeor1Avkh6ZDOk6znuUtpEMoEeG4tWAuq1O7tnXyGt5tfzYSHfdCosT1Fi9RTHr16gXfrpxyG7aEGfHkSBn59NOIAuyj27rEIBjAup1ph7f7XNL3e9rP283wfSMe9vSAyMw7PVBNvk+Dd/LYpMcVg3d6oJp8nxmBN5y9uWGVk+1YBxS6ic1fdD+xfHaoSciHPdC4xQjNXJrXCAtjHqFQJH9koVmIphZb46Mn9c0iP8wjw1D6Z557Xt5+4zUlBJpxG2NQmDqnFN8wjY/SDm+bmFjEQ42HmKtlHluLDXjDwsKV2CmRwMKo5bK1RZpqAX5BdokDqVBCBTKjzveOC1asntV23959epY5dx5/YgTMThU1G7P2ZXeUzCf7vtaXK/lKsjt9TqhsspKBUtN1//2DtOpZPBsWHvadTDu8k5xLup1M+3m7aYDSbeamY4OAQcAgYBBIDgH+bcfL/U+8Os7yZzsEXMJi7W3FPD3t27bGFh4jYY4JRYg38tWgIgXmkSNHtAmdf+EvrYVRZSRClmCPVeFPP6IxY16Vfn37SHtoMpgFm/4n/IyMQh36FlF7xHlk+pIYJ7JKbx8vNX39h6gwyx8K/k8O05S9rCJFCiP1NveXiydBShxQwXXlPOZ5as42b9mCPDtt5cUXRsngoUNl7ry/pUqVKsAMW3CgIsPulcQ6eiD21NItWLBQhg1/DJmjC2K7Fz/cE8eY1q6taIMs3SCtx48f1ySgX3z+qVRGJmua3Lyw3YlNwuzbkQNElfeUz4kSXRwXKVpELzMVBM/b67TbmE/jBG2eAYOAQcAgkPEIOOQ2P/iyfrHDxwdmFJq67O/xE4UGCELOG4n9GmHHeJZDhw9JjRrVEQLvoUKQWbApNCtCK5ED5yKgITpy5Kg6N1ProckQETb//gcfSUP00alTR61D8w3Ld99N0eiyypUrOcw5ejqTv9Gsx20wLFMRsSCiNAP27n27DH/0cdm1cxfMhoGaCZukgVtlsJQuVVo/bQrlgQSRijvJpzIgfSOX0IgzhshP/vY7ue+eu7EJbwu5f+AgeQ4JKe9C4kmG1lM7VDYwUOuSlLAvvnhcGGTr2WeeUqJJZ/akNDy6HQzMVvT/yQ3SZPdhkx99TjBj9sl1eHt5q+aPJjHY+bANyBp5aPBgKQhTHp2vxUGudJHmTREwGiDzIBgEDAIGgUyAAAWrFspbx891ameoqaApKlHBuWgQmBo1asijiDga++rrGvZcFLvJL12yVN59732NeKIwjoYz7eLFS5Ad+Q6Z8t13wugmOth+jv3PxowdK0+OGCHr12+AxidSo5SWr1gpDeAbMwiZpXUvKVuFlGgSmesEI7O4ie2+/ft0YnQKpk8QHYm7dukqlSp+Jm+89Tb2OysrJHabsHXIoPsfANn7RnPmMIkkQ9lZmN+Hm/eSiOAW4J7oaXAh/AfsDyPZ4o7t2zUPj4e3j2Yef/6FF+WHH3+EL1Ax3YOuMnL0REGTZheSE94z5u6h4/q1Fvr4RCGU3tUHiATYF1Fnq1etQcTbV/D/6YmM5k10a4x//p4vk779VqZhLtT60e/IfqaudczsUM8QoOxwl80aDQIGgUyNgEO34Kpo0Pk6hRbJkf2T37EStqFWgNqc5597VsOf333/AyRArCkzZsyUH6ZOkW4Q+jTpkFxR48PCUG/u88WQ6ZUrV8nDDw+V8+fPwaQTq9m1aSKi3xC30GAby7coCQKmvWWON2pQmAcoGBuC0gy1b/9+GTrkIWS7/kcikAG7efNmusnrDOTz+XrCRHn9zTelbp06cuzYMfnrzz+kM7RfJJt/TZ+hWZ2JyW+//w4/qlBp3KiREg/V0jjuAckQ8yt16dIFkWVVcW/i1P/n++++lbvvuVfGj/tCWrdupfeHGjzVyjigYlsSGttR24mg9u12k50XqT1yfok/QHVqf9Zv3CiTv/kGGp8HpRRMnrxv03//TQIDA5X8Op+j+JbmCAjkCA8NIeKmGAQMAgYBg0AGIsDEfDR1MK/Pq6+9rtqZqVO+l549eqgApZ9IUoJMhT98diggqZVgxFPpMqWkUMHCIDXcLy1Oo8CoBQiBDwlz01CTQB8WkgYVuWxMAesmDZIyzWQgRFceGvOPi0UUGHCyyR59aahxobM4/am8YCai5uQktDvRWH+xYkXV14bYkJDQeZyYkLAQtxhkzKZpKSncXSdDnGgyo98UHcoLYfNexRjtaeJKz0J/rfMY8zzuO8lQ/gL54VtUCENeVi0fTYKmJI2A0QAljYs5axAwCBgEbhwCJB8o1NQkLjyZ5AWtSuFsaxMCYdopV768xECgc5sEXqMw53UKSgpGHlO487tNcPQz+SESTykznsH86S/jjfxHcbRZ4Tu3C/HzxzqhheEaafYjJsWQ5ZqfJIE0mfGYePCT9fgigeE5korkis0Z2Y7Ei0SLW26wX+Kc3uSH8+JYJLWFChbUafLeOvfLw703JXkEDAFKHhtzxSBgEDAI3BgEXMiH5eRqMSIlJpgB5CvkOZyhLSNZojlRALNGBEgPSRR9YRKaXSxHWQpHCmXWT1KwoxsNxyd70D4TDZWpT1DjAyWQVYgZiI+o/w7xISGyCIG9VxZxsM8RaxsT1qY2iMXCVg/d3lBfYbL6tjFVkgVtU/Lt3LpJ5VeOQxJELRYLfZaUeFnTSmXvWbu5IUBZ+/6a1RkEDAI3CwKI0qHM4rtNfKhRoICjLE6O/MQvj8KcUU/sxRLe8ddwFv24CmXXY9d62tx6S3D65vjCNbrM1PXY5bRNelxO6aErJsk0dWniNhauuGPsUjldD5NbT7oOmgU6N/qxLHATzRIMAgaBmx8B0BwnbaEmgyV37lyqobAJ0bWtMjH5ubZ2ppZBIHshYAhQ9rrfZrUGAYNAJkQgeW1D8lcy4TLMlAwCNxUChgDdVLfLTNYgYBDIigjYOpuk6E68XigrrtysySCQcQgYApRx2JuRDQIGAYNAAgRsIhR/kmeu7v0TX98cGQQMAteKgCFA14qUqWcQMAgYBNIRgcTkh4NZOqGkr6XjZEzXBoFsgIAhQNngJpslGgQMApkdARAdch2nDcxx4AjFzuyzN/MzCNyMCBgCdDPeNTNng4BBIIshgBw/3KzSqeqxDrjnlJMTZbEVm+UYBDIaAUOAMvoOmPENAgYBg4CD5biTnVhspXCtIfDOtkZrlOLnyc4hdK2Yp3ig1DR0kuTUdGLa8teGIUDmOcjECJh/6Zn45pippSECOfiog8Hwg/zFTmwXGhqm2Yx1P6er/HOIQZZnZjJmNWZ8trMap+E0s3RXJD3cEJbYZcqCG8t7ygzVmZqgZUrwkpoUtj9J6rQ5ZxDIHAg4f9NmjumYWRgE0gkBkpakFDcWocEvVTKk5P45UDCicS5/fyVOly5huwtszMn9wLg9gk2m0mnqWaJbEgru++WPzWjBMrAJahK7tWfgSvl8cDNXXy9fnYW9n5tr5uoMnN5NO7QhQDftrTMTNwgYBLIWAtzrK2FxCjhKwKQKz6ORj7e37NmzV5YuWyoXgoOlbJky0rJFS8mfP59uAOoBX6Lkukiq2+xwTrUoZJ2we3Hj04sXL8qpfftk06bN4u/nJ+3btVVSFAuNkPM+ZAAwnCfnR9Ize85cOXPmjPTudbsEBAQYgpvK+2FMYKkE0DQ3CBgEDAJphgAZkDsLwqnE1MgakUkSuV/Y0mXLpXLVapIvX37p0b27rFmzVoY/+picOHFCfHx8hELclHgESCpIarxAHPnJV2RkpCxcuEj69R8gGzZtUmKEC/GN0vroWrt2ECDOb8yYsfLQkKESHh5+1Z3q03q6WbE/Q4Cy4l01azIIGARuLgQcxEcVEkmqanDS7TyFuDcE+LFjx6RN23Yy5pWX5bZbu0n58hXk0eGPyN8LFsn3U6aoTwvNO9nNJ4g7wdOfh+TvUhx8o0h68FQQBw8PRNfhy/r16+Xo0aN6rlixYtL9tlv1ufHIwes5tH1cbNL+VCSf7Itj8MX+XQu/qwnT8WnX0TYwU7JfzpH1eM3ui58szvO4HgvfJH+YOCdNmiArli+VAgUKqPaHmiEWu63dD+fmWtyvu17LzsfGBJad775Zu0HAIJD5EIBgpk8PS0BAbocPD75TersVCum169bp2Q7t20Mb5CnhYaFSpEgReXHUM/LUyKfljl69pXyFchIWFu7WOut+vQwSQe0OX2Q6l0Ew6BNF3x5i5uOXWzauXytvvPmW/O9/n4ivf265FButpqbKlSspaWI9X5AOsAslGFFRUU7ASE543S+Xn+TICRKCOtHRUTBTWeYybmZLzZwHfbFiYvSYvlj0ySIZRVNtz/okJySy/MyJC7z31PawPV8ci+1ImOrUri050Gd0ZISaxDgHPhYkRzlIhjDuJaw1OtoRPYjHhmTI19dXPNAXOgOZom9YjI7vXFA2PTAEKJveeLNsg4BBIJMhwDxAdnH8gPeEsKOQuwRNQcICx2gI1IiICJk372/xz5tHChYskEATUaVKFW2yfccOEKDylsCDAMRBwq6y4Ddf+PDQ/Ldjx07FqHDhwlIBGOTNm1cx2rRxvTz2xJMgEdGyDlqg48eOS40a1RWjXbv+k9xwhqbPzbo1a+Bzc1aKFS8mlSpWdNyLS+IJMhGH6zQ1njhxUgoVKoj+K0iB/PmV8Pj6+snJU6fkxPETUqZMaTl2/LhcOH9BKlWqICdOnlKNDglVkaJFdKx9+/aLn5+vEh2SlapVq8rJkyflwMGDSl4Cy5aVQljDiRPH5fDhI1KmdGn4d+VX0kTiZK8hT54APAcFpXTpMjB9gvDgXnt5esnu3Xtk79694osxypcrJ6VKldSItyx4669rScYEdl1wmcoGAYOAQSAdECAvcTNbcBR3U4ZzZOUxOVRI79m7T5o1bKhaAJsokRwVgiBkCYZTtGoXEEXkTqOc/WWhAw9PD1m4aJEMHvKwnDp9WuJgbnpl7Fjp06+/7Ny5UzUwx0B4wsPCJE+efLJ3z17ZB+dnEh6WaiBC+w8ckPc++FCeff4F6dy1m9SpW1+WLF2qGiIPaHBCgOlbb78jc+bOldCLIdL8lpbqc3XkyBElQN999720bd9BXn/jTZk4abLUqttQWrZuIztBrrZt3SYNGjWWO/sNkIjwCJ3PrNmzpV6DRtBIvaPEhBFfTII5fvzX8sn/PlWfn19+mSZNmrWUwQ8N1XV5w7eLJq/vp0yV77+fArNYftn1326pWbuunD9/TrVHXM9PP/8sH370sYTBb2jSpG8kqHxFWbZshXiDxPG5yM7lxmmA+C8vpT88UtOWdzc17TOqbWqfSjPv1CJ4fe0N3teHV2prZyTe6TB24j+NHCT5wqskOaGhoXLs6DGpWbOGagpo+rFKDhAiPz08DRJATZG3lzdMQCk0faTDmh0TTbMPkj9fXx/Ztm27tO/QSWZM/1O63dod/V+SunXqyC0t28jAQQ/o+S6dO8nqVavks3FfyaQJX0nx4sVBJi7JhQvBUr1KVfn8iy9k1owZMurZZ0CO9ku7jp1AMqZK0yZNoKnxk2++/Vb9iEaPfkXnX6NmTaldp55qbkY8/pjUr19PmjZuIpMmT5bbe/aQDWtXyqpVq6UitES1a9WS7t1vg0kuRkqUKC4Fodl55JFhMn3GTClXLkhq1aqpGj8S2Pr16kplaPLKQAN0/sIF6dals8z/5x9odSC6c3jIKWiZhgx9WJYsXiTNW7SSxo0bK5kLB7HyQMj8on/nyZdffoU1/yF58xeUjh3ay38gSUMeHiZzZ8+EJqiUPhu2L1Gqb8ZN8Jy4rvHGaYAS/wt3nceVj1PTlj2npn1Gtb0yIle/auZ9dYzSsobBOy3RvHpfGYl3Ooxt053EXfOMfTUxLNRuRDj8RSjE7Jq0cuV0OMhGwTeFv/Th15vyknhi195Xatpe+yiaJ4eZs3/77XcpGxgo9erWlajIcAlDeHvJEiXl3bffVFPR+g0bVXNC7QllQxT8a6KjouEeQ78dT1n47xJ1KO/QoR20Mx4SFBQIEtNTdv63S01gNE2NfPpZJUK//zZNfpw6RdatXa8zfef9D1VbUwMkp1DhQvBByiWtWrVUDdKggfep2Yrh63f06oWQ9jkw0e2QWIyfP18+6dSxo3z08cfQEu0Sb5jQDhw4iGi0zVhHHfXdqQazWKVKFUFg/sO840Ft1qyZfPbZF7J71w7x9PaR/v37wdSXR2KiIuX33/+UwKCySpp+mPK9zEEYvX8uf9mFMfbvP6A+SvQxSrMSP63r7zI1ba9/NG2Rmn8SKRzSNDMIGAQMAgaBpBBILIosI1hi2WD5BVGYli5dEpqLC+o4S38hFgq1qEjLaTd//gLqZEsNR6p+DCY14Uxyjuvl2unc+9+e3VK1SmUlM3T65Xnmxy4LLQrLaWhNSH7oYHz2wnm9bhMK4n85J8gi2CIdj+mkzL6ZRykiPAqkMqf6FrGfIkWKqr9NfpiegsoFyvJlS2TR/Lkwq+WRcGjm6IzcsAGcljF+bHQk+qOTdKxq7ho0qM8uZN7f/+hY9BdaunyZnlu/fgM+L8O5fa00atBAHdqpwaMzdTReLJrXKS5Grw0bOkR+/Oknad66rfz26zShv1DJkiXl3LmzshHh/PQnog8UCVnhIoXlzddfkxWYa4WKFXROaab90ZndXG83zgR2c+FiZmsQMAgYBG4oAhS+VkyPRWCswUlo6LuTmBpRSNJJumTJUtAK7FICRLMYCyOJQuCbwkLtAqOMGFlk968XstAbeR+JhkX8IuXwkaNIbBiKvEj54HAco9FVdBpmsSPsSAYvX2LkFNCF9gc6M73ONzUloj/2qd9RhxFWxC8cZISFEVm169bT6DFL22bdQRKfMGxhwvxL4Yi8Y1PeF5Iq+vbQ+Zlk7PnnR8mrr70mjwwbKv/M/0f69e0Ls1ljmT59urRp3UpWr14jDw0e7PTT0T50ZKs/kjhGlPVCUsRfYe586eWx0vuOPjIQmqZ33npTCdOyZcvkwfsHSctWbdASa9R1cEIemHeM45khbo6Os9lH/B3PZgs3yzUIGAQMApkKAQpk/EehS8LCQoGeVKFcpgCkP0r7dm2Qz2YDCM9FFbSqDUE/B2FCYQkKCtI+1QzGhlmyWOSHhKAUIqS2bd0qZ8+eVRMPCQ+XzTB4lnyIBGM97vtVqlhhdTb28vYCdhYZ8vTAMTQ9ZAXEkneAxIV1+D0gd4D2Q1+cyPBQJTQRcDBmmDrzCq1du1Z84ItE7ZE32nBsEiz73tIPi2HrrWEaY/nhx59k0eLFclffPtKpUyf57fc/5OsJE9UvqXz5cuqjQ/Kj99Vx/6jN8/T2lSPIYXQc0W49evSQ36f9LG9AuzN58jfy519/6Rh9+twJP6Rv5MQxOGeDeIVBM0Ut1LEjh2X27Dn6vHCB7Ds7FkOAsuNdN2s2CBgEMhkC1C0wBwwEG4QzQ5lZmPGX2ghbE+E+aZovGsJMwrJly1bJCZ+V3Llz4Zd9lG6bcFv3W6VixQpKltzbZrXvJAXUutDBmWUBsjqTJDKXErUva0BMWGrBP0fJIPA+fOig4stoLHUUB/HMA/xICKw8Ph4aLUUNjydeJCIMa28Ov5uRTz8DJ+PF2hfv2fbtO+Tjjz+R3DBL0oeHpCeWRAWmNisHjw4PPVNOkJAYqV6tmgzo319GPPkUyFArNVNVqVwJztR15LXX35BbmjdXx3YmcuR9Jim2/bqUoKG7c+fOyQw4T18MCZFKcN5+GOawdu3bach77ty5pSGiAxcvWSLTfv1NglGHfZw5e0bGfz1BLoIMMeSe/Sf3fFkzzrrvhgBl3XtrVmYQMAjcNAg4fFViL6lQKlasqM48JCQ4ngC5/Uqn0KI5pSLy03z+2adyz733yQZqgkIuyu9//qV+Ic8+/bTkgUBmvazu60HlCLUbzZo2UU3Is8+NQmTVDGR6Pi7/gqh8Pm68TPvlZ2jEApUYVYRDMcsv036ViYjWYs6gffv3y25ESU2fOUtJBCO1du/eLfNhoiKB2gySGYBcO6NHv6htuyBE/tlRz8vY116XLrf1UHMUnZW3bd2ie4qtX79ONm/erDmASJ5YSF6i4HTNzNPNmzfTc23btFZTXdGiRaX37T2lxS0tNC8R/YZIvOj/cwCh+Rs20D9ItM+4mEjc2zzy2RfjZcGChRKC0PejyArOqMBb0N4b5ObWrl3ghN1aHn3scRk48H559733sdXHPepDxOi0SDwXTL6YXUuO8NCQ7Kn7yq53/KZaNx/N7PuP86a6VWayaYIANRPciHPBwoXSvmNneeqpEfLCqFGSC4n5GKnEHDfuhcSGBGfuvHnCpIdF4ZzLxH5dunSSevXqKSlwNZ+4t89K3y3NDbJhh0fKvzArrVixEo7ChTUFQD2ElNP5mGSC2p3jSFL4y7RpSnp6Yv+0oKBAzaodEhyC3EGXEKJeQsPnadI6fea0an9ocmS0Fn2LVq5cJWth8tqNqCxq7Lp17Yow9EZy+vQZ7Cm2UDelZeoBansYFk9nZJJWavTYP+/p5i1bZCtIVe/evVRj5IX6NGceRALE3nf0Uh8iam24we2SxUvk3PnzSl7ooN0BIe00pc2dO0/Pl8R8DyMPUVWEzbcBoWIeIYbLM+x9+YoVmh6AWqnWrVtLB2iJiAGx4LYgbtw6Kz0SV1yLIUBXhMdcNAgYBAwCNw4BmmxolqBp41VoFT797HPZsG6N1KnXANsfhCuZcTdXcD8pEiOaf9iOvkBFEPXj7+cPh11r+wuagODpceMWkoEjkUQy+7G3j7cSiHDglh+bxJIoRgAPCntiSLOVbgkB/x5/Ekw6ifM86uFAyQE1SrYpjEti3ySiOdCG94nEk2SE5iZqeGhKUxIG0kJiwd9v3IeMRCOpwrp8aVSXo4I6aeMczV28xp+A9B+iwzvnTFMp0x/Ql4j3nvPgc8N8TyRVzHZNh3fOlS2ZlZrHYUj8yGfCC/5JUXDk5tqICcfIrsUQoOx65826DQIGgUyJAIUVt0XYBp+S3nf0xbYHJeV/n3yMHDCVVPgxr4+7blSFHU7S+ZZCkoKZQpdC2Z0wZcpFp/GkiAcFO7UnFPIa0k5fGsXDIoOs40p2WE/9sHBecnCrEX63yEcciAaPcoJIEk+21fbAmu1IJkhCiLdl6uJGqBa5se9BIqLhuIl2f/Z9sj/tSDRCY5+z1+XsE3MiCeJ3H6yVc7DMWpgnSBqHYFQar5PI8Trnyv4sR2/2nn2LIUDZ996blRsEDAKZEAFbUFJ4cw+nCRMnyZ49ezRqqGmzplILWYchv+AwrQoGlxVgV3EKXRWIEHAQetm9uBMGdzxIMkgSbKxs7N3ruX4nSVJmhJOsT6KjW1fwprCgQ2psLPJkneK7TWLiz1jt3a/Zc3CtzzliMNem7JA8TcfiBa5ViU0S95198rngpOy1Juwse34zBCh73nezaoOAQSCTIqBaCPhqsNCsxeik3SBAzN7LBHcN6tdXQWcLtMTLcBe9iWuYMwYBgwD4oHGCNo+BQcAgYBDIfAjor3aHGccL2iCWOJi17GzAmW/GZkYGgZsLAUOAbq77ZWZrEDAIZDME6ERLQwejelzNItkMBrNcg0CaI2C2wkhzSE2HBgGDgEEg7RCwk96ptwc0QoYEpR22pqfsjYAhQNn7/pvVGwQMAjcNAvAOcvjZ3jRTNhM1CGRiBEyYQCa+OWZqBgGDgEHAIGAQMAikDwKGAKUPrqZXg4BBwCBgEDAIGAQyMQKGAGXim2OmZhAwCBgEDAIGAYNA+iBgCFD64Gp6NQgYBAwCBgGDgEEgEyPgRoDcMk1m4oknnJqZd0I80vubwTu9EU7Yv8E7IR7p/c3gnd4IJ+zf4J0Qj/T+ZvC2EXYjQDdriIGZt31Db8ynwfvG4GyPYvC2kbgxnwbvG4OzPYrB20bixnwavG2c3QiQfdp8GgQMAgYBg4BBwCBgEMi6CBgClHXvrVmZQcAgYBAwCBgEDALJIGAIUDLAmNMGAYOAQcAgYBAwCGRdBAwByrr31qzMIGAQMAgYBAwCBoFkEDAEKBlgzGmDgEHAIGAQMAgYBLIuAoYAZd17a1ZmEDAIGAQMAgYBg0AyCBgClAww5rRBwCBgEDAIGAQMAlkXAUOAsu69NSszCBgEDAIGAYOAQSAZBAwBSgaYG3/6Zk1OdeORMiMaBAwCBgGDgEEgtQh4prYD0z4hAqQx15Jo/NKlS8JXjhwO4oNGl/FfDvx3GadyXMYJXMuZM6fWu4zv8XUvS04PD/0eFxdnDegYOKdHzvh6CadmvhkEDAIGAYOAQcAg4EAgixMgUhEQCiUWXDFYAokGCYYDgHj24DyR4gMSGhIVkhYnWUmiN9bx8fERTy9PiYsFgUHRNmhnTRAzRh32Fxd3Sby8vLSORZhY10Oio6MlNjZWcuXKpXVZ3wOkKCYmRl9XGl87M28GAYOAQcAgYBDIxgjkCA8NIUvIkoWkgK/kCkmHXYfHqSnsx9PTUzw8LRJy+VLy45KcXLx4UcIjIiSXvz85GYhQrJIaXvNAP154cU4kNWFh4fjMqUSIGp/IyEjJkyeP+Pn5yenTZ3RMH28fnI8QX19fJUWsZ0hQau6oaWsQMAgYBAwCWRmBLKsBIu/x8vRSLYsSAYeJSG8mSMZlaFdIJEgYaDaKjIi8Ilm62kNAshIBQhMVFSX+IDUkQ8mRL5KaU6dPy99/z5cDBw5ILMhK/nz5pHjxYnocejFUNmzYKBUrVpABA/rL8WPH5Nff/gAB8hRvaI4qVqgg3W+7VcfZ9d8uWfTvYtm3d6+UKFlShjw0WMkRtUOGAF3trpnrBgGDgEHAIJBdEciEBIhaGxiC8EYBnlIh7unlIYePHJGtW7ZamhMQHnZM8kGiUqRIEalfv54sW75cTp86LW3btRU/kCH1qcHTwHGpmSFRutI8OE+2oSlq9erVMmHiZHn55ZekbJkySoaSmj/JSbmgIOnQoZ3UqFlHn70F/8yX2rVqSnBwMAeXMmj/+++/q5andZvWSpgG3H2vFCxYVFYsXyR58+XVdnVq15Y+dw2Qju3bygODBkmxYkXVBJZajZZ2bt4MAgYBg4BBwCCQRRHIVASIZIIv+rh4eORw+MDEWf4xIAXXUtBcvX48PTzlwP790uP2XlK9eg2QIG8JDQ2V0qVLysKFC2XUqOeUAM2ZM1feePMtOXn8qJqjlACR1DiIDwkTC0kLSYVNaDhP+uTkzJlDtT28dubsOfn2u+/kueeecdZLas5sSy0RP1lefnm0NGvaRHxg0qJpy9PbV4kP/Xz8cc7Ty1c6duggT454Qj748CM1lfn6+Gr7P/+aLnfe0VteHfOKFC5aVKIiwtVv6BrhSmp65pxBwCBgEDAIGASyPAKZhgCRDNDZl68YCP4YEA5vb28lAjRVWQ7A10KCLFJhEQCr/gfvvSNVq1aR8PAI9aUhuSGxYBn+yDB5aPBg1eCQ5KgfD0gPiQ5JDcdmoYbHPtYT6NomMeHh4fBM9pT8+fPpJQ+0S7ZgeiRNJDdr16zTamVKl9b1hVy44HBiPqN9d+zQXscNCw2WvHnzgiQ1VQI0Y8ZMqVqlivw1fbo88OBgmL92S6FCBSQ0JDgBSUt2DuaCQcAgYBAwCBgEsjUC8NvN8PWDEEDvo2Rn67ZtMmvmLDX3hISESBFoNNq0biXNmzWzzFiIiLqaZoOUh1FernFegUGBUrpskFyOi5EcDnISi2gpkq4dO3fKBRCPtm3bSt6APLJ+4wZZtWqVtGzRUlasXCkrVqyQ4iWKS6eOHaVRw4ZqEuMkqGHaunWrzMB8N2/ZIjWqVZOL0DBRC0PFjkO5w4kkLJhbjhwWsVqOvlluuaW5+OUKEO+YSJk9Z576JbUH+fHx8dZ+GNnl5ecpNWvWkIqVKsm/8PkpWrSIfPy/z2TL5o0SVLasOlTb2qqEA97M30hm9WbezIswczcIGAQMAgaBTIcAlBwZPSeSHxYK7127dskLL42WknDmbQbSQ41L5y7dZN68vx0aGfjlJMssXFZiMSCcsPo+e/asXAw+L6dOnYK/zyk5Awdk+gFxzPn/LJAXR7+iWqcccFw+cuSoPDL8Menc9TZZ8O8ikI5aMn/eAmnVuq1s375dfOAnxHabNm2W2nXryz8LFkqrli3FFxqljTgXFU1TGYW2NbbLrJyH1CwxeuurrydI8+bNhcRv7eqVMnHSN/D7+QP+QYEClZBER4Gk4T/VRMG5ulSpUjJk8IMgSXNk8NBH5ItP/yfVqlaVCOCUNWlC1lyV80EwBwYBg4BBwCCQYQhkuAbI9qmJghBv07q1hFw4JwHwg6GWJQ6aD19EPX3z7XfSGpqg3Llzq6noSmjZOgOazGyNyPOjXpTomGjVrBwGwalSpbJ88tGHEgCzUm6YtqpAq2LNA5ooR86dLz77RFq0aAGfnADp0rmjVK1eU9auWy/1GjSUC2fOykeffCK3395TPv3kY3U8pqaiXLlyIGvzlKTZ63KfKwkc57Vv3z69VKN6dQkLDdOor6k//ghn5g5SskQJdaBmdBp5FAlQNLCgf1C9unW1Xe+ePdSsR7Md+0xuPPfxzXeDgEHAIGAQMAgYBCQTmMBwFy5fhjMxTEoFChSQgwcPyazZc2T37j1wWr4o6zdsACnxcebIuZoJjDdVSRAqXnJoi3rc3l21JzHRMRqx5evrAx8gX9WykDjwZetrLmEuLA0bNYTfTR6tz4ixTp07WxFaIDonT56QqVN/kFkzpksJaGXCkNMnV+4AdaJmW7svHrsXJTPw/6HZjKV791ula7dbJRo5fIoWK6b5gXzgIH0R0WAkSpwbTWDMF3TyxAmZ9utv2u6nn3+WkSOfFEaB2fM3+hKFxrwZBAwCBgGDgEHgqghkuAaI5IeCnhqbmfCn6X1nH6lbr47c3rOn1KpVS86dPy8HDxxSjRBXQ07DNiwkE4mKw/pEUsA+WRhBVQ0anJgomL3QhhoTalQ04ovkB/3Z5MHBmUA64IiNOgyDJ5EKgPbJNr/RmZolH5yeL8fFaj+X8BkTG6Pnk31DP9zCgkkQ58DXp0xgWQkKDET1yxplVrlyJfgWAQtodZgpWucJssRcRcwv9BJMdXXq1JYfpk6Rfv0HIJptkdRAhBvXisoJhmVbkrmc+C+HmuQSXDZfDAIGAYOAQcAgkK0RyHACRHLhhyzG9P8h+RmLcO6hQx6CRiWX+OfKoyRk9eo1ToJC0kNyQDVLZJQVoeV6B3OQIDl0MNxXi4WaHzpAM/KK7ZUquBIG8gdHJ+QSWnBCiQXIA0/Z5IfXmJWZhdmblWiRaIC4MPGiFrsz65vznadJ9g4dPgzfo/nyyLBh6mAdiSgyZo4uU7oUyI6f0AGc/kaBgYEwrxXTef8PDs+MXnvg/kHqy9S4cWP4Lr0kffv2keKoQ6duTMYxFrNSe8Cx3F/JWXRUNC10phgEDAIGAYOAQcAg4EAgCRXKjcXGJikXkf2YpVWrloikKg4Tlb9EhofKCZh9/DRnjhU+HgFTEaOgGKHlSkrsWav/s5MI2Gf5CVpkkx77E2fJCxiVFc8P4o/IiuyqdGy2eU2ePFYSwq3btoNgXJJ8+fIrGTp3/hwHUlLkrKxn4t9IwPYiazNLAyRizAc/JBYvby8lP5zjzFmzZfbsuQirzy85QLa+nzJFtu3YJq+/Okaj4QoXLiwD+t2lTtIbkTGaofvx5Ic4eUBzdkHmzp2nDtY5PS2tlw5k3gwCBgGDgEHAIGAQyHgfIAp8vpjBuE3bNvLaa2/IkzAxkcPMRpLCjz/+BBFYrVGHSQdhPgq5KG3atYdJq7qsWr5UhX+iHEEO1mJndbb8eixfH73n6NtRBVFbUXLu3AWdA+mQ3Uavox7pEIlPcHAICAc1TpekBMLi33vvXXl42COqaQkKDJKly5bLK2PGaPdsYWuhHCe0E2p/TiMC7bff/9TT7PfChWDV8NCZ+QgyV8/CmseMGSsrli1Rh+xJEyfJg4OHyPp1a6QYtsoICb4IZ/BcCIevqH18+vkXahYrivB7NfmhU4boHzt6DJFs3WT0Sy/qi9oqrkm1Ws5JmQODgEHAIGAQMAhkTwRunAmM0p5swq1QI8IIMJp63nztNXn9jTelCwQ3yycffyTvg2gchTBX0xUkOBMlPvbocGwJUdApzBN0qyogi1QxeeHtiJbiRqFO7Q87JhHQz8tSongJadyogfYPO5RGmvXpc6fuIWaRM2hUoCGqX68ewvNLaWQaEzT2g+mJZqfBDw1lT2q6++Lzz2Tt2nVqDtOTjjf2Qy0NQ9+n/jAV8/GWYQ8PRb6h1bJjxw41i4WFhcl5aG02b94iH77/HkxjJeSHn35GBNz3SNb4iNYtAs0PcaL2i22HwFRIP6VPP/1cI9Lq1aurZjISPiZp7H7bbbpvmOUzlQAl1+llruNknpPMNckkZmPmnQQo6XgqI/FOzdipaZuOcF61azPvq0KUphUM3mkKZ3KdZY7d4C3VhJIbmsLOnjurTsckOdRqUDviqrlQMgN5bpvPklucpYm5eq2E7fHkkUS58QXX55Hjc7d2nuOmppxbkUKFtQ0Jietc7b45i1g4StPnSdvik1quS9w1Hv+zjYa9OxrQ3+cS9hhT8xbORcGPh349/E7CSJ8j+xq1VnyRmLkWxYkoua3FtY45NggYBAwCBgGDQHZEIHMQIAfyJDsU6nzxmGSCxdb+OKrhgwTFIg7x55I+IrGwiEDS15M8S8JAdpOgJDxp9+kN3x3yt/i5crwEDZ1fOBe+uDblJPFvWsdpNkN7XrLnzu5sDDgujzmIHeavPkxowH5dC/tIZiqu1cyxQcAgYBAwCBgEsh0CmYoAEX0KeJtcWIKeQtw90R/rWAThaneMfZFIJFeUILjVSaqNNafE2hSbdOhcHfO/4nicuLMkpCicpq5LCZ6FhbMqDux+bXx4zdlGl5hwnXY9u51rX+bYIGAQMAgYBAwC2RmBTEeAsvPNMGs3CBgEDAIGAYOAQeDGIJDhYfA3ZplmFIOAQcAgYBAwCBgEDALxCBgCFI+FOTIIGAQMAgYBg4BBIJsgYAhQNrnRSS0zocdQfI0k3IniL97QI1d/qfQf2H3djNzjueRwSn5G1ryvte3195/8yOaKQcAgYBAwCFwbAjcuD9C1zScL1KI4u7GC+1pAo0M0Q+65jQePmcGakXQq4jFdRv57ItEkpX0sQupZdBWoywSObENn6hvrUJ221ICpAux16OLQPdevDuw41tQDjNBzOM2zLou9bjvaTk8m8ebqEM+2xFHxRd/aF/rlXm8cO+4SMGb3jiVyDmzPT3v8JIYwpwwCBgGDgEEgjRDIPE7QEBgUQPzjb0dUpdEaHYJGY8msLiF4HDLOukZJ5DyR8lEpwLinF/P5JCfEKFOvPpSLZEz5dJwtiSsFLzdVjUQOIQplH18rOWS80EVCSmS6ZtJE7kfGTWCJGLNvMw8TUxOEc88yLCDN749zptd3QEJzrc8L18k95DyRSFNvANYZGxOrSS65iS378vXx1XvHYxYSP9YlFkxzwBfXr+fdpsqcTczD5IUXcSJe3hiP523MOFfiz8J7wTmx5MR5jumBPE9hYeG6puSeH21g3gwCBgGDgEEg1QhkCgJkCwhmeaZQoKBJCwHAfvlKrlCQU+CzSmqFOsexcxhx81WLzCUe2Sn0mMsniXK160k0ueIp9ufj4w0SE4es0zulVKmSwgzZp06dAgny1aSM3CQ2GnMuWLCA4nDmzBlLmON+8F5ERERgK5BgbLlRRwU415oW9+eKE7/CRet+5dDEmVwfCdoVC+6vNzAIDQ2VI0ePSiiSbXLrlTx58mArkgvYyy0fMMktZ86c1r5ITri+KODCbN/8nhd7tvn5+SqOUVFRCZ4XzsEPdUKRzXvXf/9J9WrVFLfz585jHzs/JVXckJZaN2JM/M6cPattbBzPYx4cqxraRpAkZTDGV8TTXDQIGAQMAlkAgUxgArM0CvwFTCHLX9F+ftBAKG9JnrxcC/YkJCRVkGWOX/2OVjhxGSaIyMgo1XZQYxMZEYnEgkxQ6LBJXMsALnVIoPjLn31yry6O7U6+KOxyYYsKkiMKUVv42d1wzRS2HugrEtcpWN3r2HWv5ZPr8VYSEys/YluNixcvyoMP3K+EZsmSpbJi1SoV+HlBBOphq49OnTqqpojbcSxeukS2YUf6tq3bYEuNW7F7/QJsTHtSOnbsoHO/lvHTqw43piWGwSBqXl7e2PaDz0vyz4qnl6fs2LlTxo37SrVAFStWkNDlobJn915tO+KJx5UEccuVBQsXyqHDh5XolSldWooUKSLBISESAzLE7VAaNWqEunl1/zbeGyaj9IHm6Nz58/LluHFSo3oNrcdnee78v2UDNqvls8H72uKWW6RD+3YSA8LGrUyWL18uO3f9J3f07iWtW7eSn3+ZptebN2+Ge2RpitILQ9OvQcAgYBDI7gh4vPD8qFcyEgT+KqY5JjgkWF57/U0lDpUrV4bpIFaFXMo0M9DGYEPQw4ePyKJF/8qePXtV+7ETQnA3hN7GDRvwC/yclCpZUpavWKHCKLBsWSVflumHfIlEyPKbIT7JEREKXpI3kjYKtdfeeEOaNG4sBQoUUHKh7