
Article One:  Two minutes NLP — 
Perplexity explained with simple 
probabilities 
Language models, sentence probabilities, and entropy 
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In general, perplexity is a measurement of how well a probability 
model predicts a sample. In the context of Natural Language 
Processing, perplexity is one way to evaluate language models. 



A language model is a probability distribution over sentences: it’s both 
able to generate plausible human-written sentences (if it’s a good 
language model) and to evaluate the goodness of already written 
sentences. Presented with a well-written document, a good language 
model should be able to give it a higher probability than a badly written 
document, i.e. it should not be “perplexed” when presented with a well-
written document. 

Thus, the perplexity metric in NLP is a way to capture the degree of 
‘uncertainty’ a model has in predicting (i.e. assigning probabilities to) 
text. 

Now, let’s try to compute the probabilities assigned by language 
models to some example sentences and derive an intuitive explanation 
of what perplexity is. 

Computing perplexity from sentence probabilities 

Suppose we have trained a small language model over an English 
corpus. The model is only able to predict the probability of the next 
word in the sentence from a small subset of six 
words: “a”, “the”, “red”, “fox”, “dog”, and “.”. 

Let’s compute the probability of the sentence W, which is “a red fox.”. 

The probability of a generic sentence W, made of the words w1, w2, up 
to wn, can be expressed as the following: 



P(W) = P(w1, w2, …, wn) 

Using our specific sentence W, the probability can be extended as the 
following: 

P(“a red fox.”) = 

P(“a”) * P(“red” | “a”) * P(“fox” | “a red”) * P(“.” | “a 
red fox”) 

Suppose these are the probabilities assigned by our language model to 
a generic first word in a sentence: 

 
Probabilities assigned by a language model to a generic first word w1 in a sentence. Image by the 
author. 



As can be seen from the chart, the probability of “a” as the first word of 
a sentence is: 

P(“a”) = 0.4 

Next, suppose these are the probabilities given by our language model 
to a generic second word that follows “a”: 

 
Probabilities assigned by a language model to a generic second word w2 in a sentence. Image by 
the author. 

The probability of “red” as the second word in the sentence after “a” is: 

P(“red” | “a”) = 0.27 

Similarly, these are the probabilities of the next words: 



 
Probabilities assigned by a language model to a generic third word w3 in a sentence. Image by 
the author. 

 
Probabilities assigned by a language model to a generic fourth word w4 in a sentence. Image by 
the author. 



Finally, the probability assigned by our language model to the whole 
sentence “a red fox.” is: 

P(“a red fox.”) = 

P(“a”) * P(“red” | “a”) * P(“fox” | “a red”) * P(“.” | “a 
red fox”) 

= 0.4 * 0.27 * 0.55 * 0.79 

= 0.0469 

It would be nice to compare the probabilities assigned to different 
sentences to see which sentences are better predicted by the language 
model. However, since the probability of a sentence is obtained from a 
product of probabilities, the longer is the sentence the lower will be its 
probability (since it’s a product of factors with values smaller than 
one). We should find a way of measuring these sentence probabilities, 
without the influence of the sentence length. 

This can be done by normalizing the sentence probability by the 
number of words in the sentence. Since the probability of a sentence is 
obtained by multiplying many factors, we can average them using 
the geometric mean. 



Let’s call Pnorm(W) the normalized probability of the sentence W. 
Let n be the number of words in W. Then, applying the geometric 
mean: 

Pnorm(W) = P(W) ^ (1 / n) 

Using our specific sentence “a red fox.”: 

Pnorm(“a red fox.”) = P(“a red fox”) ^ (1 / 4) = 
0.465 

Great! This number can now be used to compare the probabilities of 
sentences with different lengths. The higher this number is over a well-
written sentence, the better is the language model. 

So, what does this have to do with perplexity? Well, perplexity is just 
the reciprocal of this number. 

Let’s call PP(W) the perplexity computed over the sentence W. Then: 

PP(W) = 1 / Pnorm(W) 

= 1 / (P(W) ^ (1 / n)) 

= (1 / P(W)) ^ (1 / n) 



Which is the formula of perplexity. Since perplexity is just the 
reciprocal of the normalized probability, the lower the perplexity over a 
well-written sentence the better is the language model. 

Let’s try computing the perplexity with a second language model that 
assigns equal probability to each word at each prediction. Since the 
language models can predict six words only, the probability of each 
word will be 1/6. 

