
CS 237: Probability in Computing

Wayne Snyder
Computer Science Department

Boston University

Lecture 5:

o Conditional Probability concluded: The Law of Total Probability
o Counting principles and combinatorics; 

o Counting considered as sampling and constructing outcomes; 
selection with and without replacement; 

o Counting sequences:
• Enumerations and Cross-products;
• Permutations;
• K-Permutations
• Permutations with Duplicates
• Circular Permutations 



Law of Total Probability
Conditional Probability addresses the probability of one event in the context of 
one other event.  Sometimes, it gets more complicated, because there are many 
different events.    The Law of Total Probability can help!

Consider this problem (from the textbook):
I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;
Bag 2 has 60 red and 40 blue marbles;
Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble at random from that bag. What is 
the probability that I get a red marble?
Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen



Law of Total Probability
I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;
Bag 2 has 60 red and 40 blue marbles;
Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble  at random from that bag. What is 
the probability that I get a red marble?
Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen

P( A | B1 )  = 75/100 = 0.75           P( A | B2 ) = 60/10 = 0.6
P( A | B3 ) = 45/100 = 0.45



Law of Total Probability

The Law of Total Probability:

This is essentially conditional 
probability where the conditions
form a partition of the sample space.

Or, simply think of it as “case analysis.”
(you’ve probably be doing this already 
without calling it anything special!).



Law of Total Probability
I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;
Bag 2 has 60 red and 40 blue marbles;
Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble  at random from that bag. What is 
the probability that I get a red marble?
Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen
P( A | B1 )  = 75/100 = 0.75           P( A | B2 ) = 60/10 = 0.6
P( A | B3 ) = 45/100 = 0.45
P(A) = P( A | B1 ) * P(B1) + P( A | B2 ) * P(B2) + P( A | B3 ) * P(B3) 

= 0.74 / 3 + 0.6 / 3 + 0.45 / 3 = 0.6



Base Rate Fallacy
Conditional Probability is an excellent tool for 
evaluating what can happen under various conditions, 
but it is sensitive to extreme conditions. 

A group of police officers have breathalyzers displaying false drunkenness 
in 5% of the cases in which the driver is sober. However, the breathalyzers 
never fail to detect a truly drunk person. One in a thousand drivers is 
driving drunk. Suppose the police officers then stop a driver at random, 
and force the driver to take a breathalyzer test. It indicates that the driver is 
drunk. We assume you don't know anything else about him or her. 

What is the probability he or she really IS drunk? (-Wikipedia)

95%
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Base Rate Fallacy
Conditional Probability is an excellent tool for evaluating what can happen under various 
conditions, but it is sensitive to extreme conditions. 

A group of police officers have breathalyzers displaying false drunkenness in 5% of 
the cases in which the driver is sober. However, the breathalyzers never fail to 
detect a truly drunk person. One in a thousand drivers is driving drunk. Suppose the 
police officers then stop a driver at random, and force the driver to take a 
breathalyzer test. It indicates that the driver is drunk. We assume you don't know 
anything else about him or her. 

What is the probability he or she really is drunk? (-Wikipedia)

2%

1 driver is drunk, and it is 100% certain that for that driver there is 
a true positive test result, so there is 1 true positive test result.

999 drivers are not drunk, and among those drivers there are 5%
false positive test results, so there are 49.95 % false positive test results.

Therefore, the probability that one of the drivers among the 1 + 49.95 = 
50.95 positive test results really is drunk is 1/50.95 = 0.0197. 

.



Finite Combinatorics
Recall the rule for finite, equiprobable 

probability spaces:

To work with this definition, we will need to calculate the number of  elements in 

A and S and we will analyze this according to how we “constructed” the sample 

points in S and in A during the random experiment. 

Compare with how we “construct” the 

sample space using a tree diagram!

S

A



Finite Combinatorics

The way in which we “construct” the sample space almost always follows what we 
might characterize as a sampling process:

(multi)set 
(unordered)

sequence 
(ordered)



Finite Combinatorics
The important issues to note are (and you 
Should them out in this order):

(A)  Is the selection done with or without replacement?

Examples of with replacement: 

How many enumerations of …..
Choose letters for a password…
Flip a coin or toss a die ….

Examples of without replacement: 

How many permutations of …..
Choose a committee of 5 people from a group of 100 people…..
Deal five cards for a hand of Poker…..
Choose letters for a password, with no repeated letters…..

When the issue might be unclear, the problem statement will specify, e.g.,  
“Suppose you have a bag of 3 blue and 2 red balls and you choose 2 with replacement… “



Finite Combinatorics
The important issues to note are (and you 
Should them out in this order):

(A) Is the outcome ordered or unordered?