SCbSbKoSZk7728leiVLlnASHPbBdZL4bNmyRVatWSvFsfEp9/OytRusg/+TnAevJZyfVZcYxMEkN2nyt7Jr1y55/LHhKoi5HpKAEGzw+vIrY6R27Voy8L57VTNETQbNOHf1GyB39++vr9JlSkulSpVk3Pjxuo5qVas6CQD7SrZgvjSjWXN3n6OjlbUo/eKsRxKaDA+lRoqmrBCQkldffV37r1qlstanj5MrDuyPRJRkZMjQh+UCPseOGS3NmjaV8uXKyb///qsm0G7dumL8y0p2YmAWe+zxJxS3F0aNkiZNGqNukJwPviB97+on4RHhUrtWLdUI8b57o38Sy9GvjNU+uY8cNWp8HjjGiRMnsMHv69K+XVu5847eeMZ8JE9AbtzXGLn/gcHY522Y9OzZXUqXKi0VKpSXV7EZcKmSpSQwMDD++UkWYHPBIGAQMAgYBFKKQIZrgCggudkoiRA39axZo4ZFDEAYPHmezqIo10yEIPTo0OsBwXTg4EHpfWcfqQ3TjS+EJk0UxYsXl/l//y0vvPA8NkFtKP9As/Ha62/IyRPHlABQqLHwk8KUfhmYogojzsEWsJz3JcyZ5yhk+Xn+wnn5CZqWl0e/5KynnaGuLYynTP1Bjh07Jn/98ZsEBARov+QA3OcrFP4fH378iYSFhknrVi2d86AWy3ZEjgMxpLS38UBTLdT20P/Inp89rznYXf6R4cPl0IH9kjd/AbkIQc5r+QoUkvYd2uuGqRs2blKzSzFgEw4z0bfffSdvv/mmDB8+TPyhzYrAvIoWLyqPDn9EqtesLTu3b1UCFR4ekaQ/DCfkJDPEx+FETUy5Vjpi24XzV9KJC1wjX0r6cMFeI+tSG8bC68Sb/jufff65VKtahawQneCVROHYe/fulb//ni8///iDBAZVkOjIcClVJlD69+8n69Zt0H3nwqC9o3ZOnZTRz8PYaJZEzwNbneTPn0+CgoIwicty/4ODpUD+/PLsM0/rPKiJmjRpMjayPSf33nO34s+5eoB8Fi5aXG4FuXpixNNy/Phx1Zzx3JlTJ5SUfvnF5zJo4H3qKxQG3MsElpPHH39U+vS/W1YuWyxFoX1KK3NwEtCYUwYBg4BBIFsjEC+JMggGmpwoLOkI2q59WzVFePv6q6Aj+eEvaRIA1rmWYslB9Ap5aIvE9955S3795Sf549dfZNwXn8nuXTtUwLG/R4Y9rOSAws929qWGgdoX+sqQVPA/XrfIhUVm2JZ1aLKjkJKcnpIvbz6eVk2OHthvmAyFP/u75+7+avrYvWcP/G8snyeuPQeIwpHDR+T776fI3XcPUP+US1h/QO7cun7OjeP7ow+OqQQD86LWiPOlqStXLn+dEzHjOQrdx554UqZO+U5Kly2t5IfkgSUi7KIUhJbqtlu7yUrsLr8GWic67I776mvZsm2r3H//QO0jNOSijhUOUkbN3HvvviMffPSx+gzZpMxepv1JvHiN+HDne1uLxe8kova95Ho4T5qHcmOdSmywTn639ljDPcdNpJmJ33P551Ic2Z5r7dSpk/hirVqSezwwRhiIGstWrCvkwjklU1x/CRC+evXqqEmKzxhNXatWr9a6VaBV4vMXBu0ON+jlXNtCi9O9e3doaV4HqdonPn7+sn37Dhn5zLPy5IgndC62AzSJalREmBQqXEjefus1mTBxkvoHxURFyFvvvIsxLkv/fnfh/oH4YgyuMzw0RBo2aCA9u98q3333vc7DvBkEDAIGAYNA+iCQ4RogLotERX81Q5hzd/V5c2bLn3/9pb+YW0ET0rVLF0tbAqFCwnTFogyI0jC+XpnSZaRk6bJyOQ7O1RiDhQ6nkMQwOW3Fr/fz6ttCR9e169aBoKyQNvDJWLpsOV7LpGSJEtK1axdp2qQJ5mlpWSjgN23arPPcuHmT1ILmKiwsApqSEhBt7DqhRKYA5Rrr1K6j4y9D3w3gU8JCTQe1SRybpVatmuBT3nIImos58+bJf7t2qxnH188Hc2gqneGrU6BAfrTzUBPL1B9+lC6dO4M4+MhCmPzCoOnqd1df9S/Zt2+v1K9fH2u3NCicB8cjISPpoGMzC813B/YfkJXwC/r4ow9AjgqquYfrZOF62JZas5FPPyOPPzpcqkJDQq2arTVhPa7RB2aek6dOysyZs2TLVpAOCHgSNM6jG3CkXw37ouPv1ClT1a+G0VE//vyzxIEAtWjRQrp06awEjb5SJEln4TQ8F1jQhEjNWaWKFWXu3PlKIjim3u6Et53T0XVWKF9eAoMCZSxMZoGBQTIAmh/ex2LFiklJmEE5BskZTYKrVq/RdiVLlFStHMkbyVEU5kfCyL5YTpw8IbWgdZsNDdst8O2pUK681qEmj1jZGJPA0iTKwudq8eIlqBclL734vOIfFh6mZJHPdSyeb+LUrWtX6drtVp1nCTx77k7X2pl5yzgEknjOMm4yZmSDgEEgpQhkuAaIbIF/T/grvzScTh999DF594P3JSgoSIoWLSr33jcIv4anqBaBv5bdiUXihbM3u1jHjGoKhoni5MmTMHWd0Ago+uPkhHBfBD+QV9940zI1wGxxDFqTJ0Y8KS3bdVBtQPNmzWT16rX49d8BGoRtqp0gKdgAP6J6DRrK2rXr5Nau3RDdU0gdbcMdYcz2DOxPCnxqiooUKQwT2Wj57ItxchrzIlnIAafeYAjfX379TUY995wUh2AGIiARp+Tzz8erCYY+JBUrVAXwAkAAACvhSURBVILfyIOqgaFWwgvE4MKFYHlu1POq6WnQqKV89MknMu2331X7sw3ko1KVKkInZ9uk54ofhXtgYFl58YUX5IMPP1Ty9M7bbyJSrBRMYsAHJkhnwfzZR+kyZfTUahAFmq6ovXIt7J9Ox2fhY/UttFnU5rRt00aqV68uDw97REa//Ir6zJBUhIM8PTXqBbmlZSt5/sWXlNQURXQW1/jrtN+UDNE/jASV/mEDBz0g9UDYGjVsKEcRzQV6o1ojapy0JJyKkiyusWSJ4tD8fa5VBg8dJr8CZzpScw68L/brBJ6PP/74Q0Y+9aQUKlRQSZKNF+tw/Uq20BO/02w16Ztv1FzpD42UYiwWZrzOuoBDyoM0PQrCyLXT0XrkUyOkcOHC6jRPDR4L16Bt0ID+Xyzbtm1XDZF+MW+ZBwG35yzzTMzMxCBgELgeBDJeA+T4Y0JBcBxRRk+PfArOuo8pUaBA4S/g4SBFXbp0UkFiC6DkF0mBZmkiSHBYnn72WQgr+HjAn2Xnjv+kYaP68uXnn0oAND40S1WE86mtQuAvcJYp305G1E5zmKACNDKnctXq8BdZLw0aNpILIC4ffPSJ9IXD60cffuDUaJQFOZg9ezbVJSrMtCMVztYiKUypzaB2aczYsUqY2rRurcTowMEDMmvmTBkBHxDOib441UBeViz7V/LB50RLDg+YoSpKj5695IFBA6VQkWLQHuSUIsWKS1BgGXn/vbeVRBJLOuIuXrpUbmnWVAU9caOAtQs1FNQskLjVr19XT7du3VI1IiRqnCuJmV1gqNRDf5icvP1yycFDh5W0sk+t6+ib5JD5hEqXLiV//fm7+stoQ5gI69WrK61at1UyUAgEgBqscmXLyD0D+mt0GjVDHJuk8H/w77nzzt6K7T8LFqq/z5J/F6o2xRNmNZoLZ86ep9FaXAtNle4FS8DcLqkpq3WrVvITfIDoyDxk+KMSAFLYpXMn1XLRFEm89u3bp100gKbKH+YtJTSO9ZHUXQBBOnjooNbx8/VTYrYXpkyG0duFCkgbNWJDAkYy1QimLZamTZsosVezKU8QN5epcx3sm2X/gQOqFXK9b3rBvBkEDAIGAYNAqhHIeAJkLwGCgI6kFJIlS5cEAQhTB1yGB7MchsCrUKGCXfsKn5Qm1q96+9f7XTAHMaSZuW7oV0MBS5MHvjhIgUWa2GlcnCWNGPIckIvROhRghaQzTEyMPGLf1BT8DHPN7JkzpBgIGv1EcsHUYfujuMgzrc9+WWyBWAWOu5VBbijYGRrNeS6HSawU5kjHW5rD6I9D4sN8PdOnz1Dt0xmYB2kiZImAGYWSkyTv1InjMJf0l/oNGsHvJBzr89J6K1atkQFYOzUdNhbaGG8kRDSB7d69WybAiZflT4xze8+eUg5RT4k0O7hu91GtSkW9VzRb0W/HnZTSoZ3mRJqt6IS9GZFtJ0+eguaH+ImamnTuIFgkEM2gZaOJkn459F9iHp1diNhjRBb7Zrj4fYhSq1u3rpIumslo7isI52RrbFKOhKiT/FDL4+npo+TG0zOn3IZw/kkTv5ZB9z8on332OYhvBSlXvpxiTd+djZs26fyosfEChpo0Es8liRCdmo8dOy5/z1+odcqCuNGEx0IcbZJikx97PvTX4vrHfz1B6y5ctEjaQZtHgqgkyGXa7MMKq/eWAiCm1BZxrXbf2oF5MwgYBAwCBoE0QcDSv6dJV6nvhMKcQi8ORIVC5xKS99GJloW+Jnah0HMXuvY1/UFN7QWFCeqxtG/bTrUmPXt0RyjyHSoI6UeiEVX8AU5p6Sg5sD0EC/O+MF8L++B15vax60U4nGrzIh/MZcyTc6U5iMLqaoV1GUU0fNjD8gZMb6dPn4EWIkJGPjdKnnjsUTWNREVHaig6NU7NWraW7j16SjCELTUTdR0+O9RsaLGnznXAxykmBkkNqcHBf8WKFlFfJ523LZnxyS0aqGWiue+xx0dIf5CkyZMmygoQjQ0bN0AIgxhCO2Ovl+OAIlrj6bG1nQavE2fXesSLQp/mmx697pAu8GWh6ZHElgQmvsT3x5Bwzp3Y8GULfGqgaKo8ePCQVEYYPskWNTUcj8SUGZwTzszunT44ORSHffv2a3+sS1+l3r16qclvzty5smnzZl0VtVY0k06c9J0+G8XUBAUEMQ5fHJfaMvqDhV4MltEvvQhNGXy9cI0lqftOHyNizAi0F2Dee3T4MGHU1xT4PO1GskRqejiu3Qf7scxgVp/Em/fYNbiNde3nkfVNMQgYBAwCBoGUI+BGgGxpmvIOU94SwtQhZO1ZUACSELHkg0aBhcKR2htqCpIsrhLDUUGFJgQsM/tSkPHFX9q28IwXxWzg8o1sylEcsk6/2WHcFMI2AaBzNc0kVysUYjT90KGahbmJ9u/fLzGY0y23NFehyOvUPjCxXrEiRWX/vj0qdPsNuBuaqE7ajiTFmquFlm0CssmDNxIE1qlZU05DC0NNg+3PExd7CeYdPzgmh8Ap+DWYpFpJv/4DQE4sZ+hp8L2hM7C9Rh0MbxTOWKx+3fbfdo1So38PNVU6Ji4xJJzkh6Tlm2+/lYMHDkKTs13GjHlZBtx9jzpAswPWc4WZXbOwH3v+egJYEdO8efNA+2ZFo9nXeZ7mRM7MvfBekbScPnVa/po+XR3f+WyRBPHZ6dChnTaJxDzZH3sgGTx16rhq5CyfKZBsEhB05gciQwf1Z559Tvzz5EMk3916D0lkWS7CXMl6RIdjk6QwAzSJ31PPPCdKvPvcJTVxP1gWwFGdWamZYoHtnEXtZyBueE7Pnj2t5