
4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 1/18

You must submit the homework in Gradescope as a zip file containing two files:

The .ipynb file (be sure to Kernel -> Restart and Run All before you submit); and
A .pdf file of the notebook.

For best results obtaining a clean PDF file on the Mac, select File -> Print Review from the Jupyter window, then choose
File-> Print in your browser and then Save as PDF . Something similar should be possible on a Windows machine.

All homeworks will be scored with a maximum of 100 points; if point values are not given for individual problems, then all
problems will be counted equally.

 CS 4100 Homework 05: Reinforcement Learning
Due Monday 4/17 at midnight (1 minute after 11:59 pm) in Gradescope (with a grace period of 6 hours)

You may submit the homework up to 24 hours late (with the same grace period) for a penalty of 10%.

In [1]:

In the first half of the homework, we will develop an experimental framework for investigating the Iterated Prisoner's Dilemma.
Please watch the lecture video for details of the IPD.

We will test two different frameworks, one where each agent in the population only plays against the agents in the environment,
and so the agents are simply searching for the best strategy in that environment. In the second set of experiments, we will have
the population play against the environment, and also each other; in this way, the population can learn as a whole how to
(perhaps) cooperate with each other to succeed in that environment.

An agent is a list of 6 numbers, the first an integer recording the cumulative rewards, and the rest floats giving the probability P(C)
of cooperating in the next round of a PD game, given the history of what happened last time in the game with this player (e.g., CD
means "I cooperated last time, you defected last time" etc.)

 [rewards-so-far, P(C) first time, P(C) if CC last time, P(C) if CD, P(C) if DC, P(C) i
f DD]

Two examples are given at the end of the next cell, which you should read carefully. But do not change anything unless you
check with Prof Snyder.

 Problems One -- Five: Iterated Prisoner's Dilemma (50 points total)

Imports
​
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import random, randint, choice, normal,rand,seed
from scipy.stats import multivariate_normal
from collections import defaultdict
import sys
from tqdm import tqdm
​

1▾
2
3
4
5
6
7
8
9

10

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 2/18

In [2]:

The first task is to create offspring by mutation and crossover. Complete the following template. Sample test results can be
viewed on the PDF version of the homework.

Use randint to select the index to mutate. Use normal(0,scale=mutate_std) to choose a normally-distributed offset
with mean 0 and standard deviation mutate_std . Be sure to rectify the mutated probability so that it is in the range 0..1.

Hint: You can perform an action with probability p as follows:

if random() < p:
 # do something with probability p
else:
 # do something else with probability 1-p

 Problem One (10 pts)

Mixed_Env:
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0]
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 1.0, 1.0, 0.0, 0.0, 0.0]
[0.0, 0.5, 1.0, 0.0, 0.0, 1.0]
[0.0, 0.5, 0.5, 0.5, 0.5, 0.5]
[0.0, 1.0, 1.0, 0.0, 1.0, 0.0]
[0.0, 1.0, 1.0, 0.0, 1.0, 0.0]
[0.0, 1.0, 1.0, 0.0, 1.0, 0.0]
[0.0, 1.0, 0.0, 0.0, 0.0, 0.0]

Pavlov: [0, 0.5, 1.0, 0.0, 0.0, 1.0]

First move: 0.5

 C D

 | | |
C | 1.0 | 0.0 |
 | | |

 | | |
D | 0.0 | 1.0 |
 | | |

Reward: 0.0

TFT: [0, 1.0, 1.0, 0.0, 1.0, 0.0]

First move: 1.0

 C D

 | | |
C | 1.0 | 0.0 |
 | | |

 | | |
D | 1.0 | 0.0 |
 | | |

Reward: 0.0

Code for making environments↔​1▸

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 3/18

In [3]:

The next task is to write code to play a game of num_rounds rounds between two players. The rewards should be calculated
from the beginning of the game, but you should NOT change the cumulative rewards at index 0 in the agents (these are the
cumulative rewards).