Ordered outcomes are sequences: 

Enumerations and Permutations
Strings of characters
Rows of seats

Unordered outcomes are sets (no duplicates):

Hands in card games                                 // these are Combinations, covered next lecture!
Groups of people 

When it might be unclear, the problem statement will say something specific about what you are 
creating:  
“How many sequences of ….”                       “How many permutations of … 
“Two



Finite Combinatorics
The important issues to note are (and you 
probably want to figure them out in this 
order):
(i) Is the selection done with or without replacement?
Examples: 
Selecting 5 cards for a poker hand is done without replacement (you keep the cards and don't 
put them back in the deck); choosing a committee of 3 from a group of 10 people is without 
replacement; in many cases, as with balls in a sack, it is part of the problem statement.

(ii) Is the outcome ordered or unordered? 
Examples: If the two numbers showing on the dice are 2 and 5, put them in sequence [2,5] 
(duplicates allowed); put the 5 letters into a word (a sequence); put the 5 cards into a hand (a 
set). 
Note: in the case of [2,5] you may speak of the "first roll" or the "second roll" but in { 2,5 } you 
may only make statements about the collection without specifying an order ("at least one of the 
rolls is 5"). Words are sequences, and hands in card games are sets; otherwise you need to use 
context or it will be clear from the problem statement.



Finite Combinatorics
We will organize this along the dimensions of  
o ordered vs unordered and 
o selection with replacement vs without.
and we will consider the role of duplicates when appropriate.

These problems have names you should be familiar with from CS 131:

For each of these I will provide a canonical problem to illustrate; I STRONGLY 
recommend you memorize these problems and the solution formulae, and when you 
see a new problem, try to translate it into one of the canonical problems. 



Finite Combinatorics
Enumerations
The simplest situation is where we are constructing a sequence with replacement, such as 
where the basis objects are literally replaced, or consist of information such as symbols, which 
can be copied without eliminating the original. 

Canonical Problem: You have N letters to choose from; how many words of K letters are 
there?

Formula: NK

Example: How many 10-letter words all in lower case? 2610

A more general version of this involves counting cross-products:

Generalized Enumerations: Suppose you have K sets   S1, S2, ..., Sk. What is the size of the 
cross-product 
S1 x S2 x ... x Sk? 

Solution: |S1| * |S2| * ... * |Sk| 

Example: Part numbers for widgets consist of 3 upper-case letters followed by 2 digits. How 
many possible part numbers are there?     26*26*26*10*10 = 1,757,600



Finite Combinatorics
Permutations

Next in order of difficulty (and not yet very difficult) are permutations, where 
you are constructing a sequence, but without replacement. This explains what 
happens when the basis set is some physical collection which can not (like letters) 
simply be copied from one place to another. 

The most basis form of permutation is simply a rearrangement of a sequence into a 
different order.  The number of such permutations of N objects is denoted P(N,N). 

Canonical Problem 1(a): Suppose you have N students S1, S2, ..., Sn. In how many 
ways can they ALL be arranged in a sequence in N chairs?

Formula: P(N,N) = N* (N-1) * ... * 1 = N!

Example: How many permutations of the word "COMPUTER” are there?         

Answer: 8! = 40,320



Finite Combinatorics
K-Permutations

If we do not simply rearrange all N objects, but consider selecting K <= N of them, 
and arranging these K, we have a K-Permutation indicated by P(N,K). 

Canonical Problem 1(b): Suppose you have N students S1, S2, ..., Sn. In how many 
ways can K of them be arranged in a sequence in K chairs?

Formula:

Example: How many passwords of 8 lower-case letters and digits can be made, if 
you are not allowed to repeat a letter or a digit?

Answer: The “not allowed to repeat” means essentially that you are doing this 
”without replacement.” So we have P(36,8) = 36! / 28! = 1,220,096,908,800.

Note: The usual formula at the extreme right is extremely inefficient. The first 
formula is the most efficient, if not the shortest to write down!

K terms



Finite Combinatorics
Counting With and Without Order

Before we discuss combinations, let us first consider the relationship 
between ordered sequences and unordered collections (sets or multisets)
For example, consider a set 

A =  { S, E, T }

of 3 letters (all distinct). Obviously there is only one such set. 

But there are 3! = 6 different sequences (=permutations)  of all these letters:

S E T
S T E
E S T
E T S
T S E
T E S

Set = unordered, no duplicates



Finite Combinatorics
The Ordering Principle

If  A is an unordered collections (set) consisting of N distinct elements, then 
there are N! ordered collections (sequences) of A.  

Question:  If   A =  { S, E, T },    how many sets of 2 distinct letters can we choose 
from A?       Note:  N = 2. 

Answer:  Hm…. Let’s just count:  { S, E }, { S, T }, { E, T }… there are  M = 3. 

