
1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 1/10

CS 4100 Homework 01
Due Thursday 1/19 at midnight (1 minute after 11:59 pm) in Gradescope (with a grace period of 6 hours)

You may submit the homework up to 24 hours late (with the same grace period) for a penalty of 10%.

You must submit the homework as an .ipynb file in Gradescope by the due date and time. All homeworks will be scored

with a maximum of 100 points; if point values are not given for individual problems, then all problems will be counted equally.

Please select Kernel -> Restart and Run All before you submit; we will not run your code while grading, and

anything you do not demonstrate as correct will be assumed to be incorrect.

The goals of this first homework are that you

1. Get up to speed on Python and Jupyter Notebooks (by going through the various tutorials or other resources as

needed);

2. Practice the submission process through Gradescope (and allow us to practice the grading process); and

3. Get started on the material in Chapter 2 of the textbook.

Whenever possible, you will have all the material you need for homeworks the week before they are due (so that you have the

weekend before the due date to complete it). However this will not always be possible, and in this homework, I am giving you

some exercises on material we will cover on Monday 1/16; these should be very familiar from your Discrete Mathematics

course in any case.

Problem 1

Sign up for an account for chatGPT :

https://openai.com/blog/chatgpt/

and ask it for advice on how to prepare for your Introduction to AI class. If the system is busy, you may have to try it late at

night or early in the morning.

Take a screen shot of your interaction. In the solution cell following, drag and drop your screen shot file; when you run the

cell, the image will display.

Note: Sometimes when I do the drag and drop, nothing happens; I think this is when you try to drop an image file into a cell

more than once, but I'm not precisely sure of the problem. If you simply create a new cell and try again, it should work.

Solution 1

https://openai.com/blog/chatgpt/

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 2/10

Problem 2

For this problem, we will explore chatGPT's coding ability.

Note: To input multi-line prompts, at the end of the line use Shift-Return instead of Return and it will not submit the prompt.

Part 2.1

Ask chatGPT whether the following code will correctly find the larger of the two integers x and y:

if(x > y):
 print(x)

and observe the result. Then ask if the following code will correctly print the largest element in a list L:

m = -1
for x in L:
 if(x > m):
 m = x
print(m)

and observe the result.

(Here is what happens:

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 3/10

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 4/10

Ok, your turn! Play around with various examples and find a relatively complex program that chatGPT appears to

understand correctly. You may want to ask something more than just "is this correct?"

As with Problem 1, paste your screenshot in the solution cell.

Solution 2.1

(Any answer is fine.)

Part 2.2

Now play around with various examples and find a relatively simple program that chatGPT does NOT understand correctly.

Paste your screenshot in the solution cell.

Solution 2.2

(Any answer is fine.)

Part 2.3

Ask chatGPT to write a Python program to determine if an integer n is a prime. Observe the result.

(Here is what happens.)

Play around with various examples where chatGPT writes Python code and give an interesting example where it creates a

reasonably complex program. Try to add details or constraints so that it is clearly not just spitting out something from

StackOverflow.

Solution 2.3

(Any answer is fine.)

Part 2.4 (Not exactly about coding, but similar)

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 5/10

Ask chatGPT to solve exercise 2.1 from the textbook and display the result as usual in the solution cell. Also evaluate

whether it did the problem correctly.

Solution 2.4

This seems correct. However, that is not surprising, since it probably just found it on StackOverflow or some Wikipedia page!

Part 2.5

How well do you think chatGPT would work as a coding assistant? Give a brief assessment with pros and cons about the

practical use of the current system based on your own coding experiences.

Solution 2.5

Any thoughtful answer is fine. You must discuss pros and cons as required.

Problem 3

Do problem 2.2 c & d and provide the solutions using Markdown and Latex, or by writing it on paper, scanning it, and

dragging and dropping it into the solution cell.

Solution 3

(c)

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 6/10

(d)

Problem 4

Do problem 2.3 b & c and provide the solutions using Latex in the solution cell.

Solution 4

(b)

(d)

Problem 5

A ∧ B ⟺ A ∨ B = (A ∧ B ⟹ A ∨ B) ∧ (A ∨ B ⟹ A ∧ B)

= (¬(A ∧ B) ∨ A ∨ B)) ∧ (¬(A ∨ B) ∨ (A ∧ B))

= (¬A ∨ ¬B ∨ A ∨ B) ∧ ((¬A ∧ ¬B) ∨ (A ∧ B))

= (¬A ∨ ¬B ∨ A ∨ B) ∧ ((¬A ∧ ¬B) ∨ A) ∧ ((¬A ∧ ¬B) ∨ B))

= (¬A ∨ ¬B ∨ A ∨ B) ∧ (¬A ∨ A) ∧ (¬B ∨ A) ∧ (¬A ∨ B) ∧ (¬B ∨ B)

A ∧ (A ⟹ B) ⟹ B = A ∧ (¬A ∨ B) ⟹ B

= ¬(A ∧ (¬A ∨ B)) ∨ B

= (¬A ∨ (A ∧ ¬B)) ∨ B

= ((¬A ∨ A) ∧ (¬A ∨ ¬B)) ∨ B

= (¬A ∨ A ∨ B) ∧ (¬A ∨ ¬B ∨ B)

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 7/10

Do problem 2.5 in Python and demonstrate your program on the three formulae in problem 2.4. As part of this process, you

will need to convert these three formulae to conjunctive normal form.