Hint: When you want to determine what agent A should do the first time, MoveIndex[('First','First')] will return 1 ,
which is the index where the probability of C the for the first move is stored in A . If this probability is prob_c , then

 choice(['C','D'], p=[prob_c, 1-prob_c])

will return C with probability prob-c and D with probability 1-prob_c . You must store what each agent does, and then
use it to look up the moves in the next round. You only need to save the previous round. You must add together the payoffs for all
rounds to determine the rewards to return.

 Problem Two (10 pts)

[0, 0, 1.0, 0.5, 0.5, 0.6122794918829129]
[0, 0, 0, 0, 1, 1]
[0, 0.5, 0.5605610439106163, 0.5, 0, 0.5]

Reproduction
​
force probability to be in range [0..1]
​
def rectify(x):
 if x>1:
 return 1
 elif x<0:
 return 0
 else:
 return x

change randomly selected probability by normally-distributed offset
Must rectify to make sure is in range 0..1
​
def mutate(A,mutate_std):
 B = A.copy() # always make a copy so don't have two references to s

 pass # your code here
​
 return B
​
crossover each probability of the strategies A and B by creating new agent C,
and for each index 1..5, copy over from A with probability crossover_p and keep value
from B with probability 1 - crossover_p.
​
def crossover(A,B,crossover_p):
 C = B.copy()

 pass # your code here
​
 return C
​
crossover and then mutate to create child, which is returned
​
def make_child(A,B,crossover_p=0.5,mutate_std=0.2):

 pass
​
test
​
seed(0)
​
print(mutate([0, 0,1.0,0.5,0.5,0.5], 0.1))
print(crossover([0,1,1,1,1,1],[0,0,0,0,0,0],0.5))
print(make_child([0,0.5,0.5,0.5,0.5,0.5],[0,0,0,0,0,0],0.5,0.2))

1▾
2
3
4
5▾
6▾
7
8▾
9

10▾
11
12
13
14
15
16▾
17
18
19
20
21
22
23
24
25
26
27▾
28
29
30
31
32
33
34
35
36▾
37
38
39
40
41
42
43
44
45
46

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 4/18

In [4]:

This cell is used to display the results for analysis. Do not change anything without consultation.

In [5]:

The last task in creating the framework for experimenting with the IPD is to complete the following template, and verify that it
works as expected. Follow the pseudocode and test as indicated (results may be found in the accompanying PDF).

Hints: You can sort a list of lists in descending order on the first elements as shown here:

 lst_of_lsts.sort(reverse=True, key=(lambda x: x[0]))

 Problem Three (15 pts)

[0, 1.0, 1.0, 1.0, 1.0, 1.0]
[0, 0.0, 0.0, 0.0, 0.0, 0.0]
-1000 5000

-10000
30000

Set up Environment and Population
​
Payoffs
​
payoffs = { ('C','C'):300, ('C','D'):-100, ('D','C'):500, ('D','D'):-10 }
​
look up what index should be consulted for the first round, or for what happened
last time after the first round.
​
MoveIndex = { ('First','First'):1, ('C','C'):2, ('C','D'):3,\
 ('D','C'):4, ('D','D'):5 }
​
play IPD between A and B and return reward for each of A and B at end of num_rounds rounds
​
def play_game(A,B,num_rounds):
 reward_A = reward_B = 0

 pass # your code here
​
 return (reward_A,reward_B)
​
test
​
A = Angel
B = Devil
print(A)
print(B)
(ra,rb) = play_game(A,B,10)
print(ra,rb)
print()
​
play IPD with every member of Env and return cumulative reward
def get_reward(A,Env,num_rounds):

 pass # your code here
​
​
test
​
print(get_reward(Angel,All_Devils_Env,10))
print(get_reward(TFT,All_Angels_Env,10))

Keep track of winner in each round↔​

1▾
2
3
4
5
6
7
8
9

10▾
11
12
13
14
15▾
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33▾
34
35
36
37
38
39
40
41