kkPmD2JPetxvSRV7sTJ2T7THbisLdPN7UoTMvO+Ejppf83gnfaYXqlHg7eNjhsBihf4doUb9Wn94qWpAXleIERpVqBQX4FEhSxlkIyPworClaajZdBWWMIj4Zxdb23CK5S5rlftY9QC0bKK/en4alfBV2oUbFlF8w4LMyaTBOWFDwg1RmfOnNXzSuRc2upJ5xtNKrESFBQkfe68U6bPmKHRUh07dhQmzlOyAjJFTcgRmEA6d+og9C3yBx5xMVFyCL43LB7qoMxBrDk7uIleo/aBgr569WqyeAmijkCu7KgkZk2mgGXOpaLwwxk2dCi0L7FIxFdKxrzyskz79VcN8SaBUN8aGzMIZ47ETNfRYZG4H2X0OoayZsCpACC2ISb79u1HhFZfXVPugLwgStFy+MgRnR+xZLdsosUVdp50LEbNQTBX0vT59eTJalLLFZBHyQ23mVi2cpUeO0mEo0N+5zyYl4nRbbw3JGYkgUoeSMBQGKLuAaJI8rlz5y49p6ZPJCpkH9wbjER73dq1cg+c8VmW/DNXAoMCNeKLWsTOiFZjhmxqAC0kLOxJIt959z1p1eIWNU9CnYl7Hqi5lN566205ilxQXjCrKcYYyyqYN+ZoZ4GuVKmCRaoBMue9des2mTlrlvoe0axJopW5i+uNzdwzTTg7M++EeKT3N4N3eiOcsH+Dt43H1VUWds10/OTt0F/NcDwdjzw0DB3OB/+ObYi6enjYcPlq3JeawJBCiSHVHTrCIRpCceO6NRCAdIBFB857agsT+vNYAkLNRbhuX1EtguMLycE5EBdbiDIUmYWXVQ7jgL/AzyPais69mKk6Zn/44fvqnE3BFBQYKEtgHnkdCRVZ9Be79qBfE7yxT5KbgDy55fbbe0D7crde//qr8Zo9miHs/KXPV+tWLeT5F16C83c5mLOKymrk6nn+hdGO/tARim0KY5924TlqgJrCAZo5amjeoTO5kgJEVH3x5Th5afTLcgCapTx5AtS3KQBCn34pLMxFRB8XOveqRVCHsoTwQSSXZGlQv54KZfpU5YQ2hsslriQ/zCZNPxc6r1eBrxPx2Qhz0yeffqptnTfLIfgts1f8JU1RgK/cU435lbhFxytjxqrGij5KTCT5PRJKwvaE+++hz47eU0yCNI33jiSLWJLQ0YH+jt7IwgxMDh06JO998AGyL/fULStITA4ePiwz4IDOQnMkI+tItOlvxUzijAocOnQITJSPqcM8tylhyQ1tTL++feS+gQ/Kc88+rfePZlNmf34buX6o6Zk3Z5beSya3zAusq1arqm1JfIuAgHI/Mvve8bmh79Vx+HSxVKmMjOggOdQu8jnjHF98abRswHPPEH5qCXlPTTEIGAQMAgaB60cgw7fCIPGgtoFOqPxVzygs5mJ5GrlmDuw7IO8giWFv7JWkv3hRl7/mKRCaN20qTRo1tn5BOwQfl2/pKej86gH/mtOaBI/CmHltbJOVDROFyoEDB5BXJg8ccZuoaegETCHUPHXq2EF//VOYciNRhl0HQpDXrFFdBX25oHJKKkaNfgWOtRORq6iz3NW3r4aQ39KsuZIHS7DnsIeL/0SnFFw0Z9C3h47ePeCfVKRQYTXTUINDAhRYNlATH4548ilkZ/4e2zI0gcbmIZhGCoLcNJEiRQvDXBWs5puWLVvq2HGYq6IAApAHGood2AKD5KBJ0+ZyCrlrJsLhefuOHdKxQ0cIVyvKjtj+++9iWb9+g+bqIQnctn0HwvGLO6LxLGdxznkaQsjpFM4Mxiqc0beFuUWAuGZqW5jSgBFmT4wYoZmla0Ab9cDAgSB+AdK4cSP1oWHKAIb6c2sK1qdvEu/J8eMncL+9pV3bNrptRH4QsTZtWkNbNkuTEFK7dff/2zsPOKuqa40vQgcFKRaKShENYgcUFGNiNBpFETEaRdG8iL68xBJLjL6X2CD5vZfEgmLHHhtCRCwxmkgUYwMRESRSFHtA0QDSHPV9/3Vmz9y5w53CMMMAa8vce885u377/lzfXWvttYYe7ykjiAfUQ38UJ7Gajz74/hPlGa3a4sWLFTPoSXvt9RkKK3CDxy8izQVH+vHRufvue9wctb+0NXPnznUcXpbWhz++N5ddconH5OGUGoQ5I1tZVOpW+u6MuvYaj1u0Q4+d7B0RxJtuucWd13dTygwc2tFeCiTlU3vaU5307dvHFitMwPx5b/metZEpDSzBl/dRo66VqfN7ClI50L+z3GdMCBmhICCEtOH7zLMogUAgEAgEAtVHoF5kg8+dNmSIX98ILUwMaCH4H315MgGxgJ4ULk49JDiSdqdQTQQ4v75TQdiUa+PDZWNmpI3j8srqLe0R2oZ2IgU89ZM9qaMK3iWjJewzZ2KqMSbCLxXGgAzS30JpcHDgJXYMBIHTbLlrLz9f1tLAiQi+K5CfN5S+Am0MhAuzDnhiCnNTl8bGcZrj4N/QnOgPLQwmKJ7TG6RjulJm7LFXb5sxfZpnLYe0Mp/8wtwhVYyBkzdzZe6QGghsZVjnQO37gJCnP07hkXcLAoiPDRnWy+2TT0aaIJmSIAwEL4SQoblir7aU2Yvgh6zL2/vqtBcizFLuCbbS/G/UARM2FuLDevIJB/MaN368SNB19tjECY4TmhkILN9bfNgaoyFTYS/xXYLE8J3LnLgzIoUJrYW+75OenmTfkdM+fl+dNc9VWqObDOlA83BsSr+q3I0SCAQCgUAgsBYI1DsChEBDqCJ8EDgIDQQyf2tTXGCsTcNK2iTBC0lBHiXiU5150keqn/s5DY1QRNuFkKVAfDBv5QvhVD/3nf6oB5Zobf4mv6nf/maEaw4gmGjIIAnUS3XTZ/rBFwWfXJycG2sv/iUycb4cek8ZdpJHzYb8VDSPpNFIcwefdC93nlX5nObFdwIiiJlpTWQkvy/G9n3RGpvKLMcpQ9YDmUlzycU/tc+9R72ET7qf6qlb4Zv5PP3u93/wmFHkT6P4/IQhjvz0QQGvtJZ0rRuu+YIwzZ8/386Stu+SX//K+vbuYytlcs0f0zuKl0AgEAgEAoEaI1CvCBAChWPovGMGQnjkx6NhxQgRSlWEA3Urrpf1lf22Ltar+Dx8iJIX7ycbtOQeH3KFG9fZGvhUtVLZWnie+flkJJC15K/J+4Ak5g3JfTQ6OEw/+tjjNmfuHBt+6qmupUD7w2mzxCuZd/HqS3rhFuSHSMzXjB7tEZ2J6oxvTUXkp7QDaVOyjn0PCs09f39cQ+R7UHZFCQuIW+qLBZStVTK67w31eM7JM/qlLd+p3DEdv9JmZT7l1ivzoPiCtq5NEp5EhcZcd9yxx7p2LbVN72XH0az0D0LGaTr8mq6+5lpPYbKXwgWkGES5Y6Y9Sv3lPovPgUAgEAgEAtVDoF4RoOpNfVOqjQh3hlLtRUMkITEQobdlBuKIN/4jaEEqIzFJuONEvUJmHQIEkv4BYlqYdlR7inXTYO0hrHR+kGCStfI+T349+PxgOiOZamVkhTZof/AxI9giZq/lyg+G5i9KIBAIBAKBQO0hEASo9rCt056TJioNmktu/Jm0HsT/wSTEH+kyqkKpIEH47mAyQ/OzJp+fNOam/A7GYI5/1coVK+VOJG1TFQChzpcya3LknoJ5MjB2KOIlEAgEAoFaRSAIUK3CWzedE7APR1+IimxO7lwLySmrffhafimZkC57v6I5QpEwuRF5O/PNqqj2pv4MssjJOjQ5VS6Y+qTsYW9oH+SnyshFxUAgEAgEaoRAEKAawbf+G3Nkn7xVBM+bO2+um7u22377Em1P1cnO+l9LzCAQCAQCgUAgEKgrBKrxU7WuplQfx6nYgaTip7W3HvfR0bHqpUuX2e1ywJ03b75yeb3qMXPO+OlP/Qj4auUGyzWH1d5s6q7nXLz5LFWXDE5SpbhNL/dp6Zy8ni69Sult92X6mmiP+Q9y6sTHQCAQCAQCgY0PgSBA2lO0JJCJQqVIecQQkDj+ZieJGripgjYcd06FfurShMFcGO+xx//sQRnJmE4gP+L+7NzzmzpR9EP7mpBB66gUIhHrpPs185ZyXeNrk+/vVK6SboALJ9CyFBWlNbjPPrFvJXuusf2+9jdKIBAIBAKBwKaBwCZBgBB0Ltok+HJLrjBFS7ImTQnCcvPNNvdmRPXlNBUlOau2UDTnEiGrcUiTAJUqO5I3WccvIj86xs5x6Y4dt/Foys1atPR0DNdcfZW9Ov01+6GOY3PkW9NCSVKjsiasHNeadqxZ4cP0lZK0JnJSaKKMx5HxhtJ6feURrxVbh/3AiYai52kvCCDYTKbBFPuHfWwg8rNaeBGgkCjc3GNsYh6lQIfcixIIBAKBQCCw8SOw0RIgSEgShmwj1wjIRHIQ6B7pFyEpAYjTcFER6pJSAYgwRFgSoM7rKrAex8Hpp0OHDk52Fix4x6MS04r6HDFnDB+7VoVpprVizH2V84s5LVHyT5yhP1YGeJJ6NtR8v9J8IRY1KQkr+gaeIkU3Jo5QRhZqSvc4pt/YGjdvrMjMClCodRQq4EqGdU6jcdqKa+ZBgEigbqjj/k01R3rYolVrJU/92FbpebPiqMz4SW299VbedoFygnkMHk7GqX0b5Z7jODqaoWxdhWYR9wOBQCAQCAQ2BgQ2SgKEpgDh2Ey/8pGMX4rEIBwhJWhMEOgIO371QxYgOeTNQqjSNr/Mnj3bxiqa8jLFwOnWtavnfSIZJe3emP2G/eUvT9mUV6bayMsvs/0HDPA+akoL8udQ6DrF5IHAkViT3Fbz33rbzjzjZ56xvKbCHDwSVosUDwjsNlOyWgL+USAtBBlc23EgnxCapcKWPonenL8HbnYU82KMfyv32eN/fsJemzHDAzT22rmXdd62k8/r40Wf2IzXX3cSc/3oa+zfSp1x62232by58z0FxkEHfdcOUM40tD8ffvChPfnUUzZBSUmHnTjUTj7pJP/OsKdru5ZCexT3A4FAIBAIBOofAvWaAOUKwqoKJY5rN5GJBE0NghKNAdqa9957z3opIWef3r2d6Lyr6zvuuMseVYZtkl6OfeA+G3zUYBfoSQmUNB8HHHCAva9Ivaed/hO78Ybr3dwEkUJgk/DyqMFD7DpFSu7fr78Lb9pVdb41/kqIaZFTqokI3Weffma33X6H/fysM61169auHYEIrm0Bf3JXfSQMb7lljI259Q7h+I7desvNni0eokV29lbKJE8usZKxNCdMS2BQCAf65uh3S+X0mvHSS3buLy60+/54lxLAbu8pIEr60uTxvaJATkh8ipnx3PPO93uXXnyx7bBDdyen7P1ryjp/sTLHE0iQbOo/UBb4fvsO8GSz39Y+kl8OLc/uu+9mD02YYK1E5o495hj/TmTRsdceL59QvAQCgUAgEAhsEAjUSwIEgcBolZluslxKCK2qmXIkfSV4iV3zmUxCt99xpyfk3HHHHsq83ckFMv3ff/8Ddsmll9qEh8Z70tGtttpagrHITTyMXfzBCU3LzVra/vvv7xtKWgjID1oEBObDEx62EZddZj86ZZg0JU0UxXdFKREo8xWQHoNuq1i0BJVM8FfUBCKB1oT4MxMmPmw/OGaI7b5nb/ti1XI362G2yiWSFfVV7pmG55j9vffeZ5dedrmNe3CsktO2tubNmiuz+d9shPJfDTz8MF8veH+t5GGJ/GEydJIjXx3XUmULcmiJkMxekiQUHx00QFNefknzxazGLAoD1UixjjBdUdC49ey5k3Bv5r5BjZoo35eiVJOvjKCPlF69etmJ0vDMnDnLT8tt2X5Lj9D88stTbLrI0h233WodOnW2z5cucX8pbxQvgUAgEAgEAhs5AvqBX99WiNBEaCNAMVFxjQkGTQKOrdIt6K8wMUBzgKagcaMmdvKwYZ75+5BDD7NxY++XsPymJ9NcJoE7/k8P2S033WhHDhrsEKxeudxNZZkEzvpnTMYna3hb+fYMOvII5cS6wY4ZcrS12qKtjX3wQXv2uX/Y6GtHyfekqWshmHehUkgbUqh+ZfeZG+vFjHTnH+/xtXXo0NEWvDXfZv9ztmdg33OPPdYqgjN9ZwH9RIDuu8/GSOtz9JBjfEpFq7O0GMOH/9g1KCQnJQgjc0kkFVLDdfPmzVw75MSIfdM/MsuzR2R2b6bPmxU7mZObjFIaQzmHiIq0gu0KpYmYMeN1r0d2e7KtK1e7faos9xAjzHNDtD+QQogq3yXMknff/Ueb9cYs695jR5v3xpt26vDT7eabb7DtunSxpTKrkdS0mH153/ESCAQCgUAgsDEj0KB+ESCEZNNmTe2D9z+0Rx59zJ555hn/tY4p44gjBtouu/SS/MREUVhDwHYhvBG035BzrTvu6h4CrmnzlvbRh+/bDTfeZC/J7NJTAnTmrDdcUF9wwXnKk9VaJEjaBbUtU9Qf/jUHHnigTXh4on2yeLEtmzbVLhvxGxs/9gE51m5tyyTMC5EffFg4sZURoFKhXmaMvAuw8HXk3c+/hHA8JC3UqcNPEzEbYuPG/8ne+Oc/bZ++fe3KK37v5rHqEi8nP37CbIVdceXVMoEtsqcnTbLpOlmG5uvss84QmZgtrcpMaVuGOdl45plnbeorr0hTNsBeeOEFe2DsONtpxx3t+OOPs/323ddTbxTJ5EVesueff0EZ6sfZs5Ofs3327uvt27bLNDOsT7SzeJmlG4FzdFO1/UxEh3EovWXO3KyVfJGkfXp4wp22x557uPM3pKuo+JQYe7Jzz55e/y2Z7D5e+JFd9D+/sosv/pWcx/eV5mepfzeqi5F3GC+BQCAQCAQCGywChdUVdbwkTFxoBjid85P/+pk9IQfVMTdeLx+Rlnbn3Xfbc889bw+Ovc9/4VfmqIrPCEL8a5m0OLFEoY1uuADefrvtdKeR+mppvXbu6cQELYoalSM/iGDISCNpFHbddVe6srvuulsk6FO77ppR9k1plUgQirYjv9DW1yXSgND+xQUX2jbbbI28logv1XPQjvmitcg0Jw3swl9eYGQFX67cUGvqmzaYi3B+7rfPPvbO229la4Y46VkzEUlIG+tHuNN/VYU882Z+jNu1axfNq5G13ryVCOjOJdq5WbNm2c/OONNOknmJ8omcyc//xQVimk3trJ+ebqdJO4QP1vcO+b5NnfKS7SJTVHNpYyaJSH334EPshBNOsPPOPce1Zo888ph8lrJQA95Z4j9+kb0wd8xbH374kT3x5FPue/XCiy/I4Xu+E7MXRWiPGDjQTXZohdJaIbTdunX1+pNFuF4XaYOQHT34KOXsWuGdp7o5w8XHQCAQCAQCgY0cgXpBgCAYCFl8ah56aII98cQTNmvmDJmserpZ4+CDD1Kah3luXsHXpDKBJVcUL9RLdSEwX6j/LeS4PPDww22nnXrY3nvvbcPkL4L/zKqV2WmmcvutPtA+0E+X7beThqG3XTv6OvvT+AftW98aIJPMcmciaZzc9i7Haa/1bSYSdNSgI0pPmvGweJ7GhBWN2I/ji6jRlzvrql1JndyOiz8nkxFxgBqIwJXpUnPGNJVMUk4Ida9KpXjOaOMGDx5k//t/v7MBA/azH55wvBUJQ+bHH/tCYWy9+Oe/P/W49enT21rIFLXffvu6r9UUOZnvucfuIkmL5aB8uZ1++nD77ciR7qiNlq6TMqAfdvhAXz+dfF3cl3fIteZNPCOcnN97712b8+abdu45P9d9MzLV33PPvXbi0KHWtl0b1ximdswRf6PWIoJHHnmkjRgxws4//zz78X/8yPtES5ThU0VcUsfxHggEAoFAILDBI7D+CZDkJgIOgvLZ4s/c9DVy5OXWvVs3JyyQIvw69tprTwnfIheClaGOKC4n0nQDgchYxPuBlOAzUiQNCloa7vO8okK9qTrufsrJJ+vEVz/VL/Y30txpv6aCFgVfpm5aD+kp1lyrfEs0Vn4qCXJRoNAv66iouDZMo5L9HYyrVTRZtCmOmWO12jVOaKogZtxnPWhmVq9eJeLTRxq1nd0hmYCDbdu0s0O/f6gtXLhIQQgb2WKZDidPnmyX/PpXHi8JbVfLljJNSjNUtpRFiXEaqw7BJzG9UQYNOjJzTG/Q0B3POygsAYSwCEf2nMKeQmA/1diUY44+2lrLn2uJ/H6aiHxlK8hpEB8DgUAgEAgENgkE1j8BEswIOH7hc5wb/5r27do5+BAOipuvJNcSQaE+JV37RZmXHAFawml0j9suuKmciT4X4sX9lemi+MLnJvIA0XjzzTl+t1+/fVx7AQHBtyjNZ03tuQdRwlTFCbHEsbKppHkyKSqCBfVloGvU0P2GUo3UN7OG1ECsMMVNkWltcxFEjp3TB/dp/9WXdJRdf/zxJ04Yhhw92MlYNqeMDKbPqf9y75pQCTzqsmSt/tmHUJNsTgQdXKWTXGjUMlxlOhQpSVqWT3VMn9K2bRvfU68jXNM++/r1nPWVKZoAEZ+JAfSsCFRbndjrsE0Hd1ovKlrhfj/t2rX1Jo1EtIq+zkgQ/YPHokWLbPR119lRRw2yTp07uharofakEPlJayz8/Sozu7gIBAKBQCAQ2AARqBcECJGH0MFhtU3rLSToluhWJuTx4WgIGZCzLyQCocSpMOqjIVlTQRw7G+ChBHVJIekl4pXH/sKTcuKWm2UK5IyxODZN6dFjB5/D558vdwJUpnLeBcId89cLL75o/ffbXz5DPbWO1e4H5JNzWa/1y7yD2YsAf61btbE/Pz5BDsJ723JOU2ntqaTZQsg43j106AnuOwQ+YAJGpOwgQzz3ONpPjB6csFkD+FEv4Ui/3HczXxqk5F14aX4cY/eSg1s27ex+hneGZHYne83aZKYrnjZXzB8KmhyICXvQQHvLXCss1NN/xCPCRIp/VPv27YrXW2SEOMC5mmCKk3Uqr98+exuhC/B/AoM5c+d69zhct2/XPsNBhCq/QIggRo0r+X7lt4vrQCAQCAQCgQ0PgfVPgCRjMaHgj9GieQtlMj9AzsK/9KPmXWU2ghStWLHc5syZY126bO/1nvrrX5XeoJmngICc5HIc3wIJeC/faFRyCiw7Wt840zyoBQIzE6uF9ABZFxAFzC9opsaMud0OPfQQ26F792IigfmpvCDNWpa2xyyz1ZZb2f333ZOlakgThiekz/oI0YAwMeY2Olnmmq9EPnI7pZnWiNP458s+t388/7zHuEFrhAmqY8eO9vLLL9t7739gneVf07dvH9egQCYZronW/rl8lyZN+rtMRl8qsGO/ws7l8k+CRGhKpXyNueiafcs+CkN9xMyWX/Br8noibCl69IuKwdNXp9Raav4rpRV7e8GCrJkmR4+5O4Jmi+8AhO9tneKi7K22OHiDAfsKXqzjLh11X7JkqX3n2wcQidHbgee0adO9HSa6psolxsmvXFLJQ/qnL+I8gWf79u3dCT0jkZEewwGMl0AgEAgENiIE6o4AIXkzeVkOPrQBaCEQiEPko3HxpSNt6LBT7Owzz5BWZDPPdj5r5mw5Hj/ggvuII4+SVkiRjz/5yFNcILwQghQ0KUQvJgbMpKf/ZhMU7ZfywNgH3Wm3r4QgJqlZs2ZqzFX+rMC0/BkvmenlOZs3f66OWu/mfTNfyFdlBb8UclV13razddVpJElt4UA7AElvqZ/0LDvdhf+Nn07LapZ5Zb1oe5rpyHenjp2s16672bFKfnrLTTe4dup1Bf4bc+vtNvb+e3w4CKaTRWGFL9C7775r35fj8c/PPlvpIfZ3/JJmqHSgbJ6zdHIq5dtK814pp/E5c+Y6CWFjcTCf9uq04mt6yNbEqT4IGPtBRO4r/vB7O+ecc70+p7MmT/6HXT1qlA+Z+e+oXfJi97uiqVor/RC5mUIcJ06DQW5WrFxh777zrr4jj9uVV11tr01/1YlM8o96Uw7TF150kbfje7ZK8yhG3u+lF9YO0YLoDj76GHeqvuH60a45g4im71eqX+6dTtM2lntYj2/EvKu/OTXBrCZtqz/Tddci5r3usKxKT4F3VVCqcZ2G/33RhZfUuJeqdFCJcEDAIGi22mpLO+7YIS4gxxIr5pnJhn/HT/7zNOvaVY7RMh8RjXjQoIH+C52UB5lQzgZAkHGibNWqL+RQ/ahyY823k08+yaZOnaZ+2nksIdesSFrtuusu1r17Nzf/lBf++J00lFllqU2c+IiC78207x74HdtSmgHSYuB3g5amKnmwWBskDdLEySxOUkFe+Ox/WtNqkR3mxf3VmMi0jsqELs+p17HztopptJM9PHGiDTvpRNeWPSNfmTE336gox538hBvCn7oQKvyWpkyd6hGeR+so//Y63QZhyDQ6pRtF/5AMtCDEYOrSpYub1+gLx2aIV39pj3CKXrToYz8l179/f3eCZixIF9q7HXrs4DGB8M/prrQVOITfe+/9dq+icR8x8DAbPvxU27ZzZx1P7++anaQFo48m6nvhooVu+mJ+Bx90kH0g/KdNm6bj79NtypSp9trrr/n8f3TKKTZgv/6aL1Gov5I57Dn7y5NPeiBEcoAtXPgvT6PRuVNnJzv0n4sx64SoNRcRJ7RAT4VIYMxcgl3wq14KW8Eq9fJBzLv621ITzGrStvozXXctYt7rDsuq9BR4VwWlGtdpsHzZErhmvSgIJApRlSWn3ZyBMMQ3hl/nEAiqIMAhPeSSKlj0BUJ48nPfhbja4+fCqS8Kwo7xEG4VFerwh3lEbyoIdk6jfeV9VNS2Lp4xD+a2QGakHjv1tGtHXe0JXofqyHp3meqItkyUZuad6kKyLh8xUlqg9+yaUVc5vuTXWpMJC7VGcvTOxQoSlAgS60zX+B/lmrBycSYZLdon6mJq4r2NTmRRH/Mc/afvQC52mMEgbnwHeC5elu0F+6GvAv5NaZ8ycpu1Zt+TiYwGkFUc7UuDUuaOwmf6xmQHWcQsljnh59eK60AgEAgEAoENH4F6RYASnC5oJeWSnw6mEY6scxIo2RkyQVgxTV6TME2/+P2ZmuMHVFGhPn9JOKfrdK+itnXyTNOHdOAYfsWVV9kFv7zQpk97xXbbfbfsqLcTN2duTgSJ5PyOzEndeuwi89hdHhBwObGMVFhT9Qr9Zm18BL1U1kXaWyenau0O4WoH6ShU0ry8LTuWN83cfU516