Question:  How many sequences of two distinct letters can we choose from A?

Answer: Again, let’s just count:
All orderings of   { S, E }    gives us    SE,   ES            // 2! ways to order each       
All orderings of   { S, T}     gives us    ST,   TS
All orderings of   { E, T }    gives us    ET,   TE     

So:  there are 3*2! = 6 possible sequences derived from these three sets. 



Finite Combinatorics
The Unordering Principle

If there are M ordered collections (sequences) of the N elements in A, then 
there are M/N! unordered collections (sets) of A. 

When all elements are distinct, as in our previous example, then obviously, 
M/N! = N!/N! = 1.  

The basic idea here is that we are correcting for the overcounting when we 
assumed that the ordering mattered. Therefore we divide by the number of 
permutations. 

This principle also applies to only a part of the collection:

Example:  Suppose we have 4 girls and 5 boys, and we want to arrange them in 9 
chairs, but we do not care what order the girls are in. How many such arrangements 
are there?

Answer: There 9! permutations, but if we do not care about the order of the 
(sub)collection of 4 girls, then there are  9!/4! = 15,120 such sequences. 



Finite Combinatorics
Permutations with Repetitions

As another example of the Unordering Principle, let us consider what happens if you 
want to form a permutation P(N,N),  but the N objects are not all distinct. An 
example may clarify: 

Example: How many distinct (different looking) permutations of the word “FOO” 
are there?

If we simply list all 3! = 6 permutations, we observe that because the ‘O’ is 
duplicated, and we can not tell the difference between two occurrences of ‘O’s, there 
are really only 3 distinct permutations. This should be clear if we distinguish the two 
occurrences of ’O’ with subscripts:

F O1O2                       FOO                 FOO
F O2O1                       FOO          
O1F O2                       OFO                 OFO
O1O2F                OOF                 OOF 
O2F O1                       OFO
O2O1F                OOF

Sequences: O1O2
O1O2

Multiset:    { O, O }

There are 2! sequences, so
6/2! = 6/2 = 3. 



Finite Combinatorics
Permutations with Repetitions

If you have N (non-distinct) elements, consisting of m (distinct) elements with 
multiplicities K1, K2, ..., Km, that is,  K1 + K2 + ... + Km = N, then the number of 
distinct permutations of the N elements is

Example: How many distinct (different looking) permutations of the word 
“MISSISSIPPI” are there?

Solution:  There are 11 letters, with multiplicities:
M:  1
I:  4
S: 4
P: 2

Therefore the answer is 



Finite Combinatorics
Circular Permutations

A related idea is permutations of elements arranged in a circle. The issue here is that 
(by the physical arrangement in a circle) we do not care about the exact position of 
each elements, but only “who is next to whom.”  Therefore, we have to correct for 
the overcounting by dividing by the number of possible rotations around the circle. 

Example: There are 6 guests to be seated at a circular table. How many 
arrangements of the guests are there?

Hint: The idea here is that if everyone moved to the left one seat, the arrangement 
would be the same; it only matters who is sitting next to whom. So we must factor 
out the rotations. For N guests, there are N rotations of every permutation. 

Solution: There are 6! permutations of the guests, but for any permutation, there are 
6 others in which the same guests sit next to the same people, just in different 
rotations. 

Formula: There are                             

circular permutations of N distinct objects.  



Finite Combinatorics
Application of Enumerations and Permutations

The Birthday Problem:  What is the probability that at least two students 
in a class of size K have the same birthday? Assume all birthdays are equally 
likely throughout the year and each year has 365 days. 

Our class has 120 students.  What is the probability that two people in the class have 
the same birthday?



Finite Combinatorics
Application of Enumerations and Permutations

The Birthday Problem:  What is the probability that at least two students 
in a class of size K have the same birthday? Assume all birthdays are equally 
likely throughout the year and each year has 365 days. 

Solution:  There are 365 possibilities for each student. Thus, the sample space has 
365K points (it is an enumeration!).  The possibility that no two students share a 
birthday is P(365,K) (it is a K-permutation). 

Using the inverse method, we compute

For K = 120 (our class), we have

2986370829311944964358274839590110328083609355668702859405175850733854777961555956
8756410421132727649968822828558979444400029791296101007363166254729362144213820917
5498009240750978365040858616868848384987386084028835479982958096136133239782838523
50408358032298733312527583283468857189291156828403472900390625

5988035315899628681690785355501387087938634583409444426238157897061547078707911888
7477106916446498086324568862301736636690983217378682095824395749333107762215569645
0374414943397638317625086729731699993749587824201991495317862940613896478540378931
2000000000000000000000000000000

= 0.99999999975608…