1▸

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 5/18

In [6]: # Run an experiment
​
​
def run_experiment(environment,population_size,num_children,
 num_generations,crossover_prob=0.5, mutate_std=0.1,
 num_rounds=100, play_each_other=False,
 print_pop=False, display_evol=True):
​
 # make the population of random agents, which start with P(C) = 0.5 for all actions
 # use make_random_agent, which always provides a new copy of the array
​
​
​
 # keep track of parameters for best agent in each generation
​
 # Reward First CC CD DC DD
 parameters = [[], [], [], [], [], []]

​
​
 for k in range(num_generations):
​
 # play each agent against the environment and insert the reward into A[0]
 # if play_each_other is True, then play against environment + population,
 # else just play against evironment

​
​
 # sort the population in descending order of rewards from this generation

​
 # record best agent
 record_parameters(population[0],parameters)
​
 # generate children: delete the last num_children agents in population (those
 # with the worst rewards in this generation), use the remaining population
 # as parents to create num_children new children to add to the population.
 # Select parents randomly from the remaining population.
 # Use choice(...., replace=False) so you don't choose the same parent twice in one "

​

 # Display evolution of best agents
 if print_pop:
 print_population(population)
 if display_evol:
 display_evolution(parameters)
​
test
seed(0)
print("Environment: All_Angels_Env")
run_experiment(environment=Environments[0],
 population_size=10,
 num_children=5,
 num_generations=100,
 crossover_prob=0.5,
 mutate_std=0.1,
 num_rounds=20,
 play_each_other=False,
 print_pop=True,
 display_evol=True)
​

1▾
2
3
4▾
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21▾
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45▾
46
47▾
48
49
50
51
52
53▾
54
55
56
57
58
59
60
61
62
63

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 6/18

Environment: All_Angels_Env
[100000.0, 0.0, 0.082, 0.432, 0.0, 0.408]
[100000.0, 0.0, 0.195, 0.432, 0.0, 0.414]
[100000.0, 0.0, 0.071, 0.432, 0.0, 0.259]
[100000.0, 0.0, 0.0, 0.432, 0.0, 0.259]
[100000.0, 0.0, 0.053, 0.432, 0.0, 0.408]
[100000.0, 0.0, 0.0, 0.302, 0.0, 0.259]
[100000.0, 0.0, 0.071, 0.453, 0.0, 0.259]
[100000.0, 0.0, 0.082, 0.432, 0.0, 0.541]
[100000.0, 0.0, 0.053, 0.432, 0.0, 0.259]
[100000.0, 0.154, 0.082, 0.432, 0.0, 0.408]

Best agent in last generation:

First move: 0.0

 C D

 | | |
C | 0.082 | 0.432 |
 | | |

 | | |
D | 0.0 | 0.408 |
 | | |

Reward: 100000.0

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 7/18

Now the fun begins.... For this problem, we would like you to run multiple experiments to investigate what strategies will evolve in
each of the 8 environments defined in the first code cell above. Test things out with smaller numbers of generations and
population size, but eventually you should run experiments with at least the following parameters:

run_experiment(environment= ... ,
 population_size=100, # try with 10 to start, but best results wit
h at least 100
 num_children=50, # this is 50% children, if change pop size a
lso change this
 num_generations=100, # may need to change this depending on resul
ts
 crossover_prob=0.5, # you can think of these two as similar to t
he learning rate:
 mutate_std=0.1, # smaller values will make children more
similar to parents
 num_rounds=20, # don't do less than 20
 play_each_other=False,
 print_pop=False,
 display_evol=True)

Your goal is to determine what strategy evolves in each of the environments. It may not correspond to one of of the environment
strategies, but you can examine the winning agent at the end and think about the choices it learned to make.

Feel free to change the parameters, as long as play_each_other=False and num_rounds is at least 20. In particular, you
may see the strategy stabilize in fewer generations, or you may need to go above 100 to see the result. In general, you will get
better results with larger populations.

Run your experiments, and for each, give a short explanation of what you see, and why you think that particular strategy evolved.
It may not be possible to give a precise explanation, but give it a shot!

