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The 5 Clustering Algorithms Data Scientists Need to Know
Want to be inspired? Come join my Super Quotes newsletter. 😎

Clustering is a Machine Learning technique that involves the grouping of data points. Given a set of data
points, we can use a clustering algorithm to classify each data point into a specific group. In theory, data
points that are in the same group should have similar properties and/or features, while data points in different
groups should have highly dissimilar properties and/or features. Clustering is a method of unsupervised
learning and is a common technique for statistical data analysis used in many fields.

In Data Science, we can use clustering analysis to gain some valuable insights from our data by seeing what
groups the data points fall into when we apply a clustering algorithm. Today, we’re going to look at 5 popular
clustering algorithms that data scientists need to know and their pros and cons!

K-Means Clustering

K-Means is probably the most well-known clustering algorithm. It’s taught in a lot of introductory data science
and machine learning classes. It’s easy to understand and implement in code! Check out the graphic below for
an illustration.

21K 54

Open in app

Search Medium

https://towardsdatascience.com/?source=post_page-----a36d136ef68--------------------------------
https://towardsdatascience.com/?source=post_page-----a36d136ef68--------------------------------
https://medium.com/@george.seif94?source=post_page-----a36d136ef68--------------------------------
https://medium.com/@george.seif94?source=post_page-----a36d136ef68--------------------------------
https://www.superquotes.co/?utm_source=mediumtech&utm_medium=web&utm_campaign=sharing
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fa36d136ef68&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderCollection&source=---two_column_layout_nav----------------------------------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------


2/28/23, 1:55 PM The 5 Clustering Algorithms Data Scientists Need to Know | by George Seif | Towards Data Science

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68#:~:text=Gaussian Mixture Models (GMMs) give,circular by u… 2/9

K-Means Clustering

1. To begin, we first select a number of classes/groups to use and randomly initialize their respective center
points. To figure out the number of classes to use, it’s good to take a quick look at the data and try to
identify any distinct groupings. The center points are vectors of the same length as each data point vector
and are the “X’s” in the graphic above.

2. Each data point is classified by computing the distance between that point and each group center, and then
classifying the point to be in the group whose center is closest to it.

3. Based on these classified points, we recompute the group center by taking the mean of all the vectors in
the group.

4. Repeat these steps for a set number of iterations or until the group centers don’t change much between
iterations. You can also opt to randomly initialize the group centers a few times, and then select the run
that looks like it provided the best results.

K-Means has the advantage that it’s pretty fast, as all we’re really doing is computing the distances between
points and group centers; very few computations! It thus has a linear complexity O(n).

On the other hand, K-Means has a couple of disadvantages. Firstly, you have to select how many groups/classes
there are. This isn’t always trivial and ideally with a clustering algorithm we’d want it to figure those out for us
because the point of it is to gain some insight from the data. K-means also starts with a random choice of
cluster centers and therefore it may yield different clustering results on different runs of the algorithm. Thus,
the results may not be repeatable and lack consistency. Other cluster methods are more consistent.

K-Medians is another clustering algorithm related to K-Means, except instead of recomputing the group center
points using the mean we use the median vector of the group. This method is less sensitive to outliers (because
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of using the Median) but is much slower for larger datasets as sorting is required on each iteration when
computing the Median vector.

Mean-Shift Clustering

Mean shift clustering is a sliding-window-based algorithm that attempts to find dense areas of data points. It is
a centroid-based algorithm meaning that the goal is to locate the center points of each group/class, which
works by updating candidates for center points to be the mean of the points within the sliding-window. These
candidate windows are then filtered in a post-processing stage to eliminate near-duplicates, forming the final
set of center points and their corresponding groups. Check out the graphic below for an illustration.

Mean-Shift Clustering for a single sliding window

1. To explain mean-shift we will consider a set of points in two-dimensional space like the above illustration.
We begin with a circular sliding window centered at a point C (randomly selected) and having radius r as
the kernel. Mean shift is a hill-climbing algorithm that involves shifting this kernel iteratively to a higher
density region on each step until convergence.

2. At every iteration, the sliding window is shifted towards regions of higher density by shifting the center
point to the mean of the points within the window (hence the name). The density within the sliding
window is proportional to the number of points inside it. Naturally, by shifting to the mean of the points in
the window it will gradually move towards areas of higher point density.