P(“a red fox.”) = (1/6) ^ 4 = 0.00077 

Pnorm(“a red fox.”) = P(“a red fox.”) ^ (1/4) = 1/6 

PP(“a red fox”) = 1 / Pnorm(“a red fox.”) = 6 

…which, as expected, is a higher perplexity than the one produced by 
the well-trained language model. 

Perplexity and Entropy 

Perplexity can be computed also starting from the concept of Shannon 
entropy. Let’s call H(W) the entropy of the language model when 
predicting a sentence W. Then, it turns out that: 

PP(W) = 2 ^ (H(W)) 



This means that, when we optimize our language model, the following 
sentences are all more or less equivalent: 

• We are maximizing the normalized sentence probabilities 
given by the language model over well-written sentences. 

• We are minimizing the perplexity of the language model over 
well-written sentences. 

• We are minimizing the entropy of the language model over 
well-written sentences. 

 
 
 
 
 
 
 
 
 
 
 



Article 2:  Perplexity Intuition (and its 
derivation) 
Never be perplexed again by perplexity. 

You might have seen something like this in an NLP class: 

 
A slide from Dr. Luke Zettlemoyer’s NLP class 

Or 



 
A slide of CS 124 at Stanford (Dr. Dan Jurafsky) 

During the class, we don’t really spend time to derive the perplexity. 
Maybe perplexity is a basic concept that you probably already know? 
This post is for those who don’t. 

In general, perplexity is a measurement of how well a probability 
model predicts a sample. In the context of Natural Language 
Processing, perplexity is one way to evaluate language models. 

But why is perplexity in NLP defined the way it is? 



 

If you look up the perplexity of a discrete probability 
distribution in Wikipedia: 

 
from https://en.wikipedia.org/wiki/Perplexity 

where H(p) is the entropy of the distribution p(x) and x is a 
random variable over all possible events. 

In the previous post, we derived H(p) from scratch and intuitively 
showed why entropy is the average number of bits that we 
need to encode the information. If you don’t understand H(p), 
please read this ⇩ before reading further. 
 
The intuition behind Shannon’s Entropy 
[WARNING: TOO EASY!] 
 

Now we agree that H(p) =-Σ p(x) log p(x). 



Then, perplexity is just an exponentiation of the entropy! 

Yes. Entropy is the average number of bits to encode the information 
contained in a random variable, so the exponentiation of the entropy 
should be the total amount of all possible information, or more 
precisely, the weighted average number of choices a random variable 
has. 

For example, if the average sentence in the test set could be 
coded in 100 bits, the model perplexity is 2¹⁰⁰ per sentence. 

Let’s confirm that the definition in Wikipedia matches to the one in the 
slides. 



 

Where 

p : A probability distribution that we want to model. A training sample 
is drawn from p and it’s unknown distribution. 

q : A proposed probability model. Our prediction. 



We can evaluate our prediction q by testing against samples 
drawn from p. Then it’s basically calculating the cross-
entropy. In the derivation above, we assumed all words have 
the same probability (1 / # of words) in p. 

Remarks 

• When q(x) = 0, the perplexity will be ∞. In fact, this is one of 
the reasons why the concept of smoothing in NLP was 
introduced. 

• If we use a uniform probability model for q (simply 1/N for all 
words), the perplexity will be equal to the vocabulary size. 

• The derivation above is for illustration purpose only in order 
to reach the formula in UW/Stanford slides. In both slides, it 
assumes that we are calculating the perplexity of the entire 
corpus using a unigram model and there is no duplicated 
word. (It assumes the # of total words (N) is the same as the 
number of unique words.) Also, it assumes all words have the 
same probability 1/N. These are not realistic assumptions. 

Takeaway 

• Less entropy (or less disordered system) is favorable over 
more entropy. Because predictable results are preferred over 
randomness. This is why people say low perplexity is good 
and high perplexity is bad since the perplexity is the 
exponentiation of the entropy (and you can safely think 
of the concept of perplexity as entropy). 



• A language model is a probability distribution over sentences. 
And the best language model is one that best predicts an 
unseen test set. 

• Why do we use perplexity instead of entropy? 
If we think of perplexity as a branching factor (the 
weighted average number of choices a random variable 
has), then that number is easier to understand than 
the entropy. I found this surprising because I thought there 
will be more profound reasons. I asked Dr. Zettlemoyer if 
there is any other reason other than easy interpretability. His 
answer was “I think that is it! It is largely historical since 
lots of other metrics would be reasonable to use as 
well!” 

 