Also explain if you found better choices of the other parameters such as percentage of children, crossover probability, and the
mutation standard deviation. I found good results with the values above; these three essentially affect the learning rate, and
hence the rate at which it stabilizes.

 Problem Four (7.5 pts)

Now we would like you to do the same as in the last problem, but with play_each_other=True and with just the following
environments:

 All_Devils_Env, All_Pavlovs_Env, All_TFTs_Env, Mixed_Env

In general, you will need to run these for more than 100 generations to see a potential group strategy evolving. You may need to
modify the other parameters as well. Again, for each of these four environments, show your results and provide analysis for each
case.

Be sure to comment on how these may be different from the same environment in the previous problem.

 Problem Five (7.5 pts)

For the rest of this homework, we will investigate Reinforcement Learning a Grid World, a simple problem in which a single agent
moves around a 2D grid in search of a goal state where a reward sits waiting. These are all versions of the cliff walking example
shown in lecture.

In general, it "costs" 1 unit to move, so that many cells may have an immediate reward of -1. There are also "holes" where the
game terminates and the immediate reward is -100. The start state has a reward of 0 and the goal state has a reward of 100. The
trial terminates at holes and in the goal state.

We have provided various functions to display the grid, the rewards, the Q-Table and the strategy which evolves to garner the
maximum cumulative reward at the end.

 Problems Six -- Ten: Q-Learning in Gridworld

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 8/18

The next two cells show how each world is created as an object with a grid of rewards, a start state, and terminal states (where
the current trial will end).

In [9]: # Each grid world has a 2d matrix of rewards (which also gives the dimensions of the matrix)1▸

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 9/18

In [10]:

World 0

Rewards

| 0 | -1 |

| -1 | 100 |

Terminal states: [(1, 1)]

World 1

Rewards

| -1 | -1 | -1 |

| 0 | -100 | 100 |

Terminal states: [(1, 1), (1, 2)]

World 2

Rewards

| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |

| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |

| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |

| 0 | -100 | -100 | -100 | -100 | -100 | -100 | -100 | -100 | -100 | -100 | 100 |

Grid worlds initialization↔​1▸

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 10/18

Terminal states: [(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 1
0), (3, 11)]

World 3

Rewards
--
| -1 | -1 | -1 | -100 | -1 | -1 | -1 | -100 | -1 | -1 | -1 |
--
| -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 |
--
| -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 |
--
| 0 | -100 | -1 | -1 | -1 | -100 | -1 | -1 | -1 | -100 | 100 |
--

Terminal states: [(0, 3), (0, 7), (1, 1), (1, 3), (1, 5), (1, 7), (1, 9), (2, 1), (2, 3), (2,
5), (2, 7), (2, 9), (3, 1), (3, 5), (3, 9), (3, 10)]

World 4

Rewards

| 0 |-1.04 |-1.13 |-1.31 |-1.51 |-1.64 |-1.68 |-1.84 |-2.42 |-3.45 |-4.52 |-4.98 |

|-1.02 |-1.09 | -1.3 | -1.7 |-2.16 | -2.4 |-2.31 |-2.18 |-2.44 |-3.22 |-4.12 |-4.51 |

|-1.04 |-1.16 | -1.5 |-2.16 |-2.91 |-3.28 |-3.01 |-2.48 |-2.29 |-2.62 |-3.17 |-3.42 |

|-1.05 |-1.19 | -1.6 |-2.37 |-3.27 | -3.7 |-3.34 |-2.57 |-2.03 |-1.98 |-2.18 | -2.3 |

|-1.06 |-1.18 |-1.53 | -2.2 | -3.0 |-3.41 |-3.11 |-2.38 |-1.77 |-1.52 |-1.52 |-1.55 |

|-1.11 |-1.18 | -1.4 |-1.87 |-2.47 |-2.87 |-2.75 |-2.22 |-1.66 |-1.33 |-1.22 |-1.19 |

|-1.27 | -1.3 | -1.4 |-1.71 |-2.25 |-2.77 |-2.87 |-2.46 |-1.85 |-1.37 |-1.14 |-1.07 |