Ys+076l66rsW1W+W4XmGvcDgUAgEAgENgwE6s4HqBp4pF/gaCooCK1cp9VcgVdhtwhKl8xZrXzBmYR3RX0wViZ4s1pcp/FzhW1FfdTWM9ZDeolmIj/E1MF/hdJESVnRdCXtSxo/EQJwvfO2G20fnZZCS8J6KiIgPF/TWnU3jz4Cdll24ljpVqqZxkGbR8HERN+FxqAOz7wfLlxf5G9+Veal7NC+ttznaR/XtJbcenyuaD75deM6EAgEAoFAYMNDoF5qgDY8GNfPjJOJh/frr7/ROnbqoASt43RKqo/STJyrKNUrPIRA7uzEJdykhd8ORIi2VSEEuX3E50AgEAgEAoFAYENHIAjQBrqDaCjwb0Gj8uC48a7xOeHEk+yxRyfaoB8cZx/oxNqWio68bOkS93nJXybaEIhPkJ98ZOI6EAgEAoFAYFNAoLDjxaaw+g11jcUmqSUKGHnbbbfbpZeP9PhEX36xymMDFSnQIKToUyUoxXlY9pxyK8XZt/6Tn/LzLreQuBEIBAKBQCAQCKwFAqEBWgvQ1ncTtD+ciFqw4B17VXFvttiijbKt72wt5OA8S/F/OGGFhodTYMTaCTPX+t6xGD8QCAQCgUCgviEQBKi+7Ug15oNjcbMWzfwIOXF80OhgEiO5KCSJe6FDqQagUTUQCAQCgUBgk0EgCNAGvNUQnlxfHixduiWNj+LmcLpKf0TGjhIIBAKBQCAQCAQCZRGol8fgy04xrgohQLRjtEBoe6A5nAL/SoQHYuT3lBG+/vv5FFpd3A8EAoFAIBAIBGoPgSBAtYdtHfTsAXacBKXBSglPXlCcVCHeA4FAIBAIBAKBQKCSVOYBUCAQCAQCgUAgEAgEAhshAnEMfiPc1FhSIBAIBAKBQCAQCFSMQN0RoPXpi1uTsWvStmLsa/dpzLt28c3vPfDOR6R2r9cn3jUZuyZtaxfRinuPeVeMz7p+Gniva0TX2F/dEaD16ZJSk7Fr0naNkNfRzZh3HQFdPEzgvengXZO9rknbukW47Ggx77J41PZV4F3bCHv/dUeA6mQ5MUggEAgEAoFAIBAIBAKVIxAEqHKMokYgEAgEAoFAIBAIbGQIBAHayDY0lhMIBAKBQCAQCAQClSPw/yFqQTZoA7VTAAAAAElFTkSuQmCC"
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problem One\n",
"\n",
"Do problem 14 from the end-of-chapter problems for Chapter 3:\n",
"\n",
"\n",
"\n",
"Note that $EX$ = $E(X)$ (some books use this odd notation). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Solution:**\n",
"
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Two\n", "\n", "Let $X\\sim \\text{Geo}(1/3)$ and let $Y = |X-5|$. Compute the following\n", "\n", "\n", "(A) $R_Y$\n", "\n", "(B) $f_Y$ (the PMF)\n", "\n", "(B) $E(Y)$\n", "\n", "(D) $Var(Y)$\n", "\n", "(E) $\\sigma_Y$ (standard deviation of $Y$)\n", "\n", "\n", "NOTE: It is WAY complicated to do this analytically,\n", "so you should do it with Python. Write fx and fy as functions in Python, and then give the first 10 values in the PMF for part B, and for the remaining parts, calculate the values\n", "experimentally, using the first 100 values in the range (which will give you an answer\n", "which is as accurate as can be represented with a float).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Three\n", "\n", "A sack contains five balls, two of which are marked $\\$1$, two $\\$2$, and one $\\$10$. One round of the game is played as follows: You pay me $\\$5$ to select two balls at random (without replacement) from the urn, at which point I pay you the sum of the amounts marked on the two balls. Suppose we define the \"net payout\" as the amount you win minus the cost of each round. \n", "\n", "(A) *Describe* the random variable X = \"the net payout one round\" (as in HW 07).\n", "\n", "(B) Calculate $E(X)$, showing all work. \n", "\n", "(C) Is this a fair game, given that you pay \\$5 for each round? If not, what should I charge you for each round to make it a fair game?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Four\n", "\n", "Wayne and Richard are throwing darts at a target, and Wayne's probability of hitting the bullseye is $p$ and Richard's probability of hitting it is $q$ (independently of Wayne). A round of the game is for Richard to throw and then Wayne to throw. The game is to keep throwing until both of them hit the bulleye on the same round and then stop. \n", "\n", "(A) If $X$ = the number of rounds until the game stops, what is the distribution of $X$?\n", "\n", "(B) What is the probability that the game stops on the $k^{th}$ round?\n", "\n", "(C) What is the probability that Richard first hits the target in the 4th round, but Wayne has not yet hit the target by the 4th round?\n", "\n", "(D) Suppose after 10 rounds (and no round where both have hit the target) they decide to change the rules and continue to play until at least one of them hits the target. How many more rounds would they expect to play on average?\n", "\n", "You must express your answers in terms of the parameters $p$ and $q$ (and $k$ for (B)). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Five\n", "\n", "Wayne frequents a coffee shop which gives each customer who buys a coffee a \n", "coupon labelled with one of the numbers 1, 2, 3, or 4; when a customer collects coupons with all four numbers, he or she\n", "may trade them in for a free coffee. The coffee shop does not keep track\n", "of which coupons are given to which customers, and so the shop effectively picks\n", "a coupon with replacement from the set of 4 coupons. \n", " \n", "\n", "(A) Suppose Wayne has not yet received coupon $i\\in\\{1,2,3,4\\}$. Let $X$ = \"the number of visits until he receives coupon $i$.\"\n", "What is the distribution of $X$? What is $E(X)$? Be precise and give all relevant parameters.\n", "\n", "(B) Suppose Wayne has received one coupon $i\\in\\{1,2,3,4\\}$ (say, after his first visit). Let $X_2$ = \"the number of visits until he receives a new coupon (i.e., $j\\ne i$). \n", "What is the distribution of $X_2$? What is $E(X_2)$? Be precise and give all relevant parameters.\n", "\n", "(C) Suppose Wayne has received two coupons $i$ and $j$ from $\\{1,2,3,4\\}$ with $i\\ne j$ after some number of visits. Let $X_3$ = \"the number of visits until he receives a new coupon (not equal to $i$ or $j$). \n", "What is the distribution of $X_3$? What is $E(X_3)$? Be precise and give all relevant parameters.\n", "\n", "(D) Suppose Wayne has all but one of the coupons (e.g., he has 2, 3, and 4, but is waiting for 1). Let $X_4$ = \"the number of visits until he receives the last coupon.