3. We continue shifting the sliding window according to the mean until there is no direction at which a shift
can accommodate more points inside the kernel. Check out the graphic above; we keep moving the circle
until we no longer are increasing the density (i.e number of points in the window).

4. This process of steps 1 to 3 is done with many sliding windows until all points lie within a window. When
multiple sliding windows overlap the window containing the most points is preserved. The data points are
then clustered according to the sliding window in which they reside.

An illustration of the entire process from end-to-end with all of the sliding windows is shown below. Each
black dot represents the centroid of a sliding window and each gray dot is a data point.
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The entire process of Mean-Shift Clustering

In contrast to K-means clustering, there is no need to select the number of clusters as mean-shift
automatically discovers this. That’s a massive advantage. The fact that the cluster centers converge towards the
points of maximum density is also quite desirable as it is quite intuitive to understand and fits well in a
naturally data-driven sense. The drawback is that the selection of the window size/radius “r” can be non-
trivial.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a density-based clustered algorithm similar to mean-shift, but with a couple of notable advantages.
Check out another fancy graphic below and let’s get started!

DBSCAN Smiley Face Clustering
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1. DBSCAN begins with an arbitrary starting data point that has not been visited. The neighborhood of this
point is extracted using a distance epsilon ε (All points which are within the ε distance are neighborhood
points).

2. If there are a sufficient number of points (according to minPoints) within this neighborhood then the
clustering process starts and the current data point becomes the first point in the new cluster. Otherwise,
the point will be labeled as noise (later this noisy point might become the part of the cluster). In both cases
that point is marked as “visited”.

3. For this first point in the new cluster, the points within its ε distance neighborhood also become part of the
same cluster. This procedure of making all points in the ε neighborhood belong to the same cluster is then
repeated for all of the new points that have been just added to the cluster group.

4. This process of steps 2 and 3 is repeated until all points in the cluster are determined i.e all points within
the ε neighborhood of the cluster have been visited and labeled.

5. Once we’re done with the current cluster, a new unvisited point is retrieved and processed, leading to the
discovery of a further cluster or noise. This process repeats until all points are marked as visited. Since at
the end of this all points have been visited, each point will have been marked as either belonging to a
cluster or being noise.

DBSCAN poses some great advantages over other clustering algorithms. Firstly, it does not require a pe-set
number of clusters at all. It also identifies outliers as noises, unlike mean-shift which simply throws them into
a cluster even if the data point is very different. Additionally, it can find arbitrarily sized and arbitrarily shaped
clusters quite well.

The main drawback of DBSCAN is that it doesn’t perform as well as others when the clusters are of varying
density. This is because the setting of the distance threshold ε and minPoints for identifying the neighborhood
points will vary from cluster to cluster when the density varies. This drawback also occurs with very high-
dimensional data since again the distance threshold ε becomes challenging to estimate.

Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)

One of the major drawbacks of K-Means is its naive use of the mean value for the cluster center. We can see
why this isn’t the best way of doing things by looking at the image below. On the left-hand side, it looks quite
obvious to the human eye that there are two circular clusters with different radius’ centered at the same mean.
K-Means can’t handle this because the mean values of the clusters are very close together. K-Means also fails in
cases where the clusters are not circular, again as a result of using the mean as cluster center.
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Two failure cases for K-Means

Gaussian Mixture Models (GMMs) give us more flexibility than K-Means. With GMMs we assume that the data
points are Gaussian distributed; this is a less restrictive assumption than saying they are circular by using the

 That way, we have two parameters to describe the shape of the clusters: the mean and the standardmean.
deviation! Taking an example in two dimensions, this means that the clusters can take any kind of elliptical
shape (since we have a standard deviation in both the x and y directions). Thus, each Gaussian distribution is
assigned to a single cluster.

To find the parameters of the Gaussian for each cluster (e.g the mean and standard deviation), we will use an
optimization algorithm called Expectation–Maximization (EM). Take a look at the graphic below as an
illustration of the Gaussians being fitted to the clusters. Then we can proceed with the process of Expectation–
Maximization clustering using GMMs.