|-1.65 |-1.63 |-1.63 |-1.86 |-2.44 |-3.14 |-3.42 | -3.0 | -2.2 |-1.52 |-1.17 |-1.04 |

| -2.3 |-2.21 |-2.06 |-2.14 |-2.66 |-3.39 |-3.72 |-3.28 |-2.37 | -1.6 |-1.19 |-1.04 |

|-3.14 |-2.97 |-2.59 |-2.37 |-2.59 |-3.08 |-3.31 |-2.92 |-2.16 | -1.5 |-1.16 |-1.03 |

|-3.88 |-3.63 |-3.03 |-2.48 |-2.28 |-2.39 |-2.44 |-2.17 | -1.7 | -1.3 |-1.09 |-1.02 |

|-4.18 |-3.89 |-3.17 |-2.43 |-1.95 |-1.76 |-1.68 |-1.52 |-1.31 |-1.13 |-1.04 |100.0 |

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 11/18

Terminal states: [(11, 11)]

World 5

Rewards

| 0 | -2.8 | -4.0 | -4.6 | -5.8 | -3.5 | -5.6 | -1.1 | -0.4 | -6.2 |

| -2.1 | -4.7 | -4.3 | -0.7 | -9.3 | -9.1 | -9.8 | -1.7 | -2.2 | -1.3 |

| -0.2 | -2.0 | -5.4 | -2.2 | -8.8 | -3.6 | -8.6 | -0.6 | -4.8 | -5.9 |

| -7.4 | -2.3 | -5.4 | -4.3 | -9.8 | -3.8 | -3.9 | -3.8 | -0.6 | -3.2 |

| -6.4 | -5.6 | -3.0 | -9.4 | -3.3 | -3.3 | -7.9 | -8.7 | -6.8 | -6.4 |

| -4.3 | -5.6 | -0.1 | -9.0 | -7.9 | -8.4 | -3.5 | -7.5 | -5.3 | -7.6 |

| -8.4 | -8.9 | -3.4 | -8.6 | -8.0 | -6.3 | -1.8 | -9.0 | -1.6 | -9.0 |

| -0.2 | -5.3 | -0.2 | -4.0 | -2.6 | -9.6 | -7.2 | -8.8 | -7.0 | -8.8 |

| -6.8 | -5.9 | -9.4 | -3.1 | -4.3 | -7.3 | -4.8 | -9.1 | -4.2 | -0.7 |

| -6.8 | -3.3 | -8.7 | -2.8 | -7.1 | -8.2 | -4.1 | -9.8 | -1.7 |100.0 |

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 12/18

Terminal states: [(9, 9)]

World 6

Rewards

| 0 | -100 | -100 | -1 | -1 | -1 |

| -1 | -1 | -1 | -100 | -1 | -10 |

| -100 | -1 | -100 | -1 | -1 | -1 |

| -100 | -1 | -1 | -1 | -100 | -1 |

| -1 | -1 | -100 | -1 | -100 | -1 |

| -100 | -100 | -1 | -1 | 100 | -1 |

Terminal states: [(0, 1), (0, 2), (1, 3), (2, 0), (2, 2), (3, 0), (3, 4), (4, 2), (4, 4), (5,
0), (5, 1), (5, 4)]

World 7

Rewards

| 0 | -100 | -100 | -1 | -1 | -1 |

| -1 | -1 | -1 | -100 | -1 | -100 |

| -100 | -1 | -100 | -1 | -1 | -1 |

| -100 | -1 | -1 | -1 | -100 | -1 |

| -1 | -1 | -100 | -1 | -100 | -1 |

| -100 | -1 | -1 | -100 | 100 | -1 |

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 13/18

The first task in this set of problems is to create a dictionary which determines the allowable set of actions in each state, and a
goto function which tells how an action moves to a new state.

A state is simply a pair (row,col) in the grid.

Actions are

 Moves = ['U','R','L','D'] = Up, Right, Left, Down

Clearly, you can not move outside the allowable indices for the given grid.