\"\n", "What is the distribution of $X_4$? Be precise and give all relevant parameters. \n", "\n", "(E) What is the expected number of visits for Wayne to be able to get all four coupons? (Note: this will be a real number.)\n", "\n", "Hint: Wayne receives a new coupon with probability 1.0 on the first visit. Use B, C, and D to arrive at your answer to E. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Six\n", "\n", "A box contains 20 fuses, of which exactly 5 are defective. \n", "\n", "(A) Suppose\n", "you select 3 fuses randomly, without replacement.\n", "\n", "Let $X$ = \"the number of defective fuses among the 3 selected.\"\n", "\n", "Give $E(X)$. Show all work for full credit. \n", "\n", "(B) Suppose you choose fuses from the box randomly, without replacement, and test them. \n", "What is the expected number of fuses you choose until you find a non-defective fuse?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Seven\n", "\n", "Wayne rolls a fair die until he gets a 2. Richard rolls the same die until he gets an odd number. What is the probability that Richard rolls the die more times than Wayne does?\n", "\n", "Hint: Find the probability that Wayne rolls $k$ times and Richard rolls more than $k$ times (remembering that these are independent), and then sum over all possible $k$. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Solution: \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Eight\n", "\n", "Suppose you are playing a game with a friend in which you bet $n$ dollars on the flip of a fair coin: if the coin lands tails you lose your $n$ dollar bet, but if it lands heads, you get $2n$ dollars back (i.e., you get your $n$ dollars back plus you win $n$ dollars). \n", "\n", "Let $X$ = \"the net gain\" \n", "\n", "(A) What is the expected return $E(X)$ on this game? Give your answer in terms of $n$ and show all work. \n", "\n", "Now, after losing a bunch of times, suppose you decide to improve your chances with the following strategy: you will start by betting $\\$1$, and if you lose, you will double your bet the next time, and you will keep playing until you win (the coin has to land heads sometime!).\n", "\n", "Let $Y$ = \"the amount you gain or lose with this strategy\". \n", "\n", "(B) What is the expected return $E(Y)$ with this strategy? (Hint: think about what happens for each of the cases of $k = 1, 2, 3, \\ldots$ flips). \n", "\n", "(C) Hm ... do you see any problem with this strategy? How much money would you have to start with to guarantee that you always win? \n", "\n", "(D) Suppose when you apply this strategy, you start with $\\$20$ and you quit the game when you run out of money. Now what is $E(Y)$?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Solution:**\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lab Problems \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem Nine: Creating a random number class\n", "\n", "For this problem, we will explore a very typical programming technique\n", "for probability in Python, based on object-oriented\n", "programming. We will create a random variable as an instance of a class\n", "of a particular distribution. This will allow us to store information\n", "useful when computing with the distribution, such as the PMF, CDF, mean, and variance.\n", "We will also include a random number generator. \n", "\n", "This solves a serious problem with our random number generator from the previous homework: each time\n", "we want to generate a random number, we have to construct the CDF anew, although it is the same every time.\n", "In the method explored here, the class holds the \"state\" of the random variable, which is initialized\n", "by the constructor `__init__` and persists through its lifetime, although many different random numbers\n", "may be generated. \n", "\n", "\n", "\n", "This way of programming is very typical in machine learning, where the initialization, training, and testing\n", "of the algorithm takes place inside the class, and modifies its state as it \"learns.\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Part A\n", "\n", "Study the following template for a `Bernoulli` class carefully, observing especially the use of the `self` parameter in front of all local variables, and as the first argument to each function. The `self` parameter is NOT used\n", "when calling the function; as in Java, you call a member of a class using the dot notation:\n", "\n", "
playRound(K)
which rolls a single die until you reach or exceed K or get busted, and either return your score (if you reached or exceeded K), or 0 (if you were busted). Then write a function playGame()
which calls playRound(K)
for N = 10,000 times for each K and returns an array of 21 numbers giving the average payoff for each K = 1, ..., 21.\n",
"\n",
"Your task is to answer the following questions: \n",
"\n",
"(A) For each K = 1 .. 21, what is the average payoff per round for a game played with this strategy?\n",
"\n",
"(B) What is the best strategy for the game, meaning what value of K wins the most points on average?\n",
"\n",
"Print out the values and an appropriate bar chart for the first question, and simply print out the answer to the second question using a `print(...)` function. You must calculate the answer in Python, not by observation of the graph. \n",
"\n",
"\n",
"Note: To exercise your Python coding skills, you might try to do this using OOP, as in the previous problem.\n",
"Not required, but good practice!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}