Hint: It is a little messy to represent literals as strings, so a simple encoding could be to consider and

represent literals using just the subscript, with a negative literal being -1 * subscript. Thus, if your propositions are

gas_in_tank and car_starts you could use the encodings:

1 = gas_in_tank

2 = car_starts

-1 = gas_in_tank

-2 = car_starts

The simplest representation of an interpretation/model in Python is simply a list of Boolean values, e.g.,

Feel free to use another encoding if you have a better one!

Σ = {A1, A2, A3, …}

¬

¬

[True, False, False, True] = {A1 ↦ t, A2 ↦ f, A3 ↦ f, A4 ↦ t}.

In [1]: # Solution 5

def satLiteral(I,L):
 i = abs(L)-1 # must - 1 because symbol indices start at 1, interpretation indices at 0
 if(L<0): # negative literal
 return not(I[i])
 else:
 return I[i]

def satClause(I,C):
 return any([satLiteral(I,L) for L in C])

def satCNF(I,A):
 return all([satClause(I,C) for C in A])

Note that this can be done all in one (long) line! Interesting,
but not particularly readable.

def satCNFOneLine(I,A):
 return all([any([(not(I[-L - 1]) if L < 0 else I[L - 1]) for L in C]) for C in A])

In [2]: # test

'''
ex1

A
not B

ex2

A2 <- A4
A1 <- A2,A3
'''
ex1 = [[1], [-2]]

ex2 = [[2,-4], [1,-2,-3]]

'''
I1
A1
A1 = t A2 = f

I2
A1 = t A2 = t A3 = t A4 = t
'''

I1 = [True,False]
I2 = [True, True, True, True]

satCNF(I2,ex2)

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 8/10

True

(True, True, True, True) True
(True, True, True, False) True
(True, True, False, True) True
(True, True, False, False) True
(True, False, True, True) False
(True, False, True, False) True
(True, False, False, True) False
(True, False, False, False) True
(False, True, True, True) False
(False, True, True, False) False
(False, True, False, True) True
(False, True, False, False) True
(False, False, True, True) False
(False, False, True, False) True
(False, False, False, True) False
(False, False, False, False) True

of satisfying interpretations = 10

Out[2]:

In [3]: from itertools import product

utility to count how many symbols are needed

def numSymbols(A):
 return max([abs(L) for C in A for L in C])

def genInterpretations(N):
 return list(product([True,False], repeat=N))

def countInterpretations(A):
 return ([satCNF(I,A) for I in genInterpretations(numSymbols(A))]).count(True)

In [4]: # test
ex = ex2 # ex1

for I in genInterpretations(numSymbols(ex)):
 print(I,"\t",satCNF(I,ex))

print("\n# of satisfying interpretations =",countInterpretations(ex))

In [5]: def printSolution(A):
 n = countInterpretations(A)
 if(n == 0):
 print("The CNF formula is unsatisfiable.")
 elif(n == 2**numSymbols(A)):
 print("The CNF formula is true (valid).")
 else:
 print("The CNF formula is satisfiable.")
 print("There are", n, "satisfying interpretations.")

In [6]: # Example 2.4.a

'''
(play_lottery and six_right) implies winner

 A1 = play_lottery
 A2 = six_right
 A3 = winner

 (1 & 2) -> 3
 => ~ (1 & 2) | 3
 => (~ 1 | ~ 2) | 3
 => (~ 1) | (~ 2) | 3

 A = [[-1, -2, 3]]

'''

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 9/10

Answer for exercise 2.4.a:

The CNF formula is satisfiable.
There are 7 satisfying interpretations.

Answer for exercise 2.4.b:

The CNF formula is true (valid).
There are 8 satisfying interpretations.

Answer for exercise 2.4.c:

A = [[-1, -2, 3]]

print("Answer for exercise 2.4.a:\n")

for I in genInterpretations(numSymbols(A)):
print(I,"\t",satCNF(I,A))

printSolution(A)

In [7]: # Example 2.4.b

'''
(play_lottery and six_right and (six_right implies win)) implies win

 A1 = play_lottery
 A2 = six_right
 A3 = winn

 (1 & 2 & (2 -> 3)) -> 3
 => ~(1 & 2 & (2 -> 3)) | 3
 => ~(1 & 2 & (~2 | 3)) | 3
 => (~1 | ~2 | (2 & ~3)) | 3
 => (~1 | ~2 | 3 | (2 & ~3))
 => (~1 | ~2 | ((3 | 2) & (3 | ~3))
 => (~1 | ((~2 | 3 | 2) & (~2 | 3 | ~3))
 => ((~1 | ~2 | 3 | 2) & (~1 | ~2 | 3 | ~3))

 B = [[-1, -2, 3, 2], [-1, -2, 3, -3]]

'''

B = [[-1, -2, 3, 2], [-1, -2, 3, -3]]

print("Answer for exercise 2.4.b:\n")

for I in genInterpretations(numSymbols(B)):
print(I,"\t",satCNF(I,B))

printSolution(B)

In [8]: # Example 2.4.c

'''

 A1 = gas_in_tank
 A2 = car_starts

 ~((~1 & (1 | ~2)) -> ~2)
 => ~(~(~1 & (1 | ~2)) | ~2)
 => ((~1 & (1 | ~2)) & 2)
 => (~1 & (1 | ~2)) & 2)
'''

C = [[-1], [1, -2], [2]]

print("Answer for exercise 2.4.c:\n")

for I in genInterpretations(numSymbols(C)):
print(I,"\t",satCNF(I,C))

printSolution(C)

1/22/23, 11:20 AM hw01.solution

127.0.0.1:8888/nbconvert/html/Documents/Teaching/CS4100/Web/Homeworks/hw01.solution.ipynb?download=false 10/10

The CNF formula is unsatisfiable.
There are 0 satisfying interpretations.