 Problem Six (5 pts)

Part A

Terminal states: [(0, 1), (0, 2), (1, 3), (1, 5), (2, 0), (2, 2), (3, 0), (3, 4), (4, 2), (4,
4), (5, 0), (5, 3), (5, 4)]

World 8

Rewards

| 0 | 0 | -100 | -1 | -1 | -100 | -1 | -1 | -1 | -100 | -100 | -1 |

| -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 | -1 | -1 | -1 |

| -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -1 | -100 | -100 | -1 |

| -1 | -1 | -1 | -100 | -1 | -1 | -1 | -100 | -1 | -1 | -1 | -100 |

| -1 | -100 | -1 | -100 | -100 | -100 | -1 | -1 | -100 | -100 | -1 | -1 |

| -100 | -1 | -1 | -100 | -1 | -1 | -100 | -1 | -1 | -1 | -100 | -1 |

| -1 | -100 | -1 | -100 | -1 | -1 | -1 | -100 | -1 | -100 | -1 | -1 |

| -1 | -1 | -1 | -100 | -1 | -100 | -100 | -1 | -1 | -100 | -1 | -1 |

| -1 | -100 | -1 | -100 | -1 | -1 | -1 | -1 | -100 | -100 | -100 | -1 |

| -1 | -1 | -1 | -1 | -1 | -100 | -100 | -100 | -1 | -100 | -1 | -1 |

| -1 | -100 | -1 | -1 | -100 | 100 | -1 | -1 | -1 | -1 | -1 | -100 |

Terminal states: [(0, 2), (0, 5), (0, 9), (0, 10), (1, 1), (1, 3), (1, 5), (1, 7), (2, 1), (2,
3), (2, 5), (2, 7), (2, 9), (2, 10), (3, 3), (3, 7), (3, 11), (4, 1), (4, 3), (4, 4), (4, 5),
(4, 8), (4, 9), (5, 0), (5, 3), (5, 6), (5, 10), (6, 1), (6, 3), (6, 7), (6, 9), (7, 3), (7,
5), (7, 6), (7, 9), (8, 1), (8, 3), (8, 8), (8, 9), (8, 10), (9, 5), (9, 6), (9, 7), (9, 9), (1
0, 1), (10, 4), (10, 5), (10, 11)]

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 14/18

Hint: Create a default dictionary which returns Moves (meaning, any move is allowed) and then add the special cases for corners
and edges of the grid. You can get the dimensions of the grid using W.num_rows and W.num_cols . A default dictionary may
be created as follows:

Dictionary = defaultdict((lambda : <default-value>))

In [11]:

Now you must write a function which determines the next state, given the current state and the action. An example is shown in
the test. Do not bother with error checking, as this will only be called on states and moves which have been checked with a
dictionary A created in Part A.

 Part B

In [12]:

Rewards

| -1 | -1 | -1 |

| 0 | -100 | 100 |

['U', 'L']

Out[11]: defaultdict(<function __main__.initialize_Actions.<locals>.<lambda>()>,
 {(0, 0): ['R', 'D'],
 (0, 2): ['L', 'D'],
 (1, 0): ['U', 'R'],
 (1, 2): ['U', 'L'],
 (0, 1): ['R', 'L', 'D'],
 (1, 1): ['U', 'R', 'L']})

(1, 3)
(2, 4)
(2, 2)
(3, 3)

Actions for each state
These are lists so can use np.random.choice for exploration
​
Moves = ['U','R','L','D']

def initialize_Actions(W):

 pass # your code here
​
​
test for several values of N
N = 1
World[N].print_rewards()
A = initialize_Actions(World[N])
​
print(A[(1,2)])
​
A

state transitions -- no error checking, will only be called on legal moves
​
def goto_state(s,a):

 pass # your code here
​
​
test
​
for m in Moves:
 print(goto_state((2,3),m))

1▾
2
3
4
5
6▾
7
8
9

10
11
12
13
14
15
16
17
18

1▾
2
3▾
4
5
6
7
8
9

10▾
11

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 15/18

The next task in this set of problems is to create the Q-Table which records the current best estimate of the strategy, as
discussed in lecture. As you can see from the test, the Q-Table starts with random values in the range -10 .. 0 for all legal moves
(terminal states are blank).