EM Clustering using GMMs

1. We begin by selecting the number of clusters (like K-Means does) and randomly initializing the Gaussian
distribution parameters for each cluster. One can try to provide a good guesstimate for the initial
parameters by taking a quick look at the data too. Though note, as can be seen in the graphic above, this
isn’t 100% necessary as the Gaussians start our as very poor but are quickly optimized.

2. Given these Gaussian distributions for each cluster, compute the probability that each data point belongs
to a particular cluster. The closer a point is to the Gaussian’s center, the more likely it belongs to that
cluster. This should make intuitive sense since with a Gaussian distribution we are assuming that most of
the data lies closer to the center of the cluster.

3. Based on these probabilities, we compute a new set of parameters for the Gaussian distributions such that
we maximize the probabilities of data points within the clusters. We compute these new parameters using
a weighted sum of the data point positions, where the weights are the probabilities of the data point
belonging in that particular cluster. To explain this visually we can take a look at the graphic above, in
particular the yellow cluster as an example. The distribution starts off randomly on the first iteration, but
we can see that most of the yellow points are to the right of that distribution. When we compute a sum
weighted by the probabilities, even though there are some points near the center, most of them are on the
right. Thus naturally the distribution’s mean is shifted closer to those set of points. We can also see that
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most of the points are “top-right to bottom-left”. Therefore the standard deviation changes to create an
ellipse that is more fitted to these points, to maximize the sum weighted by the probabilities.

4. Steps 2 and 3 are repeated iteratively until convergence, where the distributions don’t change much from
iteration to iteration.

There are 2 key advantages to using GMMs. Firstly GMMs are a lot more flexible in terms of cluster covariance
than K-Means; due to the standard deviation parameter, the clusters can take on any ellipse shape, rather than
being restricted to circles. K-Means is actually a special case of GMM in which each cluster’s covariance along
all dimensions approaches 0. Secondly, since GMMs use probabilities, they can have multiple clusters per data
point. So if a data point is in the middle of two overlapping clusters, we can simply define its class by saying it
belongs X-percent to class 1 and Y-percent to class 2. I.e GMMs support mixed membership.

Agglomerative Hierarchical Clustering

Hierarchical clustering algorithms fall into 2 categories: top-down or bottom-up. Bottom-up algorithms treat
each data point as a single cluster at the outset and then successively merge (or agglomerate) pairs of clusters
until all clusters have been merged into a single cluster that contains all data points. Bottom-up hierarchical
clustering is therefore called hierarchical agglomerative clustering or HAC. This hierarchy of clusters is
represented as a tree (or dendrogram). The root of the tree is the unique cluster that gathers all the samples,
the leaves being the clusters with only one sample. Check out the graphic below for an illustration before
moving on to the algorithm steps

Agglomerative Hierarchical Clustering

1. We begin by treating each data point as a single cluster i.e if there are X data points in our dataset then we
have X clusters. We then select a distance metric that measures the distance between two clusters. As an
example, we will use average linkage which defines the distance between two clusters to be the average
distance between data points in the first cluster and data points in the second cluster.

2. On each iteration, we combine two clusters into one. The two clusters to be combined are selected as those
with the smallest average linkage. I.e according to our selected distance metric, these two clusters have the
smallest distance between each other and therefore are the most similar and should be combined.
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3. Step 2 is repeated until we reach the root of the tree i.e we only have one cluster which contains all data
points. In this way we can select how many clusters we want in the end, simply by choosing when to stop
combining the clusters i.e when we stop building the tree!

Hierarchical clustering does not require us to specify the number of clusters and we can even select which
number of clusters looks best since we are building a tree. Additionally, the algorithm is not sensitive to the
choice of distance metric; all of them tend to work equally well whereas with other clustering algorithms, the
choice of distance metric is critical. A particularly good use case of hierarchical clustering methods is when
the underlying data has a hierarchical structure and you want to recover the hierarchy; other clustering
algorithms can’t do this. These advantages of hierarchical clustering come at the cost of lower efficiency, as it
has a time complexity of O(n³), unlike the linear complexity of K-Means and GMM.

Conclusion

There are your top 5 clustering algorithms that a data scientist should know! We’ll end off with an awesome
visualization of how well these algorithms and a few others perform, courtesy of Scikit Learn! Very cool to see
how the different algorithms compare and contrast with different data!
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