Thus, the Q-Table is effectively a 3D array (rows, columns, and moves) but we will implement this as a dictionary with keys
(state,move) = ((row,col),move) mapped to Q-values (floats).

Hint: Use random() with suitable arithmetic operations to expand and shift from the range [0..1] to the range [-10..0]. Do not
worry about what states are terminal, as the Q-values will never be used!

 Problem Seven (5 pts)

In [13]:

Q-Table

U:	U:	U:
L:	L:-4.551	L:-3.541
R:-4.512	R:-3.972	R:
D:-2.848	D:-5.763	D:-5.624

U:-1.082		
L:		
R:-0.363		
D:		

Q-Table is dictionary with keys (state,move) = ((row,col),move) mapped to Q-values
​
Initialize with random default values in range -10..0
​
def initialize_Q_table(W,A):

 pass # your code here
​
​
def print_Q_table(W,A,Q):
 print("Q-Table")
 width = 6
 precision = 4
​
 hrule = ('---------'*W.num_cols)+'-'
​
 print(hrule)
 for r in range(W.num_rows):
 for move in ['U','L','R','D']:
 for c in range(W.num_cols):
 if (r,c) in W.terminal_states:
 print('| '+(" "*width),end='')
 elif move in A[(r,c)]:
 print('|'+move+':'+f"{np.around(Q[((r,c),move)],3):{width}.{precision}}"
 else:
 print('|'+move+':'+(" "*width),end='')
​
 print('|')
 print(hrule)
​
test -- try for several values of N
​
seed(0)
N = 1
W = World[N]
A = initialize_Actions(World[N])
Q = initialize_Q_table(W,A)
print_Q_table(W,A,Q)

1▾
2
3
4
5▾
6
7
8
9

10▾
11
12
13
14
15
16
17
18▾
19▾
20▾
21▾
22
23▾
24
25▾
26
27
28
29
30
31
32
33
34
35
36
37
38

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 16/18

Now we must create functions to determine the best allowable move, given A, Q, and the state, and write an epsilon-greedy
version of the strategy Pi .

The best move is simply the allowable move from the current state with the maximum Q-value. Return the move as a character
'U', 'R', etc.

The epsilon-greed strategy will choose a random move from those allowable in the current state with probability epsilon or
the best move with probability 1-epsilon .

 Problem Eight (5 pts)

In [14]:

In [15]:

In [16]:

In this problem we will create the framework for running multiple trials for the agent to learn how to solve the GridWorld problem
of maximizing rewards.

There are several parameters of interest, as explained in lecture:

epsilon = for epsilon-greedy strategy, probability of exploration by random move
lam = exponential decrease in epsilon (can not use "lambda" because that is a keyword in Python)
num_trials = number of random trials in this experiment

(We also thought about the use of a "learning rate" parameter alpha and a "discount" gamma for future rewards, but these
seemed to only be a disadvantage in this simple GridWorld scenario.)

 Problem Nine (15 pts)

D
L

R
R
R

Strategy code for epsilon-greedy Pi
​
find move with best Q-value in state s
def best_move(A,Q,s):

 pass # your code here
​
​
epsilon-greedy strategy
​
def Pi(A,Q,s,epsilon):

 pass # your code here
​

Tests: run this cell repeatedly to test for N == 1 two cells up
​
print(best_move(A,Q,(0,0))) # 'D'
print(best_move(A,Q,(0,2))) # 'L'
print()
print(Pi(A,Q,(1,0),0.0)) # 'R'
print(Pi(A,Q,(1,0),0.5)) # should give 'R' about 3x as often as 'U'
print(Pi(A,Q,(1,0),1.0)) # should give approximately same number of 'U' and 'R'

Pretty-printing code for Strategy↔​

1▾
2
3
4▾
5
6
7
8
9

10
11▾
12
13
14
15

1▾
2
3
4
5
6
7
8

1▸

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 17/18

In [1]:

Now we will reap the benefit of the previous problems and find out how well the Q-Algorithm does to learn paths in these grid
worlds!

For each of the 9 grid world examples, play around with the parameters

 epsilon, lam, num_trials

to answer the following question:

 Problem Ten (20 pts)

Q-Algorithm code
​
​
def run_experiment(N,epsilon=0.25,lam=1.0,num_trials=1000,display=False):

 # initialize grid world N

 # use a seed to help with comparing results
 seed(0)

 # initialize A

 # initialize Q

 # Now run num_trials different trials. For each,

 # initialize the current state s to the start state

 # while s is not a terminal state

 # determine the action a from s using the policy Pi
 # determine the next state s1 given the action a
 # determine the reward and the best move in s1
 # update Q-Table with the new Q-value for current state s = sum of reward i
 # Q-value of best move in s1;

 # update epsilon, reduced in each successive move by lam (if lam < 1 this m
 # you will explore less and less as the trial goes on)
 # update current state to s1

​

 # calculate the cumulative reward of the path given by the strategy implied by the Q-tab
 # This will get into an infinite loop if the path has cycles! To check for cycles,
 # add all states in the path into a set, and for each new state in the path, if
 # it is already in the set, you have a cycle and a cumulative reward is meaningless.
 # set a flag cycle = True if a cycle is found.

 # show all the data structures if you want

 if display:
 W.display_heat_map()
 print()
 W.print_rewards()
 print()
 print_Q_table(W,A,Q)
 print()
 print_strategy(W,A,Q)
 print()

 # if there is a cycle, return 0, else return the cumulative reward
​
test
​
#print("Reward:",run_experiment(2,num_trials=200, display=True))

1▾
2
3
4▾
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44▾
45
46
47
48
49
50
51
52
53
54
55
56
57
58

4/2/23, 9:39 PM HW05 - Jupyter Notebook

127.0.0.1:8888/notebooks/Documents/Teaching/CS4100/Web/Homeworks/HW05.ipynb 18/18

 What parameters will solve the problem in the fewest number of trials?

"Solving" the problem means learning a "steady-state" strategy, meaning that if you increase the number of trials, the strategy
does not change. The agent may accidentally hit on an optimal strategy, but continuing to search may "unlearn" the solution. The
system can only be said to have learned the optimal strategy only if it does not change as the number of trials is increased.

In order to help you with your experiments, the following function is provided, which will plot the rewards for a number of trials
between two bounds. The best way to proceed is to try single experiments with various parameters as shown at the end of the
previous cell, and then confirm your understanding with the plot_rewards function. The example shows how to determine
when the problem has been solved.

Your solution to this problem is a presentation of the experiments you performed, plus your analysis. Be sure to test various
values for epsilon and lam. You must do all 9 examples.

In [18]:

Reward: 69.41
Steady state found at 169 trials.

Plotting the rewards to find smallest number of trials which produce a steady-state maximu
​
​
def plot_rewards(N,lower_bound,upper_bound,epsilon=0.25,lam=1.0):
​
 X = range(lower_bound,upper_bound+1)
​
 Y = [run_experiment(N,epsilon=epsilon,lam=lam,num_trials=k,display=False) for k in X]
​
 plt.figure(figsize=(8,4))
 plt.title('Rewards Exploring Grid World '+str(N))
 plt.plot(X,Y)
 plt.scatter(X,Y,marker='.')
 plt.show()
​
 print("Reward:",Y[-1])

 # under assumption that steady state was reached by the upper_bound,
 # find the first time that value was found in this range

 for k in range(len(Y)-1,-1, -1):
 if Y[k] < Y[-1]:
 print("Steady state found at",X[k+1],"trials.")
 break
​
example
​
plot_rewards(4,100,300)
​

1▾
2
3
4▾
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21▾
22▾
23
24
25
26
27
